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Abstract: The detection of degraded soil distribution areas is an urgent task. It is difficult and very
time consuming to solve this problem using ground methods. The modeling of degradation processes
based on digital elevation models makes it possible to construct maps of potential degradation, which
may differ from the actual spatial distribution of degradation. The use of remote sensing data (RSD)
for soil degradation detection is very widespread. Most often, vegetation indices (indicative botany)
have been used for this purpose. In this paper, we propose a method for constructing soil maps
based on a multi-temporal analysis of the bare soil surface (BSS). It is an alternative method to the
use of vegetation indices. The detection of the bare soil surface was carried out using the spectral
neighborhood of the soil line (SNSL) technology. For the automatic recognition of BSS on each RSD
image, computer vision based on deep machine learning (neural networks) was used. A dataset of
244 BSS distribution masks on 244 Landsat 4, 5, 7, and 8 scenes over 37 years was developed. Half of
the dataset was used as a training sample (Landsat path/row 173/028). The other half was used as a
test sample (Landsat path/row 174/027). Binary masks were sufficient for recognition. For each RSD
pixel, value “1” was set when determining the BSS. In the absence of BSS, value “0” was set. The
accuracy of the machine prediction of the presence of BSS was 75%. The detection of degradation was
based on the average long-term spectral characteristics of the RED and NIR bands. The coefficient
Cmean, which is the distance of the point with the average long-term values of RED and NIR from
the origin of the spectral plane RED/NIR, was calculated as an integral characteristic of the mean
long-term values. Higher long-term average values of spectral brightness served as indicators of the
spread of soil degradation. To test the method of constructing soil degradation maps based on deep
machine learning, an acceptance sample of 133 Landsat scenes of path/row 173/026 was used. On
the territory of the acceptance sample, ground verifications of the maps of the coefficient Cmean were
carried out. Ground verification showed that the values of this coefficient make it possible to estimate
the content of organic matter in the plow horizon (R2 = 0.841) and the thickness of the humus horizon
(R2 = 0.8599). In total, 80 soil pits were analyzed on an area of 649 ha on eight agricultural fields. Type
I error (false positive) of degradation detection was 17.5%, and type II error (false negative) was 2.5%.
During the determination of the presence of degradation by ground methods, 90% of the ground
data coincided with the detection of degradation from RSD. Thus, the quality of machine learning
for BSS recognition is sufficient for the construction of soil degradation maps. The SNSL technology
allows us to create maps of soil degradation based on the long-term average spectral characteristics
of the BSS.
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1. Introduction

The spatial heterogeneity of the soil cover is the leading factor in the intra-field
heterogeneity of the productivity of arable land. It is difficult to reveal the spatial intra-
field heterogeneity of the soil cover, because this requires work with high cartographic
accuracy at a scale of 1:10,000 and larger. For such scales, the instruction on soil mapping
of 1973 applies to the territory of Russia [1]. Often, instead of soil cover mapping, various
methods of indicative botany were used in the form of analyses of vegetation indices [2–7].
An alternative to vegetation indices is the method of constructing soil maps based on the
analysis of the bare soil surface [8–14].

Maps of soil cover degradation can be based on modeling degradation processes [15–18].
Modeling requires the use of various data in addition to remote sensing data, such as
climate data [19,20]. An important role in modeling degradation can be played by various
characteristics of the relief: slopes, exposure, catchment area, etc. [21–24]. To calculate the
relief characteristics, digital elevation models or digital terrain models are required [25,26].
Soil degradation maps obtained by modeling require groundwork, because even with the
same relief characteristics (obtained from the DEM), degradation may or may not occur [8].

Big remote sensing data [27] open perspectives for constructing soil degradation maps.
Partially big RSD can be processed by manual interpretation [28–32]. These methods in-
clude the method of retrospective monitoring of soil and land cover, which allows one to
construct maps using RSD for a period of more than 50 years [33]. The accuracy of such
works can exceed the accuracy of ground surveys [32–34]. The processing of big remote
sensing data in the manual interpretation mode is very laborious. Despite the complexity,
the method of retrospective monitoring of the soil and land cover is necessary to deter-
mine the boundaries of arable land, which are the boundary conditions for interpretation
characteristics [35].

