

MICROCOPY RESOLUTION TEST CHART national bureau of standards-1963-A

```
TR-1210
```

AFOSR-77-3271
August 1982
RECOGNITION OF SURFACES
IN THREE-DIMENSIONAL DIGITAL IMAGES
George M. Reed*
Ariel Rosenfeld
Computer Vision Laboratory
Computer Science Center
University of Maryland
College Park, MD 20742

COMPUTER SCIENCE TECHNICAL REPORT SERIES

UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND

TR-1210 AFOSR-77-3271

August 1982
RECOGNITION OF SURFACES
IN THREE-DIMENSIONAL DIGITAL IMAGES
George M. Reed*
Azriel Rosenfeld
Computer Vision Laboratory
Computer Science Center
University of Maryland
College Park, MD 20742

ABSTRACT

This is a continuation of a series of papers on the digital geometry of three-dimensional images. In an earlier paper by Morgenthaler and Rosenfeld, a three-dimensional analog of the two-dimensional Jordan Curve Theorem was established. This was accomplished by defining simple surface points under the symnetric consideration of 6-connectedness and 26 -connectedness and by characterizing a simple closed surface as a connected collection of "orientable" simple surface points. The necessity of the assumption of orientability, a condition of often prohibitive computational cost to establish, was the major unresolved issue of that paper. In this paper, we show the assumption not to be necessary in the case of 6-connectedness and, unexpectedly, show that the property of orientability is not symmetric with respect to the two types of connectedness.

DISTRIBUTION STATEMENT
 Approved for public reloans; Distribution Unlimited

The support of the U.S. Air Force Office of Scientific Research under Grant AFOSR-77-3271 is gratefully acknowledged, as is the help of Janet Salzman in preparing this paper. Some of the work reported herein was accomplished while the first author was a NRCNASA Senior Research Associate at Goddard Space Flight Center.

[^0] Athens, Ohio 45701

1. Introduction

The digital geometry of three-dimensional images is a topic of considerable current interest, as a result of the increasing availability of 3D discrete arrays of data such as those produced in computed tomography. An introduction to the topological properties of 3 D images can be found in [1].

One of the interesting problems in 3D digital topology is that of defining surfaces. Intuitively, a surface S is a set that is everywhere "thin", in the sense that in the neighborhood of any $p \in S$, there are exactly two components of \bar{S} (the complement of S), and every neighbor of $p \in S$ is adjacent to both of these components. (This definition will be stated more precisely in the next section.) In [2] it was shown that surfaces defined in this way satisfy the 3D analog of the Jordan Curve Theorem, i.e., they separate the space into two components, an "inside" and an "outside". However, this was shown only under the assumption that the surfaces were "orientable", a local property which means that for any p, the two components of $\overline{\mathrm{S}}$ mentioned earlier remain distinct even when we enlarge the neighborhood of p. The question of whether non-orientable surfaces exist was left open in [2].

This paper shows that when we use 6-connectedness for S (see the next section), non-orientable surfaces do not exist. Furthermore, an example is given to show that surprisingly
such surfaces can exist locally when we use 26-connectedness. However, in a subsequent paper by the first author, it will be shown that globally (i.e., if each point of the set satisfies the small neighborhood surface restriction) there can exist no 26-connected non-orientable surfaces.

2. Connectivity and simple closed surfaces

Let Σ denote a 3D array of lattice points, which, without loss of generality, we may assume to be defined by integer valued triples of Cartesian coordinates (x, y, z). We consider two types of neighbors of a point $p=\left(x_{p}, y_{p}, z_{p}\right) \in \Sigma$:
(i) the neighbors (u, v, w) such that $\left|x_{p}-u\right|+\left|y_{p}-v\right|+\left|z_{p}-w\right|=1$
(ii) the neighbors (u, v, w) such that $\max \left\{\left|x_{p}-u\right|,\left|y_{p}-v\right|+\left|z_{p}-w\right|\right\}=$? We refer to the neighbors of type (i) as 6-neighbors of p (the face neighbors) and to the neighbors of type (ii) as 26neighbors of p (the face, edge, and corner neighbors). The 6neighbors are said to be 6-adjacent to p, and the 26 -neighbors are said to be 26 -adjacent to p. The statement that α is a path from point p to point q in Σ means that there exists a positive integer n such that $\alpha=\left\{p_{0}, p_{1}, \ldots, p_{n}\right\} \Sigma \Sigma$ where $p_{0}=p, p_{n}=q$ and p_{i} is adjacent to p_{i-1} for $l \leq i \leq n$. The terms 6-path and 26 -path are utilized depending on the type of adjacency under consideration.

Let S denote a non-empty subset of Σ which, without loss of generality, we may assume does not meet the border of Σ. The points p and q of S are said to be connected in S provided there is a path from p to q which is contained in S. Connectivity is an equivalence relation, and the classes under this relation are called components. Again, the terms 6-connectivity, 26connectivity, 6-components, and 26-components are utilized depending on the type of path under consideration.

Similarly, we can consider the components of the complement \vec{S} of S. Exactly one of these components contains the border of Σ; this component is called the background of S. All other components of \bar{S}, if any, are called cavities in S. As is the custom in 2D digital geometry, opposite types of connectivity are assumed for S and \bar{S} to avoid anomalous situations.

Finally, let p be a point of S. We let $N_{27}(p)$ denote the 27 points in the ($3 \times 3 \times 3$) neighborhood of p, and we let $N_{125}(p)$ denote the 125 points in the $(5 \times 5 \times 5)$ neighborhood centered at p. [Note that in [2], $N_{27}(p)$ and $N_{125}(p)$ were defined so as to exclude p. The change is made here in order to simplify the introcuction of new notation.]

Surfaces

In [2], the above structure on the 3D lattice was utilized to introduce the concept of a simple closed surface in order to establish a non-trivial 3i, .aialog of the 2D Jordan curve theorem.

A point $p \in S$ is called a simple surface point provided:
(i) $S \cap N_{27}(p)$ has exactly one component adjacent to p (in the S sense); denote this component A_{p}.
(ii) $\bar{S} \cap N_{27}(p)$ has exactly two components, C_{1} and C_{2}, adjacent to p (in the \bar{s} sense).
(iii) If $q \in S$ and q is adjacent to p (in the S sense), then q is adjacent (in the $\overline{\mathrm{S}}$ sense) to both C_{1} and C_{2}.

