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Abstract—This paper presents a novel framework for the recognition of objects based on their silhouettes. The main idea is to

measure the distance between two shapes as the minimum extent of deformation necessary for one shape to match the other. Since

the space of deformations is very high-dimensional, three steps are taken to make the search practical: 1) define an equivalence class

for shapes based on shock-graph topology, 2) define an equivalence class for deformation paths based on shock-graph transitions,

and 3) avoid complexity-increasing deformation paths by moving toward shock-graph degeneracy. Despite these steps, which

tremendously reduce the search requirement, there still remain numerous deformation paths to consider. To that end, we employ an

edit-distance algorithm for shock graphs that finds the optimal deformation path in polynomial time. The proposed approach gives

intuitive correspondences for a variety of shapes and is robust in the presence of a wide range of visual transformations. The

recognition rates on two distinct databases of 99 and 216 shapes each indicate highly successful within category matches (100 percent

in top three matches), which render the framework potentially usable in a range of shape-based recognition applications.

Index Terms—Shape deformation, shock graphs, graph matching, edit distance, shape matching, object recognition, dynamic

programming.
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1 INTRODUCTION

THE recognition of objects in images is one of the central
problems in computer vision. It is a challenging task

mainly due to the large degree of variations which projections
of objects in 2D images experience as a result of within-class
variations, articulations and other object-based changes, as
well as variations in position, viewing direction, illumina-
tion, etc. The extent by which representations of object
shape capture such variations can significantly impact the
effectiveness of recognition. In recognition applications,
shapes have been represented as point sets [3], [4], [17],
outline curves [2], [10], [36], [33], [26], [13], and by their
medial axis [25], [31], [39], [42], [52], among others.

When a shape is represented using a point set (unorga-
nized cloud of points) [18], matching is typically done using
an assignment algorithm [17]. These methods have the
advantage of not requiring ordered boundary points. How-
ever, if the similarity of two points is based on a local
measure, the matching process does not necessarily capture
the “coherence of shapes” in that the relationship among
portions of shapemay not be fully captured in thematch, see
Fig. 1a. This drawback is alleviated to some extent by using a
global shape context [3], [4] where the relative location of all
points is qualitatively captured; see Section 6.3. A drawback
of such methods [4], [9] is their sensitivity to partial
occlusion and articulation of parts, mainly due to the use
of an extrinsic reference frame, see Fig. 1b. Also, an alteration

of fine shape-geometry of parts may significantly affect our
perception, but not affect the overall distance, see Fig. 1b.

In curve-based representations, the matching is done
either by aligning ordered point sets using an optimal
similarity transformation [1], or by finding a mapping from
one curve to another that minimizes an elastic performance
functional consistingof stretchingandbending terms [2], [10],
[36], [33]. In thediscrete domain, theminimizationproblem is
often transformed into matching shape signatures with
curvature, bendingangle, or absoluteorientationas attributes
[13], [36]. The curve-based matching methods often suffer
from one or more of the following drawbacks: asymmetric
treatment of the two curves, sensitivity to sampling, lack of
rotation and scaling invariance, and sensitivity to articula-
tions, placement and deformations of parts.

Shapes have also been represented by their medial axis
andvariants.ZhuandYuillemodel animate shapesusing two
deformable primitives, “worm” (a tubular structure) and
“circle,” which lead to a skeletal-graph representation [52].
These skeletal graphs arematched using a branch and bound
strategy,where the similarity between instances of primitives
is defined in terms of the principal deformation modes in a
Bayesian framework. The inherent instabilities of this skeletal
representation are accounted for by defining skeleton
operators and by using a user-specified model graph as an
intermediary in thematch process. This approach is shown to
be effective under articulation, viewpoint variation, and
occlusion. However, its applicability to represent inanimate
objects is limiteddue to the choice of primitivesused. Further,
it is difficult to extend the number of primitives because the
graph representation implicitly assumes that the edges
correspond to the worm and the nodes correspond to the
circle. In a related approach, Liu and Geiger [25] use the
A* algorithm tomatch shape-axis trees, which are defined by
the locus of midpoints of optimally corresponding boundary
points. The cost of matching edges in these trees is computed
in terms of the cost of matching corresponding boundary
curves. As in [52], graph topology changing operations are

550 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 5, MAY 2004

. T.B. Sebastian is with GE Global Research Center, PO Box 8 KWC 218A,
Schenectady, NY 12301. E-mail: sebastia@crd.ge.com.

. P.N. Klein is with the Department of Computer Science, Brown
University, Box 1912, Providence, RI 02912. E-mail: klein@cs.brown.edu.

. B.B. Kimia is with the Division of Engineering, Brown University, Box D,
Providence, RI 02912. E-mail: kimia@lems.brown.edu.

Manuscript received 12 June 2001; revised 23 July 2002; accepted 11 Apr.
2003.
Recommended for acceptance by S. Dickinson.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 114344.

0162-8828/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society



used to deal with transformations like articulation and
occlusion. However, their algorithm uses unordered trees
and does not necessarily preserve the ordering of edges at
nodes in the final match, see Fig. 2. In addition, the topology-
changing operators used in both these methods [52], [25] are
graph-based, andnotmotivatedbychanges in theunderlying
shape. Thismeans that the costs of these operators that arenot
independent of one another, may not be consistent with one
another. Consequently, the cost of the match can have
discrete jumps. Instead, the cost of deletion operator should
be consistentwith the fact that deleting an edge in the graph is
the limit of matching that edge to a zero-length edge.

A representation derived from viewing the medial axis as
singularities formed during a propagation from boundaries,
i.e., Blum’s grassfire, is the shock tree or shock graph [41]. In this
approach, isolated points like branch points, end-points, and
those medial axis segments (links), where shocks are
monotonically flowing give rise to a tree or a graph. The
approach in this paper [37], uses a graph structure where
shockswith isolated point topology are nodes and thosewith
curve topology are links; we refer to this as the Kimia et al.’s
shock graph. See Section 2 for details. This representation (tree
versus graph) was used in a similar form in Sharvit et al. [39],
Kimia et al. [20]. In an alternate representation [42], [31], the
oldest shock is selected as the root of a tree and connected
shocks of the same type are mapped as nodes. Edges in this
tree are placed between adjacent shock types such that the
parent node has a higher time of formation than all the child
nodes.We refer to this as the Siddiqi et al.’s rooted shock tree to
facilitate a discussion on the two types of shock representa-
tions. While this representation captures the shock hierarchy

well, it maps shock segments with directed flow to a point
(node), where the dynamic information is implicit. For
example, the planar order at nodes is not represented, see
Fig. 2. In addition, the selection of the oldest shock as the root
of the tree, leads to an instability in the shock-tree representa-
tion, as relatively small change in the shapes can lead to a
shock tree of very different topology, see Fig. 3. This may
result in erroneousmatchesunless explicitly accounted for by
additional measures.

We now present shape matching methods that use these
shock-basedrepresentations.Sharvitetal. [39]andKimiaetal.
[20] found the optimal pairwise assignment of shock graph
nodes using the graduated assignment approach [17], where
the similarity between each pair of nodes is defined based on
the geometry of the shock segments linking them. This
approach is fast, handles missing/extra nodes using slack
variables, and gives good results for a database of 25 shapes.
However, the errors in the matching process also point out a
fundamental flaw in that the coherence of a shape is not
necessarily preserved in the match process, as illustrated in
Figs. 1 and 2.

Siddiqi et al.’s rooted shock tree representation has been
used in conjunction with several different matching schemes
to index into shape databases. First, an approach based on
subgraph isomorphism [42], characterizes the topology of a
shock subtree by the sum of the eigenvalues of its adjacency
matrix. The geometric similarity between nodes is measured
as the Hausdorff distance between shock branches that are
aligned by an optimal affine transformation, see Fig. 4. These
two similarity measures are combined in the tree matching
procedure, which starts at the roots of the trees and proceeds
through the subtrees in a depth-first fashion. This matching
strategy is thus sensitive to the choice of roots in the shock
trees, see Fig. 3.

Another approach based on matching rooted shock trees
relies on findingmaximal cliques of an association graph [31].
The main idea behind this approach is that maximal subtree
isomorphism between rooted trees induces a maximal clique
in the corresponding tree association graph which can be
found as the global maximum of a quadratic function. The
geometric similarity between nodes in this approach is
defined in terms of differences in attributes of the shocks,
namely, location, time of formation, orientation, and velocity.
This approach has been extended to handle many-to-many
correspondences [32] and to match free trees [30]. A third
approach [47] uses approximate edit distance between shock
trees, where the edit costs are restricted to be uniform. This
approach relies on the computational equivalence between
maximum common subgraph and tree edit distance, where
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Fig. 1. (a) Shapes with matching subparts. An approach that is based on similarity of parts, but does not capture their relative spatial arrangement
will have negligible cost in matching these two shapes since the cost of matching pairs (A, A0), (B, B0), (C, C0), (D,D0), and (E, E0) is zero. (b) Shape
B results from an articulation of parts in shape A. This similarity is not captured by shape context [4] since articulation (disproportionately) affects the
global signature (shape context) of each point. In addition, those changes in the geometry of parts which do significantly affect the perception of
shape do not cause a large change in the shape context, resulting in distðA;BÞ > distðA;CÞ.