The possibility of identifying degradation foci based on RSD is confirmed by the breadth
of coverage of such studies in different countries and on different continents [36–38]. These
are modern methods for automating the mapping of land degradation [39–41]. RSD time
series analysis approaches were used much less frequently in the construction of maps [38].
It can be assumed that the analysis of big satellite data [7,27,42] makes it possible to create
maps of land degradation. The issue is the choice of the RSD processing method.

Working with big data is, first of all, Data mining and MapReduce [8]. When working
with big RSD, it is necessary to select RSD suitable for calculations and analysis and reject
unsuitable ones. Unsuitable images include images or fragments of images with clouds.
Clouds masks are in open access [43]. The disadvantages of existing cloud masks require
new filtering methods based on deep machine learning and computer vision [6,44–47]. It
can be assumed that the use of deep machine learning will make it possible to select the
necessary satellite images. In this mode, deep machine learning will allow data mining
procedures [48,49] for big satellite data [27,42]. The issue is the choice of filtering methods.

Convolutional neural networks are widely used in solving various problems: for
calculating the heat radiation of windows [50], for assessing land use changes over long
periods of time (1990–2017) [51], and for mapping temperature anomalies in cities [52].
Convolutional neural networks (CNN) in processing color (RGB) images of the earth’s
surface from various data sources can increase the accuracy of calculations and reduce
labor costs in plant recognition: detection and counting of palm trees [53], recognition of
coffee crops [54], detection of Ziziphus lotus [55], classification of crops and vegetation [56].

Machine learning is also used in thematic interpretation [57,58]. Mapping of erosion
distribution is one of the types of thematic interpretation [59,60]. In an integrated approach,
machine learning is applied to a set of factors [59,60], but can also be applied to RSD
only [61,62]. During thematic interpretation, areas with same spectral brightness or values
of calculated indices were distinguished [36,40,41]. Often, when degradation is recognized,
sites with reduced yields are searched for [57,62,63]. When analyzing long-term observation
series, areas are selected where a reduced yield is recorded most often [6,63,64]. It can be
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assumed that areas of agricultural fields with uniform spectral characteristics recorded
over many years can be an indicator of the state of the soil cover.

Intra-field heterogeneity maps based on long-term RSD data are widely used by
commercial structures: ExactFarming [65], Farmers Edge [66], Cropio [67], Intterra [68],
AGRO-SAT [69], NEXT farming [63], Agronote [70]. It can be assumed that the processing
of multi-temporal data is highly efficient for detecting intra-field heterogeneity.

In the work of 2020 [7], the result of applying the method of averaging long-term
vegetation indices is presented. A 2021 article [6] outlines the application of the frequency
filter method for multi-year vegetation indices. Both methods are, in one way or another,
methods of indicator botany. The work of 2021 [9] outlines the method of averaging
vegetation indices adjusted for the methods of analysis of the spectral neighborhood of the
soil line (SNSL). The SNSL theory itself is presented in a series of works of 2016–2018 [10–14].
The SNSL theory assumes the possibility of revealing the spatial heterogeneity of the soil
cover on the basis of big satellite data, but without the use of indicator botany.

We made several hypotheses:

1. Soil cover degradation can be detected based on the recognition of bare soil surface in
the analysis of big satellite data.

2. The selection of satellite imagery to define the bare soil surface can be performed
using deep machine learning methods.

3. An indicator of distribution of degradation can be the average long-term deviations
of spectral brightness from the average spectral brightness characteristics of an agri-
cultural field.

4. It is possible to verify the results of identifying degradation areas by ground methods.
5. Boundary conditions for identifying soil degradation areas can be defined by the

method of retrospective monitoring of land use and soil cover.

The aim of the work is to develop a method for detecting degraded areas of arable land
in the south of the European part of Russia based on the recognition of bare soil surface on
satellite images using deep machine learning methods and methods for calculating average
long-term values of the spectral brightness of the bare soil surface.