As observed in [2], there are at nost two components of $\overline{\mathrm{S}} \cap \mathrm{N}_{125}$ (p) adjacent (in the $\overline{\mathrm{S}}$ sense) to a simple surface point
p. Thus, suppose that p is a simple surface point of S and that each element of A_{p} is also a simple surface point of S (i.e., p is not near an "edge"). When $\overline{\mathrm{S}} \mathrm{N}_{125}(\mathrm{p})$ has two components adjacent to p, (the surface at) p is said to be orientable and A_{p} is called a disk. When $\bar{S} \cap N_{125}(p)$ has only one component adjacent to p, (the surface at) p is said to be non-orientable and A_{p} is called a cross-cap.

Theorem 0. [2] If S is a connected collection of orientable simple surface points, then S has exactly one cavity, and S is said to be a simple closed surface.

We quote from [2], " (Theorem 0) is the 3D analog of the Jordan curve theorem for connected sets of simple surface points. The defintion given for a simple surface point is modeled after the standard definition in continuous space, namely that a surface point is one whose neighborhood is homeomorphic with the inside of a circle on the plane. Thus every point in a small enough neighvorhood of a point must be adjacent to either side of the surface.

Similarly, the concepts of orientability and cross-caps are modeled after the corresponding concepts used in the topology of continuous space. A cross-cap is homeomorphic with a Möbius strip, and may be visualized by deforming the edge of the strip to a circle in the plane. Thus, while each point on the face of the strip appears as a surface point, there is only one side (face) in the collection of points. We use the
requirement on the 125 -neighborhood of a surface point to guarantee that such phenomena do not occur (at least locally).

This raises the question of the realizability of crosscaps in the 3D-lattice. That is, are the definitions of connectedness, together with the definition of simple surface point, strong enough to imply that cross-caps do not exist? From a theoretical standpoint an affirmative answer to this question would simplify the definition of simple closed surface, and from a practical viewpoint it would lessen the computational cost of detecting simple closed surfaces. While various properties such as symmetries may be used to reduce the effort needed to answer this question, the answer ultimately rests on a case analysis of the 2^{124} different configurations in the 125-neighborhood of a point $p \in S . "$

3. Cross-caps in the 3D-lattice

The purpose of this paper is to answer the questions raised in [2] by (1) presenting in Example 1 a 26-connected cross-cap, and (2) establishing in Theorem 1 that there exist no 6-connected cross-caps in the 3D-lattice. Thus, we succeed in simplifying the definition of a 6-connected simple closed surface to that of a 6-connected collection of simple surface points.

Although Example 1 shows that the property of orientability is not ensured locally by the definition of a 26 -connected simple surface point, the first author has established that this is so globally. It will be shown in a subsequent paper that a 26-connected collection S of points such that each point of S is a simple surface point is, in fact, orientable at each point. Hence, the assumption of orientability may be removed from Theorem 0 regardless of the type of connectedness under consideration.

Example 1. A 26-connected cross-cap.

	t	pl	lan		2nd plane					3rd plane					4th plane					5 th plane				
$1)$	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	1	0	1	0	0	0	1	0
0	0	1	0	0	0	1	0	0	0	0	0	1	0	O	0	1	0	0	0	0	0	1	0	0
0	0	0	1	0	0	0	1	0	1	0	0	0	1	1	0	0	1	0	1	0	0	0	1	0
0	0	0	0	0	0	0	0	1		0	0	0	0		0	0	0	1		0	0	0	0	

It should be mentioned that the deceptively simple construction of Example 1 took longer to produce than the complex proof of Theorem 1 given below. In fact, Example 1 was derived step by
step in a futile attempt to obtain a symmetric argument for 26-connectedness to that given in Theorem 1 for 6-connectedness. Perhaps the difficulty in deciding the cross-cap questions was due to the fact that the answers are so counter to the intuition established by previous results. Firstly, one would expect the same answer for the two types of connectivity. Secondly, failing symmetry, one would expect that 6-connectedness, with the greater connectivity of the complement, would produce the counterexample.

Unfortunately, it is, of course, more difficult to show that something does not happen in digital geometry than to present a simple array of "0's" and "l's". The combinatorial detail involved in the following proof is unavoidable.

Theorem 1. There does not exist a 6-connected cross-cap.

3.1 Outline of the proof

Throughout the proof, p denotes a fixed simple surface point of the 6 -connected subset S of Σ such that each point of $A_{p}=N_{27}(p) \cap S$ is also a simple surface point of S. Although it is not actually necessary to consider individually 2^{124} different configurations of $\mathrm{N}_{125}(\mathrm{p})$ as suggested above, the reader of the following proof may very well begin to suspect that this is the case. Indeed, the fact that the realizability of cross-caps in the 3D-lattice depends on the choice of 6-connectedness or 26 -connectedness witnesses the necessity for a detailed analysis beyond the symmetric definitions of simple surface points. The difficulty in deciding the issue for 6connectedness ultimately focuses on (i) finding an overall strategy to upgrade the separation properties of $N_{27}(p)$ to include $N_{125}(p)$, and (ii) finding an efficient notation to describe the process.

3.2 Strategy

If M is a subset of Σ, let \bar{M} denote $M \cap \bar{S}$. Furthermore, if N is a subset of Σ which contains p, let $P(N)$ denote the property that $\overline{\mathrm{N}}$ has two 26 -components which are 26 -adjacent to p. Hence, our goal is to establish inductively that $P(N)$ holds where $\mathrm{N}=\mathrm{N}_{125}(\mathrm{p})$.
0. If $N=N_{27}(p), P(N)$ holds.
l. Lemma l establishes that if N is the union of the top two (3×3)-planes of N_{27} (p) or the union of the bottom two (3×3)planes of $\mathrm{N}_{27}(\mathrm{p})$, then $\overline{\mathrm{N}}$ can not have three components adjacent to p .
2. Lemra 2 uses Lemma 1 to establish that $P(N)$ holds where N is the union of five (3×3)-planes centered on p.
3. Lemma 3 uses geometric symmetry on Lemma 2 to observe that $P(N)$ holds where N is the union of three (5×3)-planes centered on p .
4. Lemma 4 uses Lemma 3 to establish that $P(N)$ holds where N is the union of five (5×3)-planes centered on p.
5. Lemma 5 uses geometric symmetry on Lemma 4 to observe that $P(N)$ holds where N is the union of three (5×5) planes centered on p .
6. Lemma 6 uses Lemma 5 to establish that $P(N)$ holds where $N=$ $N_{125}(p)=$ the union of five (5×5) -planes centered on p. Lemmas 2, 4, and 6 are each proved in a similar manner, but with escalating complexity, by assuming the negation and arriving at a contradiction to Lemma 1. Lemmas 2', 4', and 5' are necessary technicalities.

