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Abstract. The paper describes an automatic system for recognition of
10,000 plant species, with focus on species from the Guiana shield and the
Amazon rain forest. The proposed system achieves the best results on the
PlantCLEF 2019 test set with 31.9% accuracy. Compared against human
experts in plant recognition, the system performed better than 3 of the 5
participating human experts and achieved 41.0% accuracy on the subset
for expert evaluation. The proposed system is based on the Inception-v4
and Inception-ResNet-v2 Convolutional Neural Network (CNN) architec-
tures. Performance improvements were achieved by: adjusting the CNN
predictions according to the estimated change of the class prior proba-
bilities, replacing network parameters with their running averages, test-
time data augmentation, filtering the provided training set and adding
additional training images from GBIF.
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1 Introduction

The paper describes an automatic system for visual recognition of plants among
10,000 species, developed for the the PlantCLEF 2019 plant identification chal-
lenge [4] organized in connection with the LifeCLEF 2019 workshop [5] at the
Conference and Labs of the Evaluation Forum. Compared to previous Plant-
CLEF challenges [1,2,3], which contained mainly species living in Europe and
North America, the 2019 task is focused on the recognition of species from ”data
deficient regions” - mainly the Guiana shield and the Amazon rain forest.

Copyright © 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). CLEF 2019, 9-12 Septem-
ber 2019, Lugano, Switzerland.

https://orcid.org/0000-0002-6041-9722
https://orcid.org/0000-0002-6321-0131
https://orcid.org/0000-0003-0863-4844


The proposed approach is based on CMP’s winning submission to PlantCLEF
2018 [11]. Checkpoints of our models from PlantCLEF 2018 have been shared
with other participants of PlantCLEF 2019 in order to provide a good starting
point to all participants.

Fig. 1. Comparison of automatic plant recognition methods against human experts.
The results of our method are shown in red as ”Post Challenge” (our results submitted
at the challenge deadline, shown in orange, were wrongly exported).

2 Methodology

2.1 Cleaning and extending the training dataset

The PlantCLEF 2019 training set covers 10,000 species and consists of:

• PlantCLEF 2019 EOL: 72,260 images covering 4,197 classes from the Ency-
clopedia of Life3

• PlantCLEF 2019 Google: 68,254 images covering 6,262 classes automatically
retrieved by web search engines.

• PlantCLEF 2019 Bing: 307,557 images covering 8,666 classes automatically
retrieved by web search engines.

The average number of images per specie decreased dramatically from Plant-
CLEF 2018. One fifth of species contains less then 10 images and some of them
contains only 1 image.
3 http://www.eol.org

http://www.eol.org


Fig. 2. Randomly selected images from the LifeCLEF 2019 training set (top) and test
set(bottom).

A brief manual inspection showed that the provided training set is afflicted
with noisy samples - wrongly labeled images, including images of non-flora ob-
jects. Examples of noisy samples are in Figure 3. We therefore decided to detect
non-flora images by a pre-trained Darknet53 448x448 [8] classifier. Out of 428,702
images from the official training set, we removed 6,181 images detected as non-
flora, After that our training data missed approximately 2000 classes, so we had
to gather additional training images to fill that gap. We created a new train-
ing set4 including external training data downloaded from GBIF5, described in
Table 1. Changes in the dataset statistics are visualized in Figure 4.

Fig. 3. Randomly selected noisy images from the LifeCLEF 2019 training set.

To make sure that none of the additional training images (or its resized or
cropped versions) downloaded from GBIF appear in the test set, we used the
image retrieval pipeline of Radenovic et al. [7] with VGG-16 and whitening. The

4 For full reproducibility, a list of removed samples as well as an archive with
additional training images are shared at http://cmp.felk.cvut.cz/~sulcmila/
LifeCLEF2019/

5 http://www.gbif.org/

http://cmp.felk.cvut.cz/~sulcmila/LifeCLEF2019/
http://cmp.felk.cvut.cz/~sulcmila/LifeCLEF2019/
http://www.gbif.org/


0 2000 4000 6000 8000 10000
Class

0

100

200

300

400

500

600

Nu
m

be
r o

f i
m

ag
es

Original dataset
Cleaned dataset
Cleaned & extended dataset

Fig. 4. Numbers of training images per class in the original dataset (blue), cleaned
dataset (orange) and cleaned and extended (green), sorted for each dataset separately.

Table 1. Training data (after cleaning and extending the provided training set) used
in the experiments.

Data Source Classes Non EOL classes Number of Images
EOL 4197 0 58548
Noisy Google 6262 3800 64863
Noisy Bing 8666 5069 305291
GBIF (additional) 9402 5734 238009
All 9998 5801 666711

nearest neighbours of test images among the downloaded images are vizualized
in Figure 5.

2.2 Convolutional Neural Networks

The proposed system is based on two CNN architectures – Inception ResNet
v2 and Inception v4 [12]. The TensorFlow-Slim API was used to adjust and
fine-tune the networks from the publicly available6 PlantCLEF 2018 winning
checkpoints.

All networks in our experiments shared the optimizer settings enumerated in
Table 2. The networks and their input resolutions are listed in Table 3.

The following image pre-processing techniques were used for training:

• Random image crop with aspect ratio range (0.75, 1.33) and content at least
80% of origin image.

6 http://cmp.felk.cvut.cz/~sulcmila/LifeCLEF2018/
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Fig. 5. Six nearest couples of test set images (top) and GBIF images (bottom).