2. Materials and Methods

The study area is located on the territory of Russia in the Morozovsky district of the
Rostov region (Figure 1). The soil cover is represented by dark chestnut slightly solonetzic
clayey and heavy loamy soils on loess-like clays and loams (Haplic Kastanozems). The
absolute height is about 120 m asl. The mean annual air temperature is 8.5 ◦C. The mean
annual precipitation is 415.6 mm. Deep machine learning included Landsat scenes of
path/row 173/028 and 174/027 for the area in the Zernogradsky and Tselinsky districts of
Rostov region (Figure 1).

2.1. Creating a Map of Arable Lands Boundaries

The boundaries of arable lands were created by the method of retrospective monitoring
of the soil and land cover [33]. In the course of retrospective monitoring, the boundaries of
the agricultural fields were determined by interpretation of the RSD for 50 years. Particular
attention is paid to the period from 1984 to 2020 (35 years). In this time interval in Russia,
the sown area decreased from 117 million ha (1990) to 74 million ha (2007) [71]. In terms of
accuracy, the method of retrospective monitoring surpasses traditional mapping at a scale
of 1:10,000 [33,35] (Figure 2). Remote sensing data of different spatial resolution were ana-
lyzed: high spatial resolution (IKONOS, GeoEye-1, WorldView, etc.) [72], medium spatial
resolution (Landsat, Sentinel) [43], and archival data of 1968 and 1975 (CORONA) [73]. The
quality and accuracy of interpretation are checked using topographic maps at a scale of
1:25,000 (Figure 2c).
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Figure 1. Location of machine learning and study areas.

2.2. Dataset Development

The bare soil surface occupies an elliptical region in the spectral space of RED and
NIR bands [13] (Figure 3)—the spectral neighborhood of the soil line (SNSL). This area
is part of tasseled cap [74] and lies on the soil line [74] between areas of stubble residues
(straw) and traces of agricultural fires (soot), which are abundant in southern Russia [75].
The location of SNSL only partially coincides with the soil line for vegetation indices such
as the NDVI [76].
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Figure 3. Distribution of density values on the RED-NIR spectral plane for Landsat scene of June 2007.

The dataset was made of RSD of 1984–2020. In total, 1028 Landsat scenes were found
and downloaded from the archives. To form the dataset, 244 Landsat 4, 5, 7 and 8 scenes
were selected for two paths/rows-173/028 and 174/027 (Tables S1 and S2). The location of
analyzed Landsat scene fragments is given on Figure 1. The choice of Landsat data is due
to the large temporal coverage (1984–2022), the same spatial resolution (30 m), an identical
set of spectral bands (Blue, Green, Red, NIR, SWIR1, SWIR2), well-known spectral and
atmospheric correction algorithms.

For each of 244 Landsat scenes (Figure 4a,b), a graph of the frequency of occurrence
of pairs of RED and NIR values (tasseled caps) [13] (Figure 4c,d) was plotted. On each
graph, the areas of RED and NIR values for the bare soil surface were manually selected
(Figure 4c,d). The areas highlighted on the graphs were transferred to the satellite image in
the form of masks of the open soil surface (Figure 4e,f). The selection of BSS was corrected
using a satellite image in the RGB mode (Figure 4a,b).

Thus, bare soil masks were built for 244 out of 1028 Landsat scenes using SNSL
technology (Figure 4). A set of bare soil surface masks is a dataset for training a neural
network. Half of the dataset (122 masks, Landsat path/row 173/028) was used as a training
sample (Table S1). The second half of the dataset (122 masks, Landsat path/row 174/027)
was used as a test sample (Table S2). The area of the bare soil surface varied on Landsat
scenes from 1.5 to 54.8%.
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Figure 4. The dataset of BSS mask formation. (a,b) Landsat images of August 25 and May 26;
(c,d) distribution of density values on the RED-NIR spectral plane with SNSL (black line);
(e,f) BSS masks.

The dataset is binary. For each pixel of each Landsat image, the mask can have only
one of the two values “1” or “0”, i.e., bare soil surface or not. Classification of other objects
identified in the RED-NIR spectral space was not carried out.