3.3 Notation

For each $a=\left(x_{a}, y_{a}, z_{a}\right)$, let $a(i, j, k)=\left(x_{a}+i, y_{a}+j, z_{a}+k\right)$. In addition, let $a+d e n o t e a(0,0,1)$ and $a-d e n o t e a(0,0,-1)$. For ℓ, m, n odd positive integers and k an integer, let:
(1) $N_{m, n}^{k}(a)=\left\{a(i, j, k) \quad-\frac{(m-1)}{2} \leq i \leq \frac{(m-1)}{2}\right.$ and $\left.-\frac{(n-1)}{2} \leq j=\frac{(n-1)}{2}\right\}$,
(2) $N_{m, n}^{k=g, h}(a)=\bigcup_{k=g, h^{m, n(a)}} N^{k}$
(3) $N_{m, n, \ell}^{*}$ (a) $=N_{m, n}^{k=-} \frac{(\ell-1)}{2}, \frac{(x-1)}{2}$ (a)
(4) $N_{a}=N_{3,3,3}^{*}(a), N_{a}^{k}=N_{3,3}^{k}(a)$,

$$
N_{a}^{k=g, h}=N_{3,3}^{k=g, h}(a), \text { etc. }
$$

For example:

$$
\begin{aligned}
& N_{a}=N_{3,3,3}^{*}(a)=N_{27}(a) \\
& N_{5,5,5}^{\star}(a)=N_{125}(a) \\
& N_{5,3}^{-2}(a)=\text { the }(5 \times 3) \text {-plane centered on } a(0,0,-2) \\
& \vec{N}_{5,3}^{-2}(a)=N_{5,3}^{-2}(a) \cap \bar{S} \\
& N_{5,5,3}^{\star}(a)=\text { three }(5 \times 5) \text {-planes centered on } a
\end{aligned}
$$

Finally,
"\#" denotes "contradiction"
"W.L.G." denotes "without loss of generality"

Lemma 1. If a is a simple surface point ol $: i$, lhen 1 wa docomponents of \bar{N}_{a}^{0} cannot be merged in $\overline{\mathrm{N}}_{\mathrm{a}}$. Fu thermore, neither of $\bar{N}_{a}^{i=0,1}$ nor $\bar{N}_{a}^{i=-1,0}$ has three 26 -components.

Proof: Suppose two components, C_{1} and C_{2}, of \bar{N}_{a}^{0} are merged in \bar{N}_{a}. Let C_{1}^{\prime} and C_{2}^{\prime} denote the two components of \bar{N}_{a}, where W.L.G. $\left(C_{1} \cup C_{2}\right) \subseteq C_{i}$.
(1) $\left[C_{2}^{\prime} \cap N_{3,3}^{0}(a) \neq \varnothing\right.$, and hence \bar{N}_{a}^{0} has three components.] Suppose $C_{2}^{\prime \cap} \bar{N}_{a}^{0}=\varnothing$. Then both of $a+$ and $a-$ must be in S. To see that this is true, w.L.G. suppose $a+\in \bar{S}$. Then $a-$ must be in S or else $\overline{\mathrm{N}}_{\mathrm{a}}$ would have only one component. Hence, since $\mathrm{a}+\mathrm{is}$ 6-adjacent to a and $C_{2}^{\prime} \cap N_{a}^{0}=\varnothing$, then $C_{2}^{\prime} \cap N_{a}^{-1} \neq \varnothing$. Now, consider the two cases where (i) some element of $\mathrm{C}_{2}^{\prime} \mathrm{nN}_{a}^{-1}$ is 6-adjacent to aor (ii) no element of $C_{2}^{\prime} \cap N_{a}^{-1}$ is 6-adjacent to a-. If (i), then W.L.G. let $y=a(0,-1,-1) \in C_{2}^{\prime}$. Then y cannot be 26-adjacent to an element of \bar{S} which is 26-adjacent to $a+$. Thus, $\{a(-1,0,0), a(1,0,0), a(-1,-1,0), a(0,-1,0)$, $a(1,-1,0)\} \subset S$. Furthermore, since now $\left(C_{1} \cup C_{2}\right) \cap\{a(-1,1,0), a(0,1,0)$, $a(1,1,0)\} \neq \varnothing$, it follows that $a(0,1,0) \in S$ (or else C_{1} and C_{2} would be 26 -adjacent in N_{a}^{0}) and that both $a(-1,0,-1)$ and $a(1,0,-1)$ are in S (or else y would be 26 -adjacent to $\left.\left(C_{1} \cup C_{2}\right) \subseteq C_{1}^{\prime}\right)$. However, $a(0,1,0)$ is 6-adjacent to a but it cannot now be 26-connected to $y \in C i$ in \bar{N}_{a}. (\# to (i)) If (ii), then r.L.G. let $y=$ $a(1,-1,-1) \in C_{2}^{1} \cap N_{a}^{-1}$. Then $\{a(0,-1,0), a(1,-1,0), a(0,-1,-1)$, $a(1,-1,-1)\}$. But, since C_{1} and C_{2} are not 26 -connected in \bar{N}_{a}^{0}, one of $a(-1,0,0)$ and $a(0,1,0)$ must also be in S and 6-adjacent to a. Again, this is impossible for there would not be a 6-path in \bar{N}_{a} from such a point to $y \in C_{2}^{\prime}$. (\# to (ii)) Thus \{a+,a-\}cs. However, since both of $a+$ and $a-$ are 6 -adjacent to a, both must be 26-adjacent to C_{2}^{\prime}. Hence, $C_{2}^{\prime} \cap \bar{N}_{3,3}^{0}(a) \neq \varnothing$. (\# from which (1) follows.) Note $C_{1}, C_{2}, C_{2}^{\prime} \bar{N}_{a}^{0}$ produce three components of \bar{N}_{a}^{0}.
(2) [The contradiction.] Since $\overline{\mathrm{N}}_{\mathrm{a}}^{0}$ has three components, three of $\{a(-1,0,0), a(0,1,0), a(0,-1,0), a(1,0,0)\}$ must be in S. Hence, W.L.G., let $\{a(-1,0,0), a(0,-1,0), a(0,1,0)\} \subseteq S$, with $y_{1}=a(-1,-1,0)$ and $y_{2}=a(1,-1,0)$ in different members of $\left\{C_{1}, C_{2}, C_{2}^{\prime}\right\}$. Note that one of y_{1} and y_{2} is not in $\left(C_{1} U C_{2}\right) C_{1}^{\prime}$, otherwise there could not be a 26 -path in \bar{N}_{a} connecting a(0, 1,0) to C_{2}^{\prime} without merging C_{1}^{\prime} and \dot{C}_{2}^{\prime}. Thus, W.L.G. let $y_{1} \in C_{1}$ and $Y_{2} \in C_{2}^{\prime}$. Now, either (i) a $(0,1,0) \in C_{2}$, (ii) $a(0,1,0) \in S$ and $a(-1,1,0) \in C_{2}$, or (iii) $a(0,1,0) \in S$ and $a(1,1,0) \in C_{2}$. In either case, $a(-1,0,0)$ cannot be 26 -adjacent to C_{2}^{\prime} in N_{a} without merging C_{1}^{\prime} and C_{2}^{\prime}. Thus, two 26 -components of N_{a}^{0} cannot be mergea in $\overline{\mathrm{N}}_{\mathrm{a}}$. Since $\overline{\mathrm{N}}_{\mathrm{a}}$ has two components, it follows immediately that neither of $\bar{N}_{a}^{i=0,1}$ or $\bar{N}_{a}^{i=-1,0}$ can have three components. The proof is complete.