Fig. 2. This figure illustrates the importance of capturing theplanar orderat
nodes of skeletal graphs in the match process. The shape on the left is
reconstructed on the right after changing the ordering of branches from
(A0, B0, C0) to (A, C, B). This reordering of branches results in two clearly
different shapes. However, an approach that does not explicitly represent
order at graph nodes cannot distinguish between these shapes because
there is a zero-costmatch between portionsof the two shapes (highlighted
by ellipses of the same shade of gray for purposes of illustration).



the cost of relabeling an element is assumed to be less than the
cost of deleting it and reinsertingonewith adifferent label [7].
The similarity of shock edges is measured in terms of the
length of the corresponding boundary segments [48].

The above shock-based matching approaches [20], [39],
[31], [42], [47] have been shown to perform well in indexing
into small databases of shapes (less than 30 shapes), but their
performance for larger databases has not yet been examined.
We expect that, for a recognition method to be effective for a
much largerdatabase, i.e., onedepictinganextensive rangeof
visual transformations including occlusion, viewpoint varia-
tion, and articulation, thematchingmethod should be able to
handle the inherent instabilities of the symmetry-based repre-
sentations, as formally classified in [15], [53]. In other words,
thematching strategy has to explicitly relate shapes on either
side of an instability, which have different shock graph
topologies but similar shape, with negligible matching cost.

Wenowpresentabriefoverviewof theproposedapproach
for comparing 2D shapes that addresses some of these issues.
Themain idea is to treat each shape as a point in a shape space
and define the distance between two shapes in terms of the
minimum-cost deformation path connecting them. Since
there are infinitely many ways to deform a shape, the space
of shapes and of deformations must be “discretized” to
reduce the dimensionality of the search topractical limits.We
address this issue by first defining an equivalence class on
shapes,where all shapeswith the same shock graph topology
are considered equivalent. We then define as equivalent all
the deformation paths that have the same set of transition
shapes (instabilities of the shock graph representation that
form the boundaries between shape equivalence classes), see
Fig. 5. The representation of the deformation paths explicitly
in terms of the transition shapes allows us to relate shapes on
either side of the instability with negligible cost. The shock
transitions can be effectively mapped to an “edit” operation
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Fig. 3. This figure compares the shock graph representations of Siddiqi et al. [42], [31], and Kimia et al. [39], [20]. The original shapes and shocks are
shown in the left column. The oldest shock is indicated by a square (black). The shock graphs of Siddiqi et al. and Kimia et al. are shown in the middle
and right columns, respectively. Note that a relatively small change in the shape causes the oldest shock to change, leading to a significant change in
the topology of Siddiqi et al.’s shock representation, which may result in erroneous matches. In contrast, the graph topology in the right column
remains stable.

Fig. 4. (a) Shapes that are very dissimilar can have the same shock graph topology and (b) vice versa. Hence, graph-matching approaches based on
topology without using geometrical information [8], [50] are not applicable for shock graph matching.



on the shock graph in the discrete domain. The cost for a
deformation path is defined by summing the costs of
individual edit operations that are, in turn, computed in a
consistent fashion by summing local shape differences. We
employ a graph edit-distance algorithm which was devel-
oped in [22], [23] to find the globally optimal path in
polynomial time, see Fig. 6. The proposed approach is
implemented and is shown to be robust in the presence of a
variety of visual transformations such as articulation, partial
occlusion, boundary perturbations, viewpoint variation, etc.,
and gives intuitive results for indexing into shape databases.

The main contributions of this paper are as follows:

1. Adopt and use a planar ordered shock graph representa-
tion where nodes and edges are distinct types of
shocks as a basic representation for matching shapes.

2. Discretize the space of shapes and of deformation
paths using shock transitions that makes the problem
of finding the optimal deformation path practical.

3. Connect transitions to edits and assign costs for
shock-graph edit operations such that they are
consistent with each other.

4. Employ an edit-distance algorithm to find the optimal
solution of the discretized version of the problem.

5. Illustrate the effectiveness of the approach in the
presence of various visual transformations, and for
indexing into shape databases.

The paper is organized as follows: Section 2 reviews the
basic concepts and develops the notion of a shock graph
based on a formal classification of shock points, its
instabilities under deformations, and its use in reconstruct-
ing the shape. In Section 3, the idea of discretizing the shape
space based on defining equivalence classes on shapes and

their deformations, and a restriction of deformation paths to
pairs of simplifying paths is described. The edit-distance
algorithm for finding the optimal path is reviewed in
Section 4. Section 5 describes how the cost of each edit
operation is assigned in a consistent fashion. Section 6
examines matching results under a variety of transforma-
tions, shows indexing results for two databases, and finally,
compares the proposed approach to two recent methods,
Pelillo et al.’s rooted shock tree matching [31] and shape-
context matching [4]. Section 7 concludes the paper.

2 SHAPE REPRESENTATION USING SHOCK GRAPHS

Definition (Symmetry Set, Medial Axis, Shock Structure).
The symmetry set (SS) of a shape is the closure of the locus of
centers of bitangent circles [6]. The medial axis (MA) of a
shape is defined as the closure of the locus centers of maximal
(bitangent) circles [5]. The shock structure (SH) of a shape
arises from a “dynamic” interpretation of the medial axis, as the
locus of singularities (shocks) formed in the course of wave
propagation (as in Blum’s grass-fire) from boundaries, together
with an associated direction and speed of flow.

Shock segments are curve segments of themedial axiswith
monotonic flow, and give a more refined partition of the
medial axis segments [40], see Fig. 7. These shocks are
obtained either by detecting the singularities of the evolving
curve in a curve evolution/PDE approach [19], [41] or in an
Eulerian-Lagrangian propagation which combines wave
propagation and computational geometry concepts in a
unified framework [46], [45], [54]. All shock graphs used in
this paper are from the latter approach.

Medial axis and shock points were formally classified in
[15], based on the order of contact of circles with the shape
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Fig. 5. Every pair of shapes in the shape space are related by an infinite number of deformation paths, few of which are shown here. Each deformation
path can be effectively characterized by the sequence of transitions (represented by dots) experienced by the shape in the morphing process.

Fig. 6. A preview of the correspondence between two fish based on shock graph edit distance. Same colors indicate matching shock branches, and
gray colored branches in the shock graphs have been pruned. This color scheme is used throughout the paper.

Fig. 7. From [15], the geometric locus and graph topology of the medial axis cannot tell these shapes apart but the shock graph can.



boundary, aswas originally used to classify the symmetry set
[6]. The notation An

k refers to a circle with k-fold tangency at
ndistinctpoints,e.g.,A1meansregular tangency,A2meansan
osculating circle, A3 means tangency at a vertex, Fig. 8. An
implication of this classification togetherwith a consideration
of direction of flow [15] is that shock points generically
consists of sources:

1. end-points corresponding to curvature extrema A3,
which always have inward flow,

2. interior points with outward flow A2
1-2 (second-

order shocks),
3. junctions of three branches with only one outward

flowing branch A3
1-1

and of sinks,
4. interior points with inward flow A2

1-4 (fourth-order
shocks with two branches), and

5. junction of three branches all of which are inward-
flowing A3

1-4 (fourth-order shocks with three
branches).

All remaining points areA2
1-1 (first-order shocks) connecting

sources to sinks. The above five types of shocks are isolated
from other shocks of the same type and are naturally
associated with nodes in a shock graph, while the first-order
shocks are contiguous and form links between the previous
five types, resulting in a directed, planar graph.

Definition 1 (Shock graph). Let the A2
1-2, A

2
1-4, A3, A

3
1-1, and

A3
1-4 types of shocks denote the nodes of a graph. Let the A2

1-1

monotonic shock segments define the links of this graph. The
attributes for each link are defined by the intrinsic geometry
(curvature, acceleration, length, total time) and for each node by
time of formation anddirection of flow.We refer to this attributed
relational graph as the shock graph.

Note that the shock graph is a richer descriptor of shape
than themedial axis graph since its graph topology ismore in
accord with our perceptual notions of shape [40], see Fig. 7.

Moreover, the shock graph of a simple, closed shape is an
orderedunrootedplanar tree.Wenowreview the reconstruc-
tion of shape from its shock graph and the transitions of a
shock graph, both of which will be used in later parts of the
paper.