The learning element in the dataset is a pixel. For 244 images, an array of 567,127,808
training elements was created. The bare soil surface was identified on 112,632,627 pix-
els. Six Landsat spectral bands were used in machine learning: Blue, Green, Red, NIR,
SWIR1, SWIR2.

In addition to the graphics mode in the RED-NIR spectral space (Figure 4c,d), the RGB
mode was used to form the dataset. Images displayed as RGB represent the stack of three
bands 7 (SWIR), 4 (NIR), 2 (Green) of Landast 7 (Figure 4a,b). The selection of the bare soil
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surface was carried out by three operators independently; each of the operators analyzed
all 244 images in graphics mode and RGB mode. The resulting masks were compared with
each other. For Landsat pixels in which a discrepancy in BSS identification was found, a
value was assigned by a simple majority. Examples of bare soil surface masks are shown in
Figure 4e,f.

Landsat images of path/row 173/026 for the territory of eight agricultural fields were
used as an acceptance sample in this study (Figures 1 and 2). The acceptance sample
consists of 133 Landsat 4, 5, 7 and 8 scenes from 1985 to 2021 (Table S3).

2.3. Methods for Assessing the Quality of Machine Learning Algorithms

1. Test sample. A set of objects not used in learning.
2. Acceptance sample. An independent set of objects not used in development.
3. Cross-validation (CV) [77,78]. The training sample is divided into N parts and training

is performed N times on N − 1 parts (without repetitions).

2.4. Deep Machine Learning, Convolutional Neural Networks Method
2.4.1. Model

We formulate the bare soil recognition on given satellite images as a per-pixel binary
classification task. Thus, given an image I of shape W × H × C, we expect the model
to output M, an image of shape W × H, where Mij ∈ [0, 1] is the probability that (i, j)
pixel belongs to the bare soil region. W and H denote the width and height of the input
image, and C is the number of input bands. In computer vision, such a task is typically
formulated as a binary image segmentation problem. Nowadays, deep neural networks [79]
have become the standard approach to solving various computer vision tasks, including
image segmentation. Deep neural networks were employed to address segmentation tasks
in autonomous driving [80], medical image diagnosis [81,82], geo sensing [83,84], and
precision agriculture [85,86].

The most popular neural architecture for image segmentation is U-Net [84], developed
for biomedical image segmentation. U-Net consists of two parts: the encoder part processes
input image and reduces its spatial dimensions, and the decoder part accepts encoder
output and predicts the mask of the same size as the input image. Typically, the encoder
and the decoder are built from the same number of convolutional blocks; this number is a
matter of choice. The downsampling block (in the encoder) and the upsampling block (in
the decoder) of the same size are connected via a skip connection. The neural architecture
of our model is depicted in Figure 5.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 32 
 

 

2.4. Deep Machine Learning, Convolutional Neural Networks Method 
2.4.1. Model 

We formulate the bare soil recognition on given satellite images as a per-pixel binary 
classification task. Thus, given an image 𝐼 of shape 𝑊 ×𝐻 × 𝐶, we expect the model to 
output 𝑀 , an image of shape 𝑊 ×𝐻 , where 𝑀௜௝ ∈ [0,1]  is the probability that ሺ𝑖, 𝑗ሻ 
pixel belongs to the bare soil region. 𝑊 and 𝐻 denote the width and height of the input 
image, and 𝐶 is the number of input bands. In computer vision, such a task is typically 
formulated as a binary image segmentation problem. Nowadays, deep neural networks 
[79] have become the standard approach to solving various computer vision tasks, 
including image segmentation. Deep neural networks were employed to address 
segmentation tasks in autonomous driving [80], medical image diagnosis [81,82], geo 
sensing [83,84], and precision agriculture [85,86]. 

The most popular neural architecture for image segmentation is U-Net [84], 
developed for biomedical image segmentation. U-Net consists of two parts: the encoder 
part processes input image and reduces its spatial dimensions, and the decoder part 
accepts encoder output and predicts the mask of the same size as the input image. 
Typically, the encoder and the decoder are built from the same number of convolutional 
blocks; this number is a matter of choice. The downsampling block (in the encoder) and 
the upsampling block (in the decoder) of the same size are connected via a skip 
connection. The neural architecture of our model is depicted in Figure 5. 