Lemma 2. $N_{3,3,5}^{*}(p)$ has two components each of which is 26adjacent to p .

Proof: (We do more work than necessary here to establish the format for the proofs of Lemmas 4 and 6.) (1) [\bar{M} has two components which are 26 -adjacent to p where $M=N_{p} U N_{p}^{2}$.] Suppose not. Since $\overline{\mathrm{N}}_{\mathrm{p}}$ has two craponents, C_{1} and C_{2}, which are 26-adjacent to p, there must exist a 26 -path α in \bar{N}_{p}^{2} from $y_{1} \in N_{p}^{1} \cap C_{1}$ to $y_{2} \epsilon$ $\mathrm{N}_{\mathrm{p}}^{\mathrm{I}} \mathrm{nC}_{2}$.
(i) $[p+\in S]$ Otherwise, $\overline{\mathrm{N}}_{\mathrm{p}}^{l}$ could have only one component. (ii) $\left[\bar{N}_{p+}\right.$ has two components, C_{1}^{\prime} and C_{2}^{\prime}, which are 26-adjacent to p.$] Since p+\epsilon A_{p}, p+$ is also a simple surface point of S . Hence, $\overline{\mathrm{N}}_{\mathrm{p}+}$ has two components 26 -adjacent
to $\mathrm{p}+$. But p is 6-adjacent to $\mathrm{p}+$ in $\mathrm{N}_{\mathrm{p}+}$; thus both these components must be 26-adjacent to p.
(iii) [Each of y_{1} and y_{2} is 26-connected to p in $\bar{N}_{p}^{i=0,1}$.] Obvious.
(iv) [The contradiction from which (1) follows.] Since Y_{1} and y_{2} are 26 -connected by $\alpha \subseteq \bar{N}_{p}^{2},\left\{y_{1}, y_{2}\right\}$ is contained in C_{i}^{\prime} or C_{2}^{\prime}, say C_{i}^{\prime}. However, now $C_{1} \cap N_{p}^{i=0,1}, C_{2} \cap N_{p}^{i=0,1}$, and $C_{2} \cap N_{p}^{i=0,1}$ produce three components of $\bar{N}_{p}^{i=0,1}$ in contradiction to Lemma 1.
(2) $\left[\bar{N}_{3,3,5}^{*}=\bar{M}_{M} \mathrm{~N}_{\mathrm{p}}^{-2}\right.$ has two components which are 26 -adjacent to p.] This statement follows immediately from a symmetric argument to that given in (1).

Lemma 2'. Suppose a is a simple surface point of S and each of at and a- is either in \bar{S} or is also a simple surface point of s; then $\bar{N}_{3,3,5}{ }^{(a)}$ has two components which are 26 -adjacent to a. Froof: This follows immediately from the proof of Lemma 2. Lemma 3. $\overline{\mathrm{N}}_{5,3,3}^{*}(\mathrm{p})$ has two components which are 26-adjacent to p .

Proof: Geometric symmetry to Lemma 2.

Lemma 3^{\prime}. Consider N_{a}, where a is a simple surface point of S, and $b=a(-1,0,0), b_{1}=a(-1,0,1), b_{2}=a(0,0,-1)$ are all in S, and D.) $C_{1} \neq \emptyset$ where C_{1} and C_{2} are the two components of \bar{N}_{a} and $D=$
$\{a(1,1,0), a(1,0,0), a(1,-1,0)\}$. Then each of b and b_{1} is 26-adjacent to $C_{1} \cap M$, where $M=N_{a}^{i=-1,0}$.

Proof: Suppose N_{a} and M are as above and b is not 26-adjacent to C_{1} ПM. (Observe that b_{1} is 26 -adjacent to $C_{1} \cap M$ if and only if b is 26-adjacent to $\left.C_{1} \cap M.\right)$ Let $H=\{a(-1,1,0)$, $a(0,1,0), a(1,1,0), a(-1,1,-1), a(0,1,-1), a(1,1,-1)\}$ and $K=$ $\{a(-1,-1,0), a(0,-1,0), a(1,-1,0), a(-1,-1,-1), a(0,-1,-1)$, $a(1,-1,-1)\}$. Since $\left\{a, b, b_{1}, b_{2}\right\} \in S$ and $D \cap C_{1} \neq \varnothing$, observe that if $\mathrm{H}^{\wedge} \mathrm{C}_{2} \neq \emptyset$ and $\mathrm{K} \cap \mathrm{C}_{2} \neq \emptyset$, there is no 26-path in $\mathrm{M} \cap \mathrm{C}_{2}$ from ${\mathrm{H} \cap \mathrm{C}_{2}}$ to $\mathrm{K} \cap \mathrm{C}_{2}$.
(1) [Claim: $H \cap C_{2} \neq \varnothing$ and $\left.K \cap C_{2} \neq \varnothing\right]$ Suppose $H \cap C_{2}=\varnothing$. By assumption b is not 26 -adjacent to C_{1} (lM. But since b is 6-adjacent to a, there must exist a path $:$ in $N_{a}^{l} \cap C_{1}$ from b to $D \cap C_{1}$. Also, since $H \cap C_{2} \neq \emptyset, x=a(0,1,0) \in S$. Hence, x must be 26 -adjacent to C_{2}. But since $D \cap C_{1} \neq 0, C_{2}\{\{a(1,0,0)$, $a(1,0,-1), a(1,0,1)\}=\varnothing$ and it follows that x must be 26-adjacent to some $x_{1} \in N_{a}^{1} \cap C_{2}$. Now, since $C_{1} \cap N_{a}^{\prime} \neq \varnothing$ and $c_{2} \cap N_{a}^{l} \neq \emptyset, a(0,0,1) \in S$. Therefore, $a(0,-1,1) \in a$; this is the only remaining possibility for a 26 -path from b to $D \cap C_{1}$. Fience, $x_{2}=a(0,-1,0) \notin C_{2}$ since it is 26 -adjacenc to a, and $x_{2} \not C_{1}$ since b is not 26 -adjacent to $C_{1} \cap M$. Thus, $x_{2} \in S$, and being 6 -adjacent to a, x_{2} must be 26 -adjacent to C_{2}. Since $a(0,-1,1) \in C_{1}, x_{2}$ must be 26 -adjacent to some point x_{3} in $\mathrm{Na}_{\mathrm{a}}^{-1} \cap \mathrm{~K}_{\cap} C_{2}$. However, now there is no possible path in $N_{a} \cap C_{2}$ from x_{1} to $x_{3} . \#$ Hence $H \| C_{1} \neq \varnothing$, and similarly $K \cap C_{2} \neq \varnothing$.
(2) [The contradiction.] From the above, it follows that $M \cap C_{1}, H \cap C_{2}$, and $K \cap C_{2}$ produce at least three components of $\overline{\mathrm{N}}_{\mathrm{a}}^{\mathrm{i}=-1,0}$ in contradiction to Lemma 1 .