Reconstruction of Shape fromaShockGraph. Giblin and
Kimia showed how a shape can be reconstructed from the
shock graph [14]. For example, let �ðsÞ denote a first-order
A2

1 shock curve, with arclength s, radius r (or time of
formation), curvature �, instantaneous velocity v, and
acceleration a. The pair (�ðsÞ; aðsÞ) and the length of the
branch L are sufficient to intrinsically reconstruct the
corresponding pair of boundaries ��ðsÞ of the shape and
their differential properties [14], [29]. Specifically, the
boundary points ��ðsÞ are given by

��ðsÞ ¼ �ðsÞ � r

v
~TT � r

v

ffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 � 1
p

~NN; ð1Þ

where ~TT and ~NN are the tangent and normal to the curve �,
respectively, where v is obtained by integrating a, r is
obtained by integrating v, T is obtained by integrating �, and
� is obtained by integrating T . The induced velocities v� and
curvatures �� of the shape boundary as a function of
arclength on the shock segment can be written as

v� ¼ �
ffiffiffiffiffiffiffiffi

v2�1
p

v
ð1þ r����Þ

�� ¼ ����

1þr�� ; where ���� ¼ �� v
ffiffiffiffiffiffiffiffi

v2�1
p þ a

vðv2�1Þ :

8

<

:

ð2Þ

This local intrinsic reconstruction is used in computing the
similarity between two shock segments. Other types of
shocks are also similarly reconstructed [14]

Transitions of the ShockGraph.The changes in the shock
graph when the shape outline undergoes a one-parameter
family of deformations has been studied [15]. In amajority of
cases as a shape is deformed, the shock graph topology
remainsunaltered, seeFig. 9a.However, at certainpoints (i.e.,
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Fig. 8. This figure from [15] and [46] illustrates the An
k notation in the context of the order of contact of the curves (thick line) with circles (thin line)

which leads to a classification of generic possibilities for shock formation and propagation on the left and in the context of a shape on the right.

Fig. 9. (a) A few examples of shapes having the same shock graph topology (members of the same shape cell). (b) One of the transitions (contract).
A and B are the original shapes, and C is the transition shape.



for certain shapes), an infinitesimal change in the shape can

cause a large (abrupt) change in the shockgraph topology, see

Fig. 9b. The shapes where the graph topology is altered by a

small perturbation are precisely the points of instability of the

medial axis/shock graph. These instabilities, namely, all

generic shock transitions along a one-parameter family of

deformations have been formally enumerated and classified

[15], see Fig. 10. A similar situation exists in 3D, as recently

studied in [16], where generic transitions are classified and

enumerated in terms of the order of contact of spheres with

the surface.
In the next section, we discuss how these transitions, or

instabilities, are used to our advantage to partition the shape

space into shape cells and to group deformation paths into

groups of deformation bundles, in effect, discretizing the

search in the shape space for the optimal path between two

shapes.

3 PARTITIONING THE SHAPE SPACE

This section describes our approach to defining the distance
between shapes. Each shape is viewed as a point in the shape
space, at thispoint, simply the collectionof all “shapes,”where
a neighbor of a shape is the set of infinitesimal deformation of
its outline. A deformation sequence between two shapes is a
path (sequence of points) in the shape space, see Fig. 5. We
define the distance between two shapes in an infinitesimal
neighborhood and then define the distance between two
shapesA andB as the cost of the least-cost deformation path
between them and denote it by DðA;BÞ. However, there are
infinitelymany deformation paths between two shapes and a
key bottleneck in this deformation-based approach tomatch-
ing shapes is the impracticality of the computational
representation of the high-dimensional space of deforma-
tions. We propose three steps in “discretizing” this high-
dimensional space such that the entire shape space is
effectively and densely represented. First, we define an
equivalence class on shapes based on shock graph topology.
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Fig. 10. From [15], the first three columns show a schematic description of the six possible transitions of the shock structure of a closed curve, and
the last three columns show examples of corresponding shape deformations. The central column in each group represents the transition point in the
deformation from left to right, or right to left columns. In the notation of [15], (a) is the A1A3 transition, (b) and (c) are the two types of A4

1, (d) and
(e) are the two types of A3

1 with infinite velocity, and (f) is the A2
1 point with infinite velocity and zero acceleration. The graph operations to make the

right and left columns equivalent are: splice, contract (two types), and merge (three types).



Specifically, we use the constancy of shock graph topology
under deformations to define a local neighborhood for most
shapes.

Definition 2. A shape cell is a collection of shapes which have
identical shock graph topology.

At shock transitions, this neighborhood topology breaks
down, i.e., two shapes on either side of a transition shape are
not connected using this notion of a neighborhood, while the
perceptual distance between them is negligible, see Fig. 11.
Note that this is primarily the reason why recognition based
on a direct subgraph isomorphism of this representation
would break down. This motivates an explicit embedding of
the transitions in the definition of a shape neighborhood as
“seams” between the cells of the shape space. Specifically, the
remedy for arriving at a broader notion of a neighborhood
requires discretizing the space of all deformation paths by

considering all deformationpaths that encounter the same set
of transition shapes to be equivalent.

Definition 3. Two one-parameter shape deformation sequences
from shape A to shape B are equivalent if they pass through an
identical sequence of shock transitions. A shape deformation
bundle from shape A to shape B is the set of equivalent one-
parameter families of deformations from A to B.

In other words, two deformation paths are equivalent if
they traverse through the same shape cells. Further, we
represent each deformation bundle using the set of
transition shapes it passes through, see Fig. 12.

We note further that those deformations paths where
features are added and then removed are clearly not optimal
and their considerations is wasteful, see Fig. 13. Hence, as a
third measure, we avoid candidate deformation paths which
unnecessarily venture into more complicated shapes. In
order to avoid complexity-increasing deformation paths, we
represent each deformation path by a pair of “simplifying”
deformation paths from A and B to a “simpler” common
shapeC, see Fig. 14a. The notion of simplicity is derived from
the transitions themselves, see Fig. 10: the first transition
splices off branches, the second and third transitions
“symmetrize” the shape, the fourth transition removes parts
at “necks,” the fifth transition moves the shape to a rounder
shape, and the last transition removes wavy patterns on the
boundary. The deformation of a shape to the adjacent simpler
transition shape restricts the shape in that adegreeof freedom
is removed and leads to a shape cell of lower dimensionality,
see Fig. 12. In the discrete domain, the deformation of a shape
to the adjacent transition shape is represented by an edit
operation on its shock graph.

With the above discretizations the deformation paths
between two shapes A and B can be represented by a finite
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Fig. 11. Two shape cells and the transition shapes that occupy the
boundary between them.

Fig. 12. A highly schematic description of a deformation bundle by resorting to the analogy of connecting points embedded in polyhedral cells (a very
coarse analogy for shape cells). Two neighboring shape cells can meet at interfaces which upon arrival at the interface remove one, two, three, or
more degrees of freedom, as compared to that of the shape cell. Of course, the shape space is a much higher dimensional space than the
3D Euclidean polyhedral space. The path illustrates a projection of A and B to the transition interface at A1 and B1, respectively; from A1 and B1 to
A2 and B2, etc., until both An and Bn belong to the same shape cell. Bottom row: each path is a representative of a collection of paths or a
deformation bundle which share the same sequence of transitions. In the shape C, a circle serves the role of the corner vertex C.



number of transition shapes. For example, in Fig. 14b, seven
transition shapes result from applying one simplifying
transition on shape A (fish). In the second step of the
transition sequence, each of these seven shapes undergoes a
similar deformations towards the next applicable transition.
In a few steps, the shock graph reaches highly simplified
shapes, e.g., elongated approximations of the object (only
three steps are illustrated; additional steps are not shown). A
complete path consists of a pair of simplifying deformation
paths which end up in shapes belonging to a common shape
cell. These two deformed shapes are then related by a
continuous transformation of the shock graph attributes
using a “deform” edit operation.

In summary, the three steps of 1) partitioning of the shape
space into shape cells, 2) definition of a deformation bundle as an
equivalence class of deformations based on the sequence of
transitions along each deformation, and 3) restriction of the
search to paths consisting of two simplifying subpaths from
shapes A and B to a common shape cell, constitute a

discretization of the search space, and render the search of
optimal deformation path practical.

4 EDIT-DISTANCE ALGORITHM

Despite the above discretization and the tremendous
reduction in dimensionality, numerous paths remain to be
considered, as illustrated in Fig. 14. Thus, we need an
efficient algorithm to find the optimal path among all
possibilities. We employ a polynomial-time edit-distance
algorithm developed in [23], [22] for comparing ordered,
unrooted planar trees, which we review in this section.