Table 2. Optimizer hyper-parameters, common to all networks in the experiments.

Parameter Value
Batch size 32
Optimizer rmsprop
RMSProp momentum 0.9
RMSProp decay 0.9
Initial learning rate 0.0075
Learning rate decay type Exponential (stairs)
Learning rate decay factor 0.975

• Random left-right flip.
• Brightness and saturation distortion.

Table 3. Networks and hyper-parameters used in the experiments.

# Net architecture Input Resolution
1 Inception v4 299× 299

2 Inception v4 (second) 299× 299

3 Inception v4 598× 598

4 Inception ResNet v2 299× 299

5 Inception ResNet v2 (second) 299× 299

2.3 Test time data augmentation

At test-time, 3 predictions per image are generated by using 3 crops:

• 1x Full image,
• 1x Central crop covering 80% of the original image,



• 1x Central crop covering 60% of the original image.

In submissions 4,5,6,7 the mirrored versions of all three crops were also evaluated.

2.4 Adjusting Class Priors at Test Time

The training set data distribution is highly unbalanced and we can not guaran-
tee that the test images were drawn from the same distribution: as described
in Section 2.1, the training set comes from different sources, where the class
frequencies may not correspond with the test-time priors.

Following the notation of [10], the predictions p(ck|xi) of a network trained
on a dataset with class prior probabilities p(ck) should be corrected in case of
evaluation on a test set with different class priors pe(ck):

pe(ck|xi) =

p(ck|xi)
pe(ck)

p(ck)
K∑
j=1

p(cj |xi)
pe(cj)

p(cj)

∝ p(ck|xi)
pe(ck)

p(ck)
(1)

Since the test-time priors pe(cj) are unknown, we propose three different
estimates of adjusting the predictions:

UNIFORM: As the simplest option, we adjust the test predictions by assuming
a uniform prior for all classes.

MLE: As the second option, we compute a Maximum Likelihood Estimate of
the test time prior pe(ck) using the EM algorithm of Saerens et al. [9], comprising
of the following two steps:

E: p(s)e (ck|xi) =

p(ck|xi)
p
(s)
e (ck)

p(ck)

K∑
j=1

p(cj |xi)
p
(s)
e (cj)

p(cj)

(2)

M: p(s+1)
e (ck) =

1

N

N∑

i=1

p(s)e (ck|xi) (3)

MAP: As the third option, we use the Maximum a Posteriori estimate proposed
in [10]:



PMAP = arg max
P

p(P|(x1, ..,xN ))

= arg max
P

p(P)

N∏

i=1

p(xi|P)

= arg max
P

log p(P) +

N∑

i=1

log p(xi|P)

s.t.
K∑

k=1

Pk = 1; ∀k : Pk ≥ 0

(4)

We model the prior knowledge about the categorical distribution pe(ck) by
the symmetric Dirichlet distribution:

p(P) =
1

B(α)

K∏

k=1

Pα−1
k (5)

where the normalization factor for the symmetric case is B(α) =
Γ(α)K

Γ(αK)
. As

in [10], we use α = 3.

Fig. 6. Comparison of automatic plant recognition methods on the PlantCLEF 2019
test set. ”Post Challenge” submissions are marked with red border.

3 Results

Table 4 describes eight final runs used for the evaluation. An ensemble of all five
networks from Section 2.2 was used in all runs and predictions were averaged
over all networks and all test image augmentations from Section 2.3.



Table 4. Description of our (corrected/post-challenge) submissions.

Run description Test accuracy
Name Test-time augm. Prior est. Top1 Top1 Exp. Top5 All Top5 Exp.
CMP Run 2 3×scale (none) 0,244 0,325 0,356 0,410
CMP Run 3 3×scale uniform 0,247 0,316 0,360 0,419
CMP Run 4 3×scale MAP 0,301 0,402 0,453 0,573
CMP Run 5 3×scale MLE 0,307 0,402 0,451 0,573
CMP Run 6 3×scale + mirrors (none) 0,311 0,402 0,454 0,538
CMP Run 7 3×scale + mirrors uniform 0,311 0,410 0,461 0,564
CMP Run 4* 3×scale + mirrors MAP 0,319 0,402 0,468 0,581
CMP Run 5* 3×scale + mirrors MLE 0,319 0,410 0,470 0,581

The evaluation results are shown in Figures 1,6. From the class prior esti-
mation methods, MAP estimation with the Dirichlet hyperprior achieves the
best results. This corresponds to the results of [10], where adding the hyperprior
brought noticeable improvement over the MLE estimation, which may have a
tendency to overfit. Note that the results from Table 4 are the official post-
challenge evaluation not included in the challenge leaderboard, as our predictions
were wrongly exported into the challenge run-files.

4 Conclusions

The proposed system achieves the best accuracy on the PlantCLEF 2019 test
set - 31.9% on the full set and 41.0% on the test subset for plant identification
experts. The results show that even for ”data-deficient” plant species, automatic
image recognition systems achieve human expert accuracy in visual recognition
of plants: The proposed method performed better than 3 of the 5 participating
experts in plant recognition. Although the results are promising, there are many
opportunities for further improvement of automatic plant recognition systems for
data-deficient species, such as one-shot learning and open long-tailed recognition
[6] methods.

The increasing precision of the automated plant recognition methods should
allow for a better assistance to both nature lovers and biological experts in
the fields. For example, showing a shortlist of potential species candidates can
decrease the time needed for decision and potentially increase the recognition
rate.
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