Lemma 4. $\bar{N}_{5,3,5}^{*}(\mathrm{p})$ has two components which are 26-adjacent to p .

Proof: (1) [\bar{M} has two components which are 26-adjacent to p where $\left.M=N_{5,3,3}^{\star}(p) \cup N_{5,3}^{2}(p).\right] \quad$ Suppose not. From Lemma 3, $\bar{N}_{5,3,3}(p)$ has 2 components, C_{1} and C_{2}, which are 26 -adjacent to p. Thus if \bar{M} has only one component 26 -adjacent to p, there must exist a 26 -path a in $\bar{N}_{5,3}^{2}(p)$ from $Y_{1} \in C_{1} \cap N_{5,3}^{1}(p)$ to $Y_{2} \in C_{2} \cap N_{5,3}^{1}(p)$. (i) $[p+\in S$.$] Suppose p+\in \bar{S}$. Let $a_{1}=p(-1,0,1)$ and $a_{2}=p(1,0,1)$. Now $p+$ must be in one of C_{1} and C_{2}, say $p+\in C_{1}$. Then either (a) $\left\{y_{1}, y_{2}\right\}$ is contained in the leftmost column of $N_{5,3}^{1}(p)$, (b) $\left\{y_{1}, y_{2}\right\}$ is contained in the rightmost column of $N_{5,3}^{1}(p)$, or (c) α is 26-adjacent to $p+$ and we can assume $\mathrm{p}^{+}=\mathrm{y}_{1}$. In either case, it follows that $\left\{y_{1}, y_{2}\right\} \subseteq \bar{N}_{a}^{0}$ and y_{1} is 26 -connected to y_{2} in \bar{N}_{a}^{1} where $a=a_{2}$ or $a=a_{2}$. However, since y_{1} and y_{2} are not 26connected in $\bar{M}, a \in N_{p} \cap S$, and hence a is a simple surface point of S. But $\bar{N}_{a}^{i=-1,0} \subseteq \bar{M}$, and the above situation violates Lemma l. (\# from which (i) follows).
(ii) $\left[\bar{N}_{5,3,3}(\mathrm{p}+)\right.$ has two components, C_{1}^{\prime} and C_{2}^{\prime}, which are 26-adjacent to p.$] Since p+$ is a simple surface point of S and each of $p+(-1,0,0)$ and $p+(1,0,0)$ is either in \bar{S} or is a simple surface point of S, it follows from
geometric symmetry to Lemma 2' that $\bar{N}_{5,3,3}{ }^{\prime}(p+)$ has two such components which are 26 -adjacent to $\mathrm{p}+$. Furthermore, since p is 6-adjacent to $p+$ in $N_{p+}{ }^{\prime}$ each of these two components must be 26-adjacent to p.
(iii) [Each of Y_{1} and y_{2} is 26 -connected to p in $\left.\bar{N}_{5,3}^{i=0,1}(p).\right]$ Consider y_{l} arbitrarily. If $y_{1} \in N_{p+}^{0}$, we are finished. Hence, W.L.G. let y_{l} be in the leftmost column of $N_{5,3}^{l}(p)$. If Y_{1} is not 26 -connected to p in \bar{M}, then $p(1,0,1)$ and $p(1,0,0)$ must be in S. However, if we assign $a=p(1,0,1), b=p+, b_{1}=p$, and $b_{2}=p(1,0,0)$ and then apply Lemma 3^{\prime} with $Y_{1} \in D \cap C_{1}$, it follows that Y_{1} is 26 -connected to p in $\bar{N}_{p(1,0,1)}^{i=-1,0} \subseteq \bar{N}_{5,3}^{i=0,1}(p)$. (\# from which (iii) follows.)
(iv) [The contradiction from which (1) follows.] Since Y_{1} and Y_{2} are 26 -connected in $\bar{N}_{5}^{\star}, 3,3(p+)$, W.L.G. let $\left\{y_{1}, y_{2}\right\} \subseteq C_{1}^{\prime}$. Now, p must be 26 -adjacent to $C_{2}^{\prime} \cap \bar{N}_{p}^{i=0,1}$. However, $C_{1} \cap \bar{N}_{p}^{i=0,1}, C_{2} \cap \bar{N}_{p}^{i=0,1}$, and $C_{2}^{\prime} \cap \bar{N}_{p}^{i=0,1}$ produce at least three components of $\bar{N}_{p}^{i=0,1}$ in contraaiction to Lemma 1.
(2) It now follows immediately by a symmetric argument to that given above that $\bar{N}_{3,3,5}^{*}(p)=\overline{\mathrm{M}} \cup \bar{N}_{5,3}^{-2}(p)$ has two components which are 26-adjacent to p.

Lemma 4'. Suppose a is a simple surface point of S and each of $\{a(-1,0, i), a(0,0, i), a(1,0, i) \mid i=0,3\}$ is either in \bar{S} or is also a simple surface point of s; then $\bar{N}_{5}^{\star}, 3,5^{(a+)}$ has two components which are 26 -adjacent to a.