The above notion of edit-distancewas originally proposed
to compare character strings [49], where there are three kinds
of edit operations: 1) deleting a character, 2) inserting a
character, and 3) changing one character into another;
consider matching the word “HELLO” to “HELO,” “HEL-
LOW” and “JELLO,” respectively. Once costs are assigned to
each edit operation, edit-distance is defined to be the
minimum cost of the sequence of operations required to
convert one string to another and is typically computedusing
dynamic programming.Note that the delete operation and the
insert operations are inverses of one another. An equivalent
way to describe the same measure is to omit the insert
operation and ask for the minimum cost set of operations
applied to the two strings that will succeed in transforming
them into a common string.

The notion of edit-distance has been generalized to
comparing ordered, rooted trees [44], [51] and ordered,
unrooted trees [21], where analogous edit operations are
defined as: 1) contract an edge, 2) uncontract an edge, and
3) change the label of an edge. As before, one can omit the
uncontract operation, and ask for the minimum-cost set of
operations taking the two trees to a common tree. Edit
distancehasbeenused inmanycomputer-vision applications
such as handwritten character andword recognition [12] and
stereo matching [27].

In applying the edit-distance approach to comparing
shock graphs, traditional tree edit operations do not suffice.
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Fig. 13. Two deformation paths among many are highlighted. The
sequence (A, C1, C2, C3, C4,C5, B) is not optimal since features are first
added and then removed. In order to avoid such paths, we represent
each deformation path by a pair of “simplifying” deformation paths
starting from A and B, respectively, and leading to a common shape C.

Fig. 14. (a) The optimal path of deformation between two shapes is obtained by searching all pairs of simplifying deformation paths leading to a
common shape cell represented by C. (b) A hand-drawn sketch of how the space of one-parameter family of deformations for each shape can be
discretized using transition shapes that result from simplifying edits. Shapes with equivalent shock graph topology are marked by common icons with
common shape/coloring. The optimal path in this case goes through the gray-hashed hexagonal surround.



Rather, four groups of edit operations which are derived

from the shock transitions are necessary, see Fig. 15:

1. The splice operation deletes a shock edge that is a leaf
and merges the remaining two.

2. The contract operations deletes a shock edge con-
necting two degree-three nodes.

3. The merge operations combines two edges at a
degree-two node.

4. We also define a deform edit to match two shock
edges with different attributes.

As in traditional edit-distance, once the costs for these edits
are determined, the edit-distance is defined to be the
minimum-cost of a set of operations that transforms the two
graphs into a common graph.1 The minimum-cost set of
operations can be found using dynamic programming, as
sketched in Appendix B. The definition and method of
assigning costs to the edit operations is discussed in Section 5.

The computational complexity of the algorithm is
Oðn31n32Þ, where n1 and n2 are the number of nodes in T1
and T2, respectively. However, the use of a heuristic allows
for a reduction to Oðn3k3Þ where n ¼ maxðn1; n2Þ and
k ¼ maxðk1; k2Þ, where ki are the diameter of Ti. See
Appendix B for details.

5 COST OF EDITS

We now discuss how costs are assigned to each edit
operation. Observe that edit costs have to be consistent with
each other, and also with our perceptual metrics of
similarity. While the former can be developed mathemati-
cally, the latter can only be judged subjectively. Our basic
approach is to first derive the cost of the deform edit, i.e., the
distance between two shapes within the same shape cell
(identical shock topology), and then derive the cost of other
edits as the limit of the deform cost as the shape moves to
the boundary of the shape cell (transition shape). This will
ensure that edit costs are consistent with each other.

We derive the deform edit cost by summing over local
shape differences which are computed as differences
between corresponding shock attributes. This approach is
based on extending a previously developed metric for
aligning curves [33], [34], [36], which is reviewed below in
Section 5.1. First, however, we observe that in many
applications, such as clustering and indexing into large
databases, themetric properties of the distance are critical for
database organization. The following proposition shows that
the deformation-based notion of distance between two
shapes A and B denoted byDðA;BÞ is a metric.

Proposition 1. The distance DðA;BÞ is a metric, i.e., it
satisfies the following properties for shapes A, B, and C:

1) DðA;AÞ ¼ 0, 2) DðA;BÞ ¼ DðB;AÞ, and 3) DðA;BÞ
� DðA;CÞ þDðC;BÞ.

Proof. Properties 1 and 2 follow directly from the definition.
To prove property 3, let P �

AB, P
�
AC , and P �

CB be the
minimum-cost deformation paths between (A;B), (A;C),
and (C;B) with costs DðA;BÞ, DðA;CÞ, and DðC;BÞ,
respectively. Consider the deformation path between A
and B that passes through C (Fig. 16), consisting of the
minimum-cost deformation paths P �

AC and P �
CB. The cost

of this path is DðA;CÞ þDðC;BÞ by definition. From the
optimality of the P �

AB, it follows that DðA;BÞ �
DðA;CÞ þDðC;BÞ. tu

5.1 Matching Curves by Optimal Alignment

Theapproach in [33] to comparing twocurvesC and ĈC consists
of finding the minimum-cost deformation of one curve to
another, where the cost is defined as the sum of “stretching”
and “bending” energies [10], [43], [2]. Let C and ĈC be
parameterized by arclength s and ŝswith tangent orientations
�ðsÞ and �̂�ðŝsÞ, respectively, see Fig. 17a. The basic premise of
the approach is that the cost of matching entire curves can be
expressed as the sum of the costs of matching infinitesimal
subsegments,which is a combination of length and curvature
differences, see Fig. 17c. Specifically, the cost of matching
infinitesimal segments d� is defined as jdŝs� dsj þRjd�̂�� d�j,
where R is a constant related to the average sample length.
The problem is then cast as minimizing a functional over all
possible alignments between the two curves. To ensure
symmetric treatment of the curves, the alignment is repre-
sented not as a function but as a pairing of points on the two
curves leading to the notion of an alignment curve �,
�ð�Þ ¼ ðsð�Þ; ŝsð�ÞÞ,whereCðsð�ÞÞand ĈCðŝsð�ÞÞdenote thepoints
on the two curves that correspond, Fig. 17b. The optimal
alignment curve �� is found by minimizing the functional

�½�� ¼
Z ~LL

0

��

�

�

�

dŝs

d�
� ds

d�

�

�

�

�

þR

�

�

�

�

d�̂�ðŝsÞ
d�

� d�ðsÞ
d�

�

�

�

�

�

d�; ð3Þ

where ~LL is the length of the alignment curve. A key
advantage of using the alignment curve is that the
alignment can be expressed in terms of a single function.
We choose the angle between the tangent of alignment
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Fig. 15. Three shock-graph edits that change the graph topology.

1. For the traditional formulation, one also includes operations that are
inverses to splice, contract, and merge, and defines edit-distance to be the
minimum cost of a sequence of edits to morph one graph to the other.

Fig. 16. This figure illustrates that the distance satisfies the triangle
inequality. Let P �

AB be the minimum-cost deformation path between
shapes A and B. The deformation path between shapes A and B
consisting of minimum-cost deformation paths P �

AC and P �
CB is typically

not optimal.



curve and the x-axis,  ð�Þ, see Fig. 17b. Then, (3) can be
rewritten in terms of  as

�½�ð Þ� ¼
Z ~LL

0

�

j cosð Þ � sinð Þj þRj� cosð Þ � �̂� sinð Þj
�

d�:

ð4Þ
The optimal alignment curve is computed efficiently using
dynamic programming [34], [36], and is reviewed in
Appendix A. The distance dðC; ĈCÞ between the curves C
and ĈC is then defined as the cost of the optimal alignment,
DðC; ĈCÞ ¼ �½���.

5.2 Deform Cost

In analogy to this notion of similarity between curves, the
deform cost is defined as the sum of “local shape
differences” between corresponding shock segments. This
difference is defined by extending the metric between two
curves to a metric between two shock segments. Observe
that each shock segment represents a pair of segments on
the boundary of the shape, as shown in Fig. 18a. Hence, we
can view the problem of deforming one edge in a shock
graph to an edge in another shock graph in terms of
deforming the corresponding boundary segments, i.e., as a
“joint curve matching problem.” As in the case of a single
pair of curves, we penalize stretching and bending of each
pair of boundary segments in terms of length and curvature
differences. However, this notion of joint curve matching of
shape boundary segment pairs must not only rely on
simultaneous pairwise intrinsic differences between the
boundaries, but also on changes in the relative pose of the
two boundary segments, see Fig. 19.