 
Figure 5. (a) The proposed U-Net architecture with 6 downsampling and 5 upsampling blocks; (b) 
a single downsampling block; (c) a single upsampling block. 

Each encoder block contains a maximum pooling layer with a stride of 2 and two 
convolutional layers with a kernel size of 3, each followed by normalization and activation 
layers. Each decoder block accepts two inputs: an output of the corresponding encoder 
block of shape 𝑤 × ℎ × 𝑐  and the output of the previous decoder block of shape ௪ଶ × ௛ଶ × 2𝑐. The second input is upsampled to 𝑤 × ℎ × 𝑐, then processed with a single 
convolutional layer with a kernel size of 1 and concatenated with the first input. The 
resulting tensor is passed through two convolutional layers with a kernel size of 3, each 
followed by normalization and activation layers. 

We use the ReLU activation function and apply batch normalization [87] in all 
downsampling and upsampling blocks. Sigmoid function serves as an activation function 
of the last layer so the model returns probabilities 𝑀௜௝ ∈ [0,1]. 

  

Figure 5. (a) The proposed U-Net architecture with 6 downsampling and 5 upsampling blocks;
(b) a single downsampling block; (c) a single upsampling block.
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Each encoder block contains a maximum pooling layer with a stride of 2 and two
convolutional layers with a kernel size of 3, each followed by normalization and activation
layers. Each decoder block accepts two inputs: an output of the corresponding encoder
block of shape w× h× c and the output of the previous decoder block of shape w

2 ×
h
2 × 2c.

The second input is upsampled to w× h× c, then processed with a single convolutional
layer with a kernel size of 1 and concatenated with the first input. The resulting tensor
is passed through two convolutional layers with a kernel size of 3, each followed by
normalization and activation layers.

We use the ReLU activation function and apply batch normalization [87] in all down-
sampling and upsampling blocks. Sigmoid function serves as an activation function of the
last layer so the model returns probabilities Mij ∈ [0, 1].

2.4.2. Training

Our dataset contains 244 images of shape approximately 1300 × 1800 pixels. We
split the data into two equal parts: 122 images are used for training, and the remaining
122 images comprise the validation subset. More specifically, the training part contains
Landsat scenes path/row 173/028, and scenes path/row 174/027 are used for validation.
Each image in the dataset is represented in the 6-channel form: Red, Green, Blue, NIR,
SWIR1, and SWIR2.

We use the Dice loss [88], which is the standard choice for imbalanced classes. Accord-
ingly, a bare soil mask always has much fewer pixels than the background.

DL(M, Q) = 1−
2 ∑ij MijQij + 1

∑ij Mij + ∑ij Qij + 1

Here, Q are the ground truth labels, Qij ∈ {0, 1}, and Qij = 1 only if (i, j) pixel
belongs to the bare soil surface.

We train our model by minimizing the loss function with Adam optimizer [89]. We
set an initial learning rate to 0.01, then decay the learning rate 10 times after the 32nd and
the 42nd epochs. The training is performed for 48 epochs in total. Each batch consists
of 8 random 512 × 512 pixels crops of the images from the training part. Additionally,
we apply random horizontal and vertical flips. In all our experiments, we utilize a single
Nvidia RTX 2080ti GPU.

2.4.3. Validation

During validation, we take 512 × 512 pixels crops from all images in the validation
subset. We calculate the intersection over union (IoU) between the predicted and the
corresponding manually constructed bare soil masks (Figure 6).

IoU
(

M̂, Q
)
= 1−

∑ij M̂ijQij

∑ij M̂ij + ∑ij Qij −∑ij M̂ijQij

Here, M̂ is M thresholded by 0.5: M̂ij = Mij > 0.5. The overall IoU score of the
proposed model on the validation set is 0.79.
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Figure 6. Examples of manually constructed (a,c) and corresponding predicted (b,d) bare soil masks
for 512 × 512 pixels crops from validation images of different dates (BSS is black).