Proof: Suppose not. Note that $\bar{N}_{5,3,3}(a)$ has two components 26-adjacent to a by geometric symmetry to Lemma 2', and then so does $\bar{N}_{5,3}^{i=-1,2}(a)=\bar{N}_{5,3,3}^{*}(a) \cup \bar{N}_{5,3}^{0}(a(0,0,2))$ by the proof of Lemma 4. Furthermore, if $a+\epsilon S$ or $a(0,0,2) \in \bar{S}$, then the proof is finished as in the proof of Lemma 4. Thus, suppose $a+\epsilon \bar{S}$, $a(0,0,2) \in S$, and there is a 26 -path a in $\bar{N}_{5,3}^{1}(a(0,0,2))$ from $\mathrm{y}_{1} \in \mathrm{C}_{1} \cap \overline{\mathrm{~N}}_{5,3}^{0}(\mathrm{a}(0,0,2))$ to $\mathrm{Y}_{2} \in \mathrm{C}_{2} \cap \overline{\mathrm{~N}}_{5,3}^{0}(\mathrm{a}(0,0,2))$ where C_{1} and C_{2} are the two components of $\overline{\mathrm{N}}_{5,3}^{\mathrm{i}=-1}{ }^{(a)} 26$-adjacent to a. W.L.G. let $a+\epsilon C_{1}$. Then y_{2} must be in either the rightmost or leftmost column of $N_{5,3}^{0}(a(0,0,2))$, say rightmost. Furthermore, $\{a(1,0,2), a(1,0,1)\} \in S$, and by Lemma $1, y_{2}$ and a+ are in opposite components of $\bar{N}_{a(1,0,2)}$. However, $a(0,0,2)$ is 6-adjacent to $a(1,0,2)$ and, by geometric symmetry to Lemma 2', $\left.\bar{N}_{5,3,3}{ }^{t}(0,0,2)\right)$ has two components 26 -adjacent to $a(0,0,2)$. Hence, $y_{1}, \bar{N}_{a(1,0,2)}^{0}$ and Y_{2} and a+ are also in opposite cormponents of $\bar{N}_{j, 3,3}^{*}$ $(a(0,0,2))$. Therefore Y_{1} and at are in opposite components of $\bar{N}_{5,3,3}(a(0,0,2)), y_{1}$ is in the leftmost column of $N_{5,3}^{0}(a(0,0,2))$, $\{a(-1,0,1), a(-1,0,2)\} \leq S$, and Y_{1} and at are in opposite components of both $\bar{N}_{a(-1,0,2)}$ and $\bar{N}_{a(-1,0,1)}$. Now, since there is a path in $\bar{N}_{5,5,3}^{i=-1,2}(a)$ from a to Y_{1}, we have $Y_{1} 26$-connected to y_{i}^{\prime} in $\bar{N}_{a(-1,0,1)}^{i=-1}$. Thus, $a(-1,0,0) \in S$, and Y_{1}^{\prime} and at are in opposite components of $\overline{\mathrm{r}}_{\mathrm{a}(-1,0,0)}$. However, it now follows by geometric symmetry to Lemma 2^{\prime} that y_{1}^{\prime} and at are in opposite components of $\bar{N}_{5}^{\star}, 3,3(a)$ and thus of $\bar{N}_{5,3}^{i=-1,2}(a)$. Since $\left\{a+, y_{1}^{\prime}\right\}-C_{1}$, this is a contradiction from which the Lemma follows. Hence

Lemma 5. $\bar{N}_{5,5,3}^{\star}(p)$ has two components 26 -adjacent to p.
Proof: Geometric symmetry to Lemma 4.

Lemma 5'. Suppose a and b are simple surface points of S, $\bar{N}_{5,5,3}{ }^{(a)}$ has two components, C_{1} and C_{2}, 26-adjacent $i o$ a, and $b \in N_{a}^{0}$ is 6 -connected to a via simple surface points in N_{a}^{0}; then $C_{1} \subseteq C_{1}$ and $C_{2}^{\prime} \subseteq C_{2}$ where C_{1}^{\prime} and C_{2}^{\prime} are the two components of \bar{N}_{b} 26-adjacent to b.

Proof: Follows immediately from the definition of simple surface point.

Lemma 6. $\bar{N}_{5,5,5}^{*}(\mathrm{p})$ has two components which are 26-adjacent to p.