Consider a pair of edges from two shock graphs, S and ŜS,
each parameterized by s and ŝs, respectively. Let the
boundary segments corresponding to S, Bþ, and B� be
parameterized by sþ and s�, with tangent orientations
�þðsþÞ and ��ðs�Þ, respectively, Fig. 18b. The boundary
segments of ŜS are similarly defined. The cost of matching
infinitesimal segments of the shock edges are defined as in
curve matching by length differences jdŝsþ � dsþj þ jdŝs� �
ds�j and boundary curvature differences jd�̂�þ � d�þj þ
jd�̂�� � d��j but, in addition, now augmented with width
differences 2ðjr̂r0 � r0j þ

R

jdr̂r� drjÞ, and relative orientation
differences 2ðj�̂�0 � �0j þ

R

jd�̂�� d�jÞ. As in the case of
curves, the shock alignment curve is used to mediate the
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Fig. 17. (a) An alignment of two curves C and ĈC is represented by a pairing of points. (b) A symmetric treatment of this pairing leads to a notion of an
alignment curve. (c) The cost of deforming an infinitesimal segment AB to segment ÂAB̂B, when the initial points and the initial tangents are aligned
(A ¼ ÂA, ~TTA ¼ ~TT

ÂA
), is related to the distance BB̂B, and is defined by jdŝs� dsj þRjd�̂�� d�j [34], [36].

Fig. 18. The shock S and the corresponding shape boundary segments Bþ and B�.

Fig. 19. This figure illustrates why summing the pairwise differences in
corresponding boundary segments is not sufficient to measure the
distance between two shock segments. In all three cases, the boundary
segments are identical up to rotations and translations and the cost of
matching each individual pair independently is zero. However, the cost
of matching the pair as a whole should not be zero, as 1) the segments
in (a) are farther apart than those in (b) suggesting that the shape in (a)
is wider than the shape in (b), and 2) the segments in (b) are widening
whereas those in (c) are narrowing.



match and the optimal alignment curve �� is found by
minimizing the functional

�½S; ŜS;�� ¼
Z ~LL
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where cos� ¼ � dr
ds

and ~LL is length of alignment curve. Note

that the reconstruction equation ((2) in Section 2) allows us

to write � in terms of shock properties. Specifically, using

ds� ¼ v�ds; and d�� ¼ ��v�ds, we have

�½S; ŜS;�� ¼
Z ~LL
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Finally, the deform cost of the shock edges S and ŜS is
defined as the cost of the optimal alignment,

dðS; ŜSÞ ¼ min
�

�½S; ŜS;�� ð6Þ

which is found by a dynamic-programming method
described in [34], [36]. This method has Oðn2Þ complexity,
where n is the number of samples along the shock
segments. The average running time on an SGI Indigo
(195 MHz) for matching two shock segments with 50 points

each is 0.17 seconds. Note that we currently compute the
cost for all combinations of shock paths independently,
leading to about 3-5 per minutes per match for the entire
shock graph. However, there is a great deal of redundancy
which can be avoided by revising our implementation to
avoid duplicate matches.

5.3 Cost of Other Edits

Thus far, we have described how the deform cost between two
shock segments is computed in an intrinsic manner. Other
edits can be viewed as limiting cases of the corresponding
deform operation, and penalized accordingly. The splice
operation prunes a leaf edge in the shock graph. It can be
viewed as the result of a deformation sequence that shrinks a
shock branch to a point. From the shape perspective, this is
equivalent to replacing theboundary segment corresponding
to theprotrusionwith a circular arc.Hence, the splice edit cost
can be viewed as the cost of deforming the protrusion to the
circulararcandisderivedfrom(5).Observethat thealignment
curve, in this case, is horizontal as the second shock edge is a
point inthiscase.Thefirst twotermsreducetothedifferencein
lengths between the protrusion and the circular arc, i.e., the
difference in lengths between B� and B̂B� in Fig. 20, which is
given by

�

�

R

dsþþ
R

ds��2�r
�

�. The third and fourth terms
reduce to 0 as the orientation of the tangents at each endpoint
remains the same. The fifth and sixth terms simplify to 4jr̂0r0 �
r0j as

R ~LL

0

�

�

dr̂r
d�
� dr

d�
jd� ¼

R ~LL

0
jdrj ¼ jrf � r0j ¼ jr̂0r0 � r0j. Finally,

the last two terms reduce to 0 under the optimal pairing of
boundary segments. Thus, we get the splice cost to be
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Fig. 20. (a) Splice operation removes a protrusion, and can be viewed as the limit of shrinking the protrusion and replacing it with a circular arc. A sharp
protrusion is shown here, hence r0 ¼ 0. (b) The plot illustrates that splice cost behaves rather intuitively and increases almost linearly whenmatching a
sequence of shapes with a protrusion of increasing length. The x-axis is the length of the protrusion in pixels and the y-axis is the normalized edit cost.
Note that, in all cases, the optimal edit sequence involves the splice edit (pruning the protrusion).

Fig. 21. Contract is not a local operation.



�s ¼
�

�
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�

Z

dsþ þ
Z

ds� � 2�r̂r0

�

�

�

�

þ 4 j r̂0r0 � r0j: ð7Þ

The contract operation removes an edge between high

degree nodes, see Fig. 21. Unlike other edit operations, the

contract operation is not a local operation in that it affects the

neighboring shock edges also. However, as an approxima-

tion,wemeasure only the local effect of the contract operation

by deforming the contracted edge to a point, and its cost is

derived from (5). The first two terms reduce to the lengths of

the boundary segments Bþ and B�, and is given by
R

dsþ þ
R

ds�. As the boundary segments Bþ and B� are

mapped to a point, the third and fourth terms reduce to the

differences in orientations of the tangents at each endpoints,

and is given by R
	

ð�þ0 � �þ1 Þ þ ð��0 � ��1 Þ



. The fifth and sixth

terms reduce to zero and 2jr0 � r1j, respectively. The seventh
and eighth terms reduce to zero and 2R

R

d�, respectively.

Thus, the contract cost is given by

�c ¼
Z

dsþ þ
Z

ds� þR
	

ð�þ0 � �þ1 Þ þ ð��0 � ��1 Þ



þ 2jr0 � r1j þ 2R

Z

d�:

ð8Þ

Recall that the merge operation merges two edges adjacent

to a degree-two node, and does not otherwise affect the

topology of the shock graph. Hence, the decision whether or

not to merge a set of adjacent edges is captured and

integrated in the process of computing the deform cost.

5.4 Edit Distance between Two Shapes

Let the shapes to matched A and B be represented by their

shock graphs TA and TB. For a shock graph TA, let eAi 2
EA; i ¼ 1 . . .NA represent the set of edges. In the optimal

edit sequence for matching A and B, letDA denote the set of

edges in TA that corresponds with edges in TB, and let SA
and CA denote the set of edges that are spliced and

contracted, respectively. Let eBj ¼ �ABðeAiÞ; eAi 2 DA; eBj 2
DB denote the corresponding edge of eAi. The edit distance

of A and B is given by

DðA;BÞ ¼
X

eAi2DA;eBj¼�ABðeAiÞ
deformCostðeAi; eBjÞÞ

þ
X

eAi2SA
spliceCostðeAiÞ þ

X

eAi2CA
contractCostðeAiÞ

þ
X

eBi2SB
spliceCostðeBiÞ þ

X

eBi2CB
contractCostðeBiÞ:

6 RESULTS OF SHOCK-GRAPH MATCHING

In this section, we present the results of our approach. First,
we show that shock-graph matching gives intuitive corre-
spondences for a variety of shapes, and is effective in the
presence of commonly occurring visual transformations like
articulation, shadows and highlights, viewpoint variation,
scale changes, boundaryperturbations, andpartial occlusion.
Then, recognition results for two databases consisting of
99 shapes and 216 shapes are shown. Finally, shock-graph
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Fig. 22. The result of matching the shock graphs for a few pairs of shapes in the database. Same colors indicate matching shock branches, while the
gray colored edges in the shock graphs indicate that they are spliced or contracted. Observe that the correspondence is intuitive in all cases. For
example, the head, the fins, and the tails of the two fishes (top left) correspond. Also, note that when matching the elephants (top right), the shock
edge corresponding to the tail of the elephant (on the left) is pruned as the tail on the other is occluded.



matching is compared to shock-treematching [31] and shape-
contexts matching [4].

Fig. 22 shows that shock-graph matching results in an
intuitive pairing of shock segments. In addition to giving the
final correspondence, the edit distance algorithm gives a
sequence of intermediate shock graphs that identify the
optimal transformation of one input shock graph to another,
see Fig. 23.

6.1 Robustness of Recognition under Visual
Transformations

We now examine the robustness of the match under six
classes of visual transformations. First, observe that shock
computation is sensitive to boundary perturbations, which
often introduce spurious shock edges and modify existing
branches. While approaches relying on the medial axis have
advocated either regularization in the detection process or
after recovery to address such instabilities [28], one can
alternatively view the regularization as part of the recognition
process. This is illustrated in Fig. 24, where one of the shapes
being matched experiences discretization artifacts. The
current approach considers all deformation paths between
the noisy shape and the noiseless one, and finds that the
optimal path consists of edits which prune the spurious

branches. This is mainly because the cost of a single splice
as well as the cumulative cost of a large sequence of splices
is rather low as compared to large structural changes.