Proof: (1) [\bar{M} has tiwo components which are 26 -adjacent to p where $\left.M=N_{5,5,3}^{\star}(p) \cup i N_{5,5}^{2}(p).\right] \quad$ Suppose not. $\bar{N}_{5,5,3}^{\star}(p)$ has two components, C_{1} and C_{2}, 26-adjacent to p by Lemma 5. Hence, if \bar{M} has only one component 26 -adjacent to p, there must exist a path 1 in $\bar{N}_{5,5}^{2}(p)$ from $y_{1} \in C_{1} \cap N_{5,5}^{1}(p)$ to $Y_{2} \in C_{2} \cap N_{5,5}^{1}(p)$.
(i) $[p+\in S$.$] Suppose p+\in \bar{S}$. Then one of Y_{1} and Y_{2} cannot be 26 -connected to p in $\bar{N}_{5,5}^{i=0,1}(p)$ or else y_{1} would be 26 -connected to y_{2} in $\bar{N}{ }_{5}^{\star}, 5,3(p)$ via $p+$. Furthermore one of y_{1} and y_{2} must be $26{ }^{-c}$ connected to p in $\bar{N}_{5,5}^{i=0,1}(p)$. If not, there would exist $\left\{q_{1}, q_{2}\right\}-A_{p} \cap N_{p}^{0}$ such that each of q_{1} and q_{2} is 6 -connected to p in $\mathrm{N}_{\mathrm{p}}^{0} \cap \mathrm{~S}, \mathrm{y}_{1}$ and $\mathrm{p}+$ are in opposite components of $\mathrm{V}_{\mathrm{q}_{1}}$, and
y_{2} and $p+$ are in opposite components of $\overline{\mathrm{N}}_{\mathrm{q}_{2}}$. But since $\bar{N}_{q_{1}} \cup \bar{N}_{q_{2}} \subseteq \bar{N}_{5}^{\star}, 5,3(\mathrm{p})$, this contradicts Lemma 5^{\prime}. [To see that there exist such points q_{1} and q_{2}, suppose that y_{1} is not 26 -connected to p in $\bar{N}_{5,5}^{i=0,1}(p)$. If y_{1} is not contained in $Z=\{p(-2,-2,1), p(-2,2,1)$, $p(2,-2,1), p(2,2,1)\}$ then there must exist $q_{1} \in N_{p}^{0}$ ns which is 6 -adjacent to p such that $y_{1} \in \bar{N}_{q_{1}}^{1}$, or else y_{1} would be 26 -connected to $p+$ in $\bar{N}_{5,5}^{i=0}, 1^{l}(p)$. Also, since y_{1} and $p+$ are in different components of $\bar{N}_{q_{1}}^{i=0,1}$ by Lemma 1 , they are in opposite components of $\overline{\mathbb{T}}_{\mathrm{q}_{1}}$. If y_{1} is contained in z, then W.L.G. let $y_{1}=p(2,2,1)$. Again, $q_{1}=p(1,1,0)$ and $x=p(1,1,1)$ must be in S, or else y_{1} would be 26 -connected to $p+$ in $\bar{N}_{5,5}^{i=0,1}$. Now, if both of $p(0,1,0)$ and $p(1,0,0)$ were in \bar{S}, p would be in $N_{x} \cap S$ but not 6 -connected to x in A_{x}. Hence, since x is a simple surface point of S, it follows that one of $p(0,1,0)$ and $p(1,0,0)$ must be in S. Thus, q_{1} is 6-connected to p in $N_{p}^{0} \cap S$, and, as before, Y_{1} and $\mathrm{p}+$ are in opposite components of $\overline{\mathrm{N}}_{\mathrm{q}_{1}}$. The existence of q_{2} is established in a similar manner, if one supposes Y_{2} is not 26 -connected to p in $\left.\bar{N}_{5,5}^{i=0,1}(p).\right]$ Hence, W.L.G. assume y_{1} is not 26 -connected to p in $\bar{N}_{5,5}^{i=0,1}(p)$ but that y_{2} is so connected. Now, consider Y_{1}. As above, if (a) y_{1} is 26-connected to $y_{1} \in \bar{N}_{5,5}^{1}(p) /$ Z in $\bar{N}_{5,5}^{1}(p)$, then there must exist $q \in A_{p} \cap N_{p}^{1}$ such that
q is 6-adjaceni to p^{+}and Y_{i}^{\prime} and $p+$ are in opposite components of \bar{N}_{q}. If (b) Y_{1} is not 26 -connected to $\bar{N}_{5,5}^{1}(p) / 2$ in $\bar{N}_{5,5}^{1}(p)$, then W.L.G. Let $y_{1}=p(2,2,1)$ and note that $\{p(1,1,1), p(1,2,1), p(2,0,1)\}, S$. Also, y_{1} and $p+$ are in opposite components of $\bar{N}_{p(1,1,1)}$. Since must connect y_{1} and Y_{2} in $\bar{N}_{5,5}^{2}(p)$, there exists $y_{1}^{\prime} f(p(1,2,2), p(2,0,2)\} \cap \bar{S}$. W. L.G. let $y_{1}^{\prime}=$ $p(2,0,2)$. Then it follows that $q=p(1,0,1) \in S$ or else y_{1} and $p+$ would be 26 -connected in $\bar{N}_{p(1,1,1)}$. Furthermore, since I is 6 -adjacent to $p(1,1,1), Y_{1}^{\prime}$ and p+ are in opposite components of \bar{N}_{q} by geometric symmetry to Lemma i. Hence, either in case (a) or (b) we have that there exists $\mathrm{g}_{\mathrm{i}} \leftarrow \mathrm{A}_{\mathrm{p}} \mathrm{N}_{\mathrm{p}}^{\mathrm{L}}$ such that q is 6ađjacent to $\mathrm{p}+$ and p^{+}and Y_{1}^{\prime} are in opposite components of \bar{N}_{C} where y_{I} is 26 -connected to y_{1} in $\overline{\mathrm{N}}_{5,5}^{i=1,2}(\mathrm{p})$. Lowever, by geometric symmetry to Lemma 4', it then foilows that $\bar{N}_{5,5,5}^{k}(p+)$ must have two components 6adjacent to q. Tinus, Y_{1} and pt (hence Y_{1} and Y_{2}) are not 26 -connected by a path in $\overline{\mathrm{N}}_{5,5}^{2}(\mathrm{p})$. (\# from which (i) follows.)
(ii) [Each of y_{1} and y_{2} is 26 -connected to p in $\left.\bar{N}_{5,5}^{i=0,1}(p).\right]$ Suppose arbitrarily that y_{1} is not so connected to p. From geometric symetry to Lemma 4', there exist two components, C_{1}^{\prime} and C_{2}^{1} of $\left.\bar{N}_{5}^{\star}, 5,3(i)+\right) 26$-adjacent to $\mathrm{p}+$. Then from Lemma 3^{\prime} as applied in the proof of Lemma 4, $Y_{1} \notin\{(i, j, 1) \quad 1=\{-1,0,1\}, j\{2,2\}\}\{p(i, j, 1) \mid i \in\{-2,2\}$, $j \in\{-1,0,1\}\}$. Thus W.I..G. Let $Y_{1}=p(2,2,1)$ and observe that $\mathrm{q}=\mathrm{p}(1,1,0)$ anci $\mathrm{q}^{+-p}(1,1,1)$ must be in S (hence, also in A_{p}) or clse y_{1} would be 26 -connected to p in
$\overline{\mathrm{N}}_{5,5}^{\mathrm{i}=0,1}(\mathrm{p})$. Also, $\mathrm{x}_{1}=\mathrm{p}(1,2,1)$ and $\mathrm{x}_{2}=\mathrm{p}(2,1,1)$ must be in S or y_{1} would again be 26 -connected to p in $\bar{N}_{5,5}^{i=0,1}(p)$ by application of Lemma 3^{\prime}. Now consider $H=\{p(0,1,1), p(1,0,1), p(0,1,0), p(1,0,0)\}$. Let A and B denote the two components of $\bar{N}_{q+} 26$-adjacent to $q+$ where $Y_{1} \in A$. [$\left.H \cap A=\varnothing.\right]$ If $H \cap A \neq \varnothing$, a 26-path in $\overline{\mathrm{N}}_{\mathrm{q}}{ }^{1}$ would merge two components of $\overline{\mathrm{N}}_{\mathrm{q}+}^{\mathrm{i}=-1,0}$ in contradiction to Lemma 1. [H $\cap \mathrm{B} \neq \varnothing$.] Suppose not. Then H cS. If $x_{3}=p(1,2,0) \in \bar{S}$, then $x_{3} \in A$ and one of $K=\{p(0,1,2)$, $p(0,2,2)\}$ must be in B since x_{1} is in S and is 6-adjacent to $q+$. Thus $y=p(2,1,2) \in B$ since there is a 26 -path from Y_{1} to y_{2} in $\bar{N}_{555}^{2}(p)$. But q must be 26 -adjacent to B and $x=p(2,0,0)$ is the only remaining possibility which implies that $p(2,0,1) \in S$. However, observe that now there is no path from x to K in \bar{N}_{q} which is imppossible since $K \cap B \neq \varnothing$. Hence $x_{3} \in S$. Now, by an applicaLion of Lemma 3^{\prime}, it follows that y_{1} is 26 -connected to $p(0,1,0)$ by a path in $\bar{N}_{\mathrm{q}}=1,0$, which is impossible since $\left(H \cup\left\{x_{3}\right\}\right) \leq S$. Hence, $H \cap B \neq \varnothing$. Let $t_{2} \in H \cap B$. Now consider $N_{q^{+}}$. One of $\mathrm{p}(0,1,1)$ and $p(1,0,1)$ must be in S, or else $\bar{N}_{\mathrm{q}+}^{1}$ would merge two components of $\overline{\mathrm{N}}_{\mathrm{q}+}^{\mathrm{i}=-1,0}$. Hence, since $q+$ is 6 -connected to $p+$ in $N_{p+}^{0} \cap S$, by Lemma 5', W.L.G. $A^{\prime} \subseteq C_{1}^{\prime}$ and $B \subset C_{2}^{\prime}$. Note $t_{2} \in C_{2}^{\prime}$, and since \bar{N}_{q}^{-1} cannot merge two components of $\overline{\mathrm{N}}_{\mathrm{q}}^{\mathrm{i}=0,1}, \mathrm{t}_{2} \in \mathrm{C}_{2}$.
(a) Suppose y_{2} is not 26 -connected to p in $\bar{N}_{5,5}^{i=0,1}(p)$. Then, as above, there exists $t_{1} \epsilon_{N_{p+}}^{i=-1,0} \cap_{C_{1}}$ such that t_{1} is in one of c_{1} and C_{2} and y_{2} is in the other. Thus, since y_{1} is 26 -connected to y_{2} in $\bar{N}_{5,5,3}(p+),\left\{y_{1}, y_{2}\right\} C_{j}^{\prime}$ and $\left\{t_{1}, t_{2}\right\} \leq C_{2}^{\prime} . \operatorname{But}\left\{t_{1}, t_{2}\right\} \subseteq$ $N_{p+}^{i=-1,0}$, and t_{1} is not 26 -connected to t_{2} in $\bar{N}_{p+}^{i=-1,0}$. Hence, by Lemma $1, t_{1}$ is not 26 -connected to t_{2} in $\mathrm{N}_{5}^{\mathrm{a}}, 5,3^{(\mathrm{p}+)}$. (\# to (a)).
(b) Suppose y_{2} is connected to p in $\mathbb{N}_{5,5}^{i=0, i}(p)$. Let $t_{1} \epsilon$ $N_{p}^{i=0,1} 1_{n} C_{2}$ such that t_{1} is 26 -connected to y_{2} in $\bar{N}_{5,5}^{i=0,1}(p)$. Since $p+s$, , there exists $t_{3} \in N_{p}^{i=0,1} n_{n}$. Consider $\left\{t_{1}, t_{2}, t_{3}\right\} N_{p}^{i=0,1}$. Note $\left\{t_{1}, t_{2}\right\}, C_{2}$ and therefore neither is 26 -adjacent to $t_{3} \in C_{1}$ in $\bar{N}_{p}^{i=0,1}$. Also, t_{2} is not 26 -connected to y_{1} (hence to y_{2}) in $N_{5,5,3}^{*}(p+)$. Thus t_{2} is not 26 -connected to t_{1} in $\bar{N}_{p}^{i=0,1}$. Hence, there are cirree components of $\bar{N}_{p}^{i=0,1}$ in contradiction to lemmia 1 . (\# from which (ii) follows.)
(iii) $\left[\bar{N}_{5,5,3}\left(p^{+}\right)\right.$nas two comboncnte, C_{i} and $C_{2}^{\prime}, 26$-adjacent to p.) As noted above, this follows imnediately from geometric symmetry to semma 4 '.
(iv) [The contradiction fo fon winch (1) follows.] Since y_{1} and y_{2} are 26 -ommation in $\bar{y}_{5}, 3,3(\mathrm{p}+)$, W.L.G. let $\left\{y_{1}, y_{2}\right\} C_{i}^{\prime}$. Now, p nast be 26-adjacent to $C_{2}^{1} \cap \bar{N}_{p}^{i=0,1}$. However, $\quad c_{1} \bar{N}_{p}^{i=0, i}, r_{2} N_{j}^{i=0,1}$, wrice $N_{p}^{i=0,1}$ produce at least three components of $\frac{\mathrm{N}}{\mathrm{p}} \mathrm{p}=0,1$ in contradiction to Lemma 1.
(2) It now follows immediately by a symmetric argument to that given above that $N_{5,5,5}^{*}(p)=\bar{M} U \bar{N}_{5,5}^{-2}(p)$ has two components which are 26-adjacent to p.

References

1. A. Rosenfeld, Three-dimensional digital topology, Info. Control 50, 1981, 119-127.
2. D. G. Morgenthaler and A. Rosenfeld, Surfaces in threedimensional digital images, Info. Control, in press.

SEEURI-Y LLASSIFICGTICN OF TMIS DAGE Kinen Deto Eniered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFRE COMPLETING FORM
	Cipient's catalog number
a. Title find sobitio) of SURFACES IN THREE-DIMENSIONAL DIGITAL IMAGES	3. TYPE OF REPORT 4 PERIOD COVERED Technical
	6. PERFORMNG ORG. REPORT NUMEEA TR-1210
7. Author(a) M. Reed George m. Azriel Rosenfeld	B. CONTRACT OR GRANT NUMEER(O) AFOSR-77-3271
Math \& Info. Sciences, AFOSR/NM Bolling AFB sashington, DC 20332	12. REPDRT August 1982 13. Numer 26
14. MONITORING AEENCY NAME B AODRESS(it difterent tiom Conitoling ollice)	

Approved for public release; distribution unlimited
17. Distribution statement (ot the absirect anified in Block 20. "1 dilterent from Repori)
18. SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverte aide if neceatary and identify by block number)
Image processing
Pattern recognition
Digital geometry
Three-dimensional images
Surfaces
20. ABSTRACT (Continue on revereb aide ll neceasary and identify by block number)

This is a continuation of a series of papers on the digital geometry of three-dimensional images. In an carlier paper by Morgenthaler and Rosenfeld, a three-dimensional analog of the twodimensional Jordan Curve Theorem was established. This was accomplished by defining simple surface points under the symmetric consideration of 6 -connectedness and 26 -connectedness and by characterizing a simple closed surface as a connected collection of
"orientable" simple surface points. The necessity of the assumption of orientability, a condition of often prohibitive computational cost to establish, was the major unresolved issue of that paper. In this paper, we show the assumption not to be necessary in the case of 6-connectedness and, unexpectedly, show that the property of orientability is not symmetric with respect to the two types of connectedness.

U

[^0]: *Permanent address: Dept. of Mathematics, Ohio University,