Second, we examine robustness of the match in the
presence of articulation and deformation of parts. The
shock graph of a shape inherently segments the shape into
parts, and captures the hierarchical relationship between
those parts. Thus, shock-graph matching implicitly involves
matching the global hierarchy of parts in addition to
matching the individual parts, making it robust to changes
which may occur in some of the parts, see Fig. 25.

Third, the presence of illumination variation like
shadows and highlights often leads to segmentation errors
in figure-ground segregation. On the one hand, changes in
the boundary caused by highlights tend to be small but,
typically, affect the shock-graph topology. On the other
hand, shadows are often more global in nature and tend not
to affect the shock-graph topology. Fig. 26 shows that
shock-graph matching is effective in the presence of a
limited extent of segmentation errors.

Fourth, we examine the robustness of the proposed
technique to scale variations. Observe that the shock-graph
topology does not change when a global scaling transfor-
mation is applied, but the shock edge comparison metric is
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Fig. 23. The intermediate shock graphs in the optimal edit sequence for matching a cat and dog (top) and two camels (bottom). The boxed shock

graphs have the same topology.

Fig. 24.Boundaryperturbations:Shockmatching in the presenceof boundarynoisewhere the sameshape is representedby a coarser discretization.
Note that the shock graphs are matched intuitively: All the edges corresponding to the boundary noise are pruned, while matching salient parts.

Fig. 25. Articulation and deformation of parts: Matching of the two poses of the “baby” is intuitive. Observe how the legs are matched correctly in

spite of the self-occlusion that merges part of the legs (left) and how the arms are pruned (right).



not scale-invariant (as it should not be because scale-
invariance requires consideration of the entire shape).
However, the behavior of the metric with scale is
theoretically well-understood: Outside a limited range of
scales, the metric is linear in scale changes based on (5).
Fig. 27 illustrates that shock-graph matching gives the
intuitive correspondence in the presence of modest
amounts of scaling. However, in the presence of large
amounts of scaling, in this case more than three times,
unintuitive correspondence can result if parts of unequal
size are present, as the cost of matching equal-size but
noncorresponding parts may become dominant.

Fifth, since 2D shapes are typically obtained from
projections of 3D objects, robustness to viewpoint variations
is critical to a 2D shape matching technique. When the
viewpoint is varied gradually, the spatial location and the
shape of parts typically changes gradually and such changes
are handled by the deform edit. Exceptionally, however, at
certain views, there are sudden changes that are handled by
the remaining edits, e.g., appearance of a part is handled by
the splice edit; a change in aspect is handled by the contract
edit, etc., see Fig. 28. In general, a change in viewpoint
constitutes a one-parameter family of deformations on shape,
forwhich awell-defined neighborhood locally exists through
the explicit embedding of transitions.

Sixth, partial occlusion is a serious challenge for any
recognition framework. We consider two types of occlusion,
one where the occluder blends with the shape, and one
where the occluder blends with the background. In both
types, shock-graph matching gives the intuitive correspon-
dence by pruning out the occluded part, Fig. 29. However, it
may fail if a rather large part of the shape is occluded, in
which case the splice cost may dominate the total cost.

6.2 Indexing Results

We now examine recognition rates for indexing into two
databases. The first database was created by assembling
sample shapes from a wide spectrum of sources2 to form
nine categories: fish, rabbit, airplane, “greeble,” tool, hand,
doll, four-legged animal, and sea-animal. We include
11 shapes in each category to allow for variations in form,
as well as for occlusion, articulation, missing parts, etc., for
a total of 99 shapes. Each shape is matched against all
others, and results are ordered by edit-distance, Table 1.
Recognition rates in percent by this measure are ð100, 100,
100, 99, 99, 99, 97, 96, 95, 87Þ; in other words, the top three
choices are always correct for this database with a fairly
slow dropoff in performance for the other choices.

We constructed a second database from samples of a very
large database of shapes created for testing the compression
rates for MPEG7, kindly provided by Latecki et al. [24]. Our
selection from this database consists of 18 categories with
12 shapes in each category, Table 2. Recognition rates in
percent are (100, 100, 100, 99, 97, 99, 96, 96, 95, 91, 80); in other
words, the top three choices are always correct for this
database, and again followed by a slow drop off.

6.3 Comparison to Other Approaches

In this section, we compare our approach to the approaches
based on matching Pelillo et al.’s rooted shock tree [31] and
shape context [4].We have repeated the indexing experiment
reported in [31] using our approach and shape-context
matching [4]. The database used in [31] consists of 25 shapes,
which can be organized into eight categories, Table 3: brush
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Fig. 27. Scale variations: Left: Shock graphmatching of the hands gives intuitive correspondence in the presence of a scaling transform. The hand on
the right was obtained by scaling the original hand by 225 percent. Right: The plot shows that the edit cost (y-axis) increases linearly as scaling is
increased (x-axis).

Fig. 26. Illumination variation: Shock graph matching gives intuitive correspondence in the presence of segmentation errors due to highlights
(hammer in top left and pliers in bottom right) and shadows (hammer in top right). The original images shown on the extreme left and right are from
the database of S. Sclaroff, Boston University, and segmented using a region growing technique with manually selected thresholds.

2. “Greebles” are obtained fromM. Tarr’s collection, fish and sea-animals
from F. Mokhtarian’s database, and tools from S. Sclaroff’s collection.



(1, 2, 3), hammer (4, 5, 6), pliers (7, 8, 9, 10, 11, 12), screwdriver
(13, 14, 15), wrench (16, 17), hand (18, 19, 20), profile (21, 22,
23), horse (24, 25). Four categories, namely, hammer, plier,
screwdriver, and wrench group into a more abstract super-
ordinate category of “tools.” In addition, just based on
intuitive shape comparison, note the similarities between
the brush and screwdriver categories. The remaining cate-
gories are quite distinct; the only possible connection is that
both hands and horses have four elongated sequentially
placed “limbs.”

With this inmind, two types of performancemeasures are
used to compare the results. First, we ask how many of the
within category shapes are correctly recalled among the top
matches.Wehighlight correctwithin-categorymatches using
a yellow surround, and erroneous within-category matches
using a red surround. In Pelillo et al.’s rooted shock tree
matching, shapes15,17,and21giverise toa totalof fiveerrors.
In shape-contextmatching, shapes 1, 3, 7, 8, 9, 10, 11, 12, 13, 14,
and 15 give rise to a total of 21 errors. In the edit-distance
approach, shapes 8, 13, 14, 15 give rise to a total of five errors.
Clearly, both shock-based approaches perform significantly
better than shape-context matching.

Amore careful examination of the differences between the
two shock-based methods, however, reveals that, in the five
errors of Pelillo et al.’s rooted shock-tree matching, the
erroneously recalled shapes are in fact perceptually very
dissimilar: fat screwdriver (shape 15) ismatched to thehands,
wrench (shape 17) with the hammer, and profile (shape 21)
with hands. In contrast, in three out of five errors of edit-
distanceshock-graphmatching the top-rankingshapesmatch
the query shape very well (depicting shape near category
boundary): fat screwdriver (shape 15) with two brushes and
screwdriver (shape 13) with brush. In the fourth error, the
match between shape 14 and shape 7, the screwdriver is
considered a part of the shape 7 (a single ply) with occlusion.
Theother remainingerror (shape8),however,hasadissimilar
shapeas amatch. Thus, thewithin-category errors inPelillo et
al.’s rooted shock-tree matching have, in general, dissimilar
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Fig. 28. Viewpoint variation: Shock graph matching gives the intuitive
correspondence when a change in viewpoint results in 1) the disappear-
ance of a part (left arm of model in second row) and 2) a change in aspect
(hind legs of retriever in third row). The plot shows that the normalized edit
cost (y-axis) increases monotonically with viewpoint variation for a local
neighborhood. This property has been used for 3D object recognition from
2D views [11].

Fig. 29. Partial occlusion: Shock graph matching gives intuitive
correspondence in the presence of partial occlusion. Observe in
particular how the optimal edit sequence between a horse and a rider
with the horse by itself involves pruning the shock edges corresponding
to the rider (fourth row). The plot shows that normalized edit cost (y-axis)
increases as the fraction of the plane occluded (x-axis) increases.



shapes, while in edit-distance shock graph matching, the
erroneous recalls are in fact correct in picking similar shapes,
which are nevertheless cognitively categorized differently.

A second type of performance measure involves counting
the number of unintuitive matches using the superordinate
categorization described at the beginning of this section. We
have highlighted such matches using a green surround. In
Pelillo et al.’s rooted shock tree matching shapes 1, 2, 4, 7-15,
18, 19, 20, 21, 24, 25 give rise to a total of 33 unintuitive
matches. For example, the top matches of a brush (shape 2)
includes aprofile (3rdmatch), andhands (matches 4-6)where

more similar shapes are available. Similarly, for the screw-
drivers (shapes 13, 14, 15) the topmatches include the hands.
On the other hand, there are three unintuitive matches using
shape-context matching for shape 24, and 7 unintuitive
matches for shapes 18, 19, 20, and 24 using edit-distance
shock-graph matching. This second performance measure,
while somewhat subjective (in determining the category
structure), is a clear qualitative indicator that the edit-
distance shock-graph matching recalls similar shapes better
than both Pelillo et al.’s rooted shock tree matching and
shape-context matching for this database.
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TABLE 1

Left: A database of 99 shapes. Right: 15 nearest neighbors for a few representative shapes ordered by their normalized edit distance. Note that edit
distances are multiplied by 1,000 for clarity of presentation. As there are 11 shapes in each category, up to 10 nearest neighbors can be from the
same category. The next five matches are shown for completeness. Observe that, in most cases, the top 10 matches are from the same category. In
fact, the top three matches are always correct and the only instance where the fourth and the fifth matches are wrong is shown in the last row.

TABLE 2

Left: The database of 216 shapes selected from the MPEG-7 test database [24]. Right: 15 nearest neighbors for a few representative shapes. As
there are 12 shapes in each category, up to 11 nearest neighbors can be from the same category. Observe that, in most cases, the top 11 matches
are from the same category.



We have also compared our approach to shape-context

matching [4] using our databases of 99 and 216 shapes.3 The

results are summarized using precision-recall diagrams, see

Fig. 30. Precision is the ratio of the number of similar shapes

retrieved to the total number of shapes retrieved, while

recall is the ratio of the number of similar shapes retrieved

to the total number of similar shapes in the database [26]. It

is clear from these diagrams that shock graph edit-distance

outperforms shape-context matching for these databases.
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TABLE 3
Comparison of Shock Tree Matching Using Association Graphs [31], Shape-Contexts Matching [4],

and Shock Graph Edit Distance Using the Database Used in [31]

The correct within-category matches are highlighted using yellow surround, erroneous within-category matches using red, and unintuitive between-
category matches using green. Observe the sensitivity of shape contexts to articulation (pliers: rows 7-12, middle table).

Fig. 30. The precision-recall diagrams for indexing into the database of (a) 99 shapes and (b) 216 shapes. Note that both methods perform well with
more that 80 percent precision.

3. We have not applied Siddiqi et al.’s rooted shock-tree matching [42]
and Pelillo et al.’s [31] to these databases, because currently their code is not
publicly available.



Finally, we examine the performance of our approach and
shape-contexts matching in the presence of partial occlusion
and part-based changes like articulation. We have selected a
small dataset of six shapes (three hands and three animals) to
examine the performance in the presence of partial occlusion,
Table 4. Occlusion affects a portion of a shape, and changes in
the shock graph representation are limited to the affected
portions.On theotherhand, shapecontexts is global in that all
points are used to compute a summary signature for each
point. This difference results in shock graph matching
outperforming the shape contexts matching, Table 4. Shock
graphs inherently partitions the shape and captures the
hierarchical relationship among the parts. This allows it to be
robust to part-based changes like articulation, see Table 5.

7 DISCUSSION AND CONCLUSIONS

We have presented a novel recognition framework based on
considering different deformation paths of shock graphs of
2D shapes which brings them into correspondence, and
finding the optimal one. Our approach to finding the optimal
deformation path relies on a formal classification of shock
transitions which is used to discretize the shape space and
deformation paths. We employ a graph edit distance
algorithm to find the optimal deformation sequence. The
cost of the optimal sequence gives a metric of dissimilarity
which is then used for indexing into databases based on
shape. The effectiveness of the approach in the context of a
variety of visual transformations is demonstrated and
indexing into two separate databases of 99 and 216 shapes
results in 100 pecent accuracy for the top threematches. Note
that this approach measures distance between shapes in a
dynamic fashion in that intermediate representations are
explicitly considered [25], [52] during the process of finding
the least-cost deformation path. This is in contrast to the static
approach where two shape representations are directly
compared [13], [33], [2], [4], [31], [39], [42] to determine the
distance.

A questionwhich naturally arises is whether the introduc-
tion of an additional “medial” machinery can be justified as
compared to point-based and curve-based approaches. First,
observe that, in themedial/shockgraph representation, there

is an increased level of “organization” as compared to curve
or point-based representations. In point-based representa-
tions, a point is identified by its local or global context. In
curves, the point’s identity is established through the ordered
1D neighborhood. In shock-graph (or medial) representa-
tions, the point’s identity is established through a pair of joint
1D ordered neighborhoods that are captured via the medial
segment. This additional level of organization in going from
points to shocks can greatly constrain a match as highlighted
by matching icons in Fig. 31, and thus, avoid potential
mismatches and preserve the coherence of shapes in the match
process.

Another difference between point-based approaches [4],
[9], and both curve-based and medial-based approaches is
that the arrangement and spatial layout of local features is
necessarily captured via embedding it in an extrinsic frame-
work for the former, while it can be captured intrinsically in
the latter. That a point’s identity is measured in terms of its
signature in an external coordinate system with respect to
other points is precisely what makes it sensitive to shape
deformations which are small in “intrinsic” deformation
energy, but which are large in extrinsic deformation energy,
e.g., bending, articulation, etc. In other words, instead of
measuring the relative spatial arrangements of local features,
as can be done in curve andmedial representations, extrinsic
methods capture the absolute spatial arrangement. This
difference is what makes the point-based methods sensitive
toobject-based changes like articulation andocclusion, and to
global rotations, as illustrated in Section 6.3.

There are a few areas for future improvement. The current
approach to computing the edit costs is not scale-invariant.
The individual edit costs themselves should not be
scale-invariant since the determination of scale requires the
considerationof the entire shape.However, the overallmetric
needs to be scale-invariant. We plan to examine the match at
several scales and determine the global scale by selecting the
one that minimizes the match cost. Since the edit costs are
linear outside a limited range of scales, only a few scales need
to be examined [33]. A second direction involves modifying
how the matching algorithm penalizes the deletion of a
portion of a shape that consists of several parts. Currently,
such a deletion is penalized by the sum of the costs of the
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TABLE 4
This Table Shows the Sensitivity of
Shape Contexts to Partial Occlusion

In particular, observe how the occlusion of the thumb results in the hand
being matched to an animal (rows 4-6, left table).

TABLE 5
This Table Illustrates the Sensitivity of

Shape Contexts to Articulation

Observe how shape context matches the pliers to sticks in the same
relative pose, and not to other pliers.



individual parts being deleted, which can lead to unintuitive
matches in cases where a rather large portion of the shape is
occluded. In future, we plan to incorporate a more explicit
notion of parts to address this issue.

Our initial shape comparison results are rather promising
and support further exploration of this framework.Weaim to
explore recognition rates on a much larger database, as we
believe that it is in the context of amuch larger space of shapes
that the effectiveness of this algorithm can truly be studied.
However, two developments are needed. First, the algorithm
for matching shapes typically takes about 3-5 minutes on an
SGI Indigo II (195 MHz) for the examples presented here,
which limits the number of shapes that can be practically
matched.Weplan to improve the computational efficiencyby
revising andoptimizing the “development” code, andalso by
revising the algorithm itself.We are also developing a coarse-
to-fine matching strategy, notion of exemplars to represent a
shape category [38], and a nearest neighbor search method
[35], which can be integrated in the indexing scheme to avoid
unnecessary matches, thus reducing the computational
burden.

APPENDIX A

ALGORITHM TO COMPUTE THE ALIGNMENT CURVE

This section briefly reviews how the optimal alignment curve
of two curves C and ĈC is computed by minimizing the cost
functional in (4)usingdynamic-programming.Fordetails, see
[33], [34], [36]. The alignment curve is a curve in the 2D plane
whose axes are specified by C and ĈC. We discretize C and ĈC by
samples s1; s2; . . . ; sn and ŝs1; ŝs2; . . . ; ŝsm, respectively. Let
Cj½si;sj� be the subsegment of curve C with si and sj as
endpoints.Letdði; jÞdenote thecostofmatching thesegments
Cj½s1;si� and ĈCj½ŝs1;ŝsj�, and let 	ð½k; i�; ½l; j�Þ be the cost of matching
the segmentsCj½sk;si� and ĈCj½ŝsl;ŝsj�.Asdistance is defined in terms
of a functional, it satisfies the following rule

dði; jÞ ¼ min
k;l

�

dði� k; j� lÞ þ 	ð½i� k; i�; ½j� l; j�Þ
�

; ð9Þ

which gives a recipe for computing dðC; ĈCÞ via dynamic
programming. The dynamic-programming cost table is
sequentially updated and the optimal alignment curve is
found by tracing through the cost table. We limit the choices
of the k and l, as a first approximation, to nine values
achieved by using the template shown in Fig. 32.

APPENDIX B

EDIT-DISTANCE ALGORITHM AND COMPUTATIONAL

COMPLEXITY

This section reviews the algorithm for finding the edit-
distancebetween twounrooted trees,which isused to find the
globally optimal sequence of transitions between two shock
graphs inpolynomial time [22], [23].We first describe the case
of two rooted trees T1 and T2; the case of unrooted trees is
discussed later. Given a rooted tree T , each edge fx; yg of
T connecting nodes x and y can be represented by two
oppositelydirectedarcs ðx; yÞand ðy; xÞ, calleddarts.TheEuler
tourEðT Þ traverses the tree and is a cycle consisting of all the
darts. (An example is shown in Fig. 33.) An Euler string is a
consecutive subsequence of the dart-sequence which repre-
sents the Euler tour. Observe that a portion of a tree Ti can be
specified by the Euler string si, and is denoted by the
pair Hi ¼ ðTi; siÞ. A subproblem is specified by the pair
ðH1; H2Þ ¼ ððT1; s1Þ; ðT2; s2ÞÞ. Dynamic programming is used
to solve all the subproblems, i.e., compute the tree edit-
distance between the portions of the trees specified by the
Euler strings s1 and s2. Note that the edit-distance for each
subproblem is, in turn, computed from the edit distance for a
subproblemhaving shorter strings (i.e., the sumof the lengths
of the two strings is smaller). Finally, the edit-distance
between two trees is computed as a subproblem where the
Euler strings encompass the trees.

First, we sketch howa subproblem is solved in the absence
of splice and merge operations. This method is due to Zhang
and Shasha [51], though the formulation presented here is
different. To compute the edit distance for ððT1; s1Þ; ðT2; s2ÞÞ,
consider the rightmost darts d1 of s1 and d2 of s2. In the
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Fig. 31. Left: A schematic comparison of shape representation using unorganized points, outline curve, and shock graph. The point-based
representation uses a local or global similarity measure. The curve representation induces an ordering of points. The shock graph representation
introduces an additional constraint by pairing two boundary segments (shown by dotted lines) to represent the interior of the shape. The main point is
that the extent of organization constrains the match. For example, in matching P to �PP using the curve-based representation, neighboring points to P
and �PP in the boundary need to be matched as well, while using the shock-based representation, this also extends to neighboring points on an
associated pair of boundaries. Similarly, the shape context forces a global context to be matched, but this is too rigid to accept articulation and
occlusion (which is fine for some cases, e.g., font recognition). In contrast, the medial context is local with respect to the shape. Right: Each shock
segment corresponds to two boundary segments, and represents a shape fragment (shaded).



optimal edit sequence, there are only three possibilities
concerning thesedarts: 1) the edge e1 corresponding to d1 gets
contracted, 2) the edge e2 corresponding to d2 is similarly
contracted, and 3) the two edges e1 and e2 are matched
together. Using this observation, the edit-distance for
ððT1; s1Þ; ðT2; s2ÞÞ can be expressed as the minimum of three
quantities, each involving the edit distance for a subproblem
with smaller substrings, one for each of the three Cases 1, 2,
and 3. For i ¼ 1; 2,write si as s

0
idi (see Fig. 34.) Thequantity for

Case 1 is the cost of contracting e1 plus the edit-distance for
ððT1; s01Þ; ðT2; s2ÞÞ. The quantity for Case 2 is the cost of
contracting the edge corresponding to the rightmost dart in s2
plus the edit-distance for ððT1; s1Þ; ðT2; s02ÞÞ. The quantity for
Case 3 is the sum of three parts. For i ¼ 1; 2, write si as
s
upper
i d0is

lower
i di, where d0i and di are the darts corresponding to

ei. (See Fig. 35.) The three parts are:

1. the cost of matching the edge of T1 corresponding to
the rightmost dart of s1 against the edge of T2
corresponding to the rightmost dart of T2,

2. the edit-distance for ððT1; slower1 Þ; ðT2; slower2 ÞÞ, and
3. the edit-distance for ððT1; supper1 Þ; ðT2; supper2 ÞÞ.

Thus, the recurrence relation is

DððT1; s1Þ; ðT2; s2ÞÞ
¼ minf contract-costðe1Þ þDðððT1; s01Þ; ðT2; s2ÞÞ;

contract-costðe2Þ þDðððT1; s1Þ; ðT2; s02ÞÞ;
match-costðe1; e2Þ þDððT1; slower1 Þ; ðT2; slower2 ÞÞ
þDððT1; supper1 Þ; ðT2; supper2 ÞÞg:

Next, we discuss how the above approach can be
adapted to handle merge and splice. This algorithm is due
to Klein et al. [23]. Note that repeated use of merge or splice

operations can combine a path of edges into a single edge.
Hence, we assume here (and discussed in Section 5), a
method for assigning a match cost not to a pair of edges but
to a pair of paths.

In computing the edit distance for ððT1; s1Þ; ðT2; s2ÞÞ, there
are now many additional cases: For each dart a1 in s1 that is
a descendent in T1 of the last dart in s1 and for each dart a2
in s2 that is a descendent in T2 of the last dart in s2, there is a
quantity: The cost of matching the path in T1 from a1 to the
last dart in s1 against the path in T2 from a2 to the last dart
in s2, plus the edit-distance of ððT1; a1Þ; ðT2; a2ÞÞ. In this
sketch of the algorithm, we have omitted some technical
details arising in handling merge and splice.

Thus far, we have discussed how to compute the edit
distance between two rooted trees. This algorithm finds not
the bestmatch but the bestmatch subject to the constraint that
the two roots arematched to each other (and hence, that these
roots are not removed by splice operations). To remove this
constraint, we must modify the above algorithm. A straight-
forwardway of doing this is to run the rooted algorithm once
for each possible choice of roots, then take the best match
among all of those obtained. This approach is guaranteed to
find the optimal solution.

A heuristic that yields a faster algorithmbut one that is not
guaranteed to find theoptimal solution is as follows.Choosea
small set of candidate roots for T2 and run the rooted
algorithmforeverypossible root forT1 andonly thecandidate
roots for T2. This approach finds the best match subject to the
constraint that not all of the candidate roots is eliminated by
splices. In order to make it likely that the optimal solution
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Fig. 32. (a) The grid used by the dynamic-programming algorithm to compute the optimal alignment curve. Discrete samples along the curves specify
the axes. A sample alignment curve is shown in bold. (b) The template that is used to limit the choices when updating the cost at location ði; jÞ in the
dynamic-programming cost table.

Fig. 33. The dashed arrows show an Euler tour of a tree.

Fig. 34. (a) An Euler string s (shown dashed). (b) s is written as s0d
where s0 is a substring (shown dashed) and d is the rightmost dart
(shown solid).



satisfies this constraint, the set of candidate roots should be
chosen to contain nodes whose elimination is expensive. In
the experiments described in this paper, we chose a singleton
set consisting of that degree-three node rwith outgoing darts
g1; g2; g3 so as to maximize ĉc ¼ minj splicecostðgiÞ. This
guarantees that the prevented splices will cost at least ĉc.
When using the heuristic, we can obtain an even faster
algorithm by applying a technique due to Zhang and Shasha.
The details of this technique are beyond the scope of this
paper.

Now, we turn to time complexity analysis. We sketch a
straightforward analysis of the nonheuristic algorithm (i.e.,
all roots of T1 and T2 are considered). For i ¼ 1; 2, let ni be the
number of nodes in Ti. Then, the number of subproblems is
Oðn21n22Þ. For each subproblem ððT1; s1Þ; ðT2; s2ÞÞ, the number
of quantities involved is the number of darts in s1 that are
descendents of the rightmost dart of s1, times the number of
darts in s2 that are descendents of the rightmost dart of s2.
This product is Oðn1n2Þ, so the total time is Oðn31n32Þ.

The heuristicmethod (using one candidate root for T2) can
be shown to require time Oðn21diameterðT1Þn2collapsedDepth

ðT2ÞdepthðT2ÞÞ, where the diameter diameterðT1Þ is the
maximum number of edges on a path in T1, the depth
depthðT2Þ is the maximum number of edges on a path in T2
that starts from the root, and collapsedDepthðT2Þ is a quantity
defined by Zhang and Shasha, and shown to be nomore than
the depth of T2. If each of the two trees has no more than
n nodes and has diameter nomore than k, the time isOðn3k3Þ.
The analysis of the heuristic method is beyond the scope of
this paper.
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