2.4.4. Evaluation

The model used in further experiments is trained on both train and validation splits.
To process the high-resolution satellite images, we divide them into overlapping patches of
512 × 512 pixels with the step of 256 pixels by both axes. We estimate the mask with our
model for all patches and aggregate patch masks to obtain a full-sized mask. We noticed
that simple averaging causes visual artifacts: a grid with 256-pixel periodicity appears. To
mitigate such unwanted edge effects, we combine the predictions from different patches
with Gaussian weights.

2.5. Calculation of the Average Multi-Temporal Values of the RED and NIR Spectral Bands for the
Bare Soil Surface

The average multi-temporal values of the RED and NIR bands for the BSS were
calculated for each Landsat pixel. According to the SNSL technology, the averaged multi-
temporal RED and NIR spectral characteristics of the open soil surface are informative for
constructing soil maps.

Figure 7a show a diagram of the position of the BSS RED and NIR values for one Land-
sat data pixel for the period from 1984 to 2020.
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The RED values for a pixel are averaged using the formula:

REDmean =

(
n

∑
i=1

REDi

)
/n

Here REDi—BSS RED value for i-th Landsat scene, i—Landsat scene number in the
Landsat scenes database, n—total number of Landsat scenes in the Landsat scenes database
involved in the calculation of long-term averages, REDmean—average long-term RED value
for a pixel.

The NIR values for a pixel are averaged using the formula:

NIRmean =

(
n

∑
i=1

NIRi

)
/n

Here NIRi—BSS NIR value for i-th Landsat scene, i—Landsat scene number in the
Landsat scenes database, n—total number of Landsat scenes in the Landsat scenes database
involved in the calculation of long-term averages, NIRmean—average long-term NIR value
for a pixel.

2.6. Calculation of the Average Multi-Temporal Distance of a Set of RED and NIR Values for the
BSS (Cmean Coefficient Calculation)

The average multi-temporal distance of a set of RED and NIR values for the BSS
was calculated for each Landsat pixel. According to the SNSL technology, the long-term
average distance of a point with long-term average RED and NIR values from the origin of
coordinates has the best information content.

Figure 7b shows the location of the point of long-term average values of RED and
NIR for the bare soil surface and its distance from the origin of coordinates. The distance
between a point with long-term average RED and NIR values for each pixel is calculated
by the formula:

Cmean =
√

RED2
mean + NIR2

mean

Here Cmean is the distance to a point with average long-term values of RED and NIR
from the origin, REDmean—average long-term RED value for a pixel, NIRmean—average
long-term NIR value for a pixel.
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2.7. Maps of Cmean Coefficient Values

The Cmean coefficient map is a map of distances from the origin to points with long-term
average RED and NIR values for the open soil surface. The Cmean values were calculated
with a spatial resolution of 30 m for the entire study area. This results in a matrix of Cmean
values. In raster form, the matrix of Cmean values is shown on Figure 8.
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2.8. Identification of Degradation Areas on the Map of Cmean Coefficient Values

The area of distribution of soil cover degradation on the map of Cmean values was
understood as the area of Cmean values above the threshold determined in the course of
the studies. We study the very possibility of soil mapping based on the analysis of multi-
temporal spectral brightness of the bare soil surface. The threshold values were selected
empirically based on ground surveys.

2.9. Ground Verification

To check the information content and establish the ranges of Cmean values for various
soil varieties, ground verification was carried out. The soil pits were positioned and
analyzed by classical methods based on methodological recommendations for field soil
examination [1]. The ground survey is planned and carried out independently of the
mapping of soil cover and soil degradation based on the analysis of the open soil surface.
The maps obtained during the calculations were not provided to the field survey group.
Topographic maps and orthophotomaps were used to determine the locations of ground
sampling. On their basis, research routes were outlined. At each point with the planned
coordinates, a soil pit was made. For each soil pit, a soil description, photographing, and
sampling were carried out. The coordinates of the soil pits were recorded by a GPS receiver.

Route ground surveys were carried out in 2021. A total of 80 soil pits were made on
eight agricultural arable fields. Soil samples were taken for agrochemical analysis. The total
survey area was 649 ha. The thickness of the humus horizon and the content of organic
matter (OM) were measured (Table 1). The humus horizon is the A horizon. A horizons:
Mineral horizons which formed at the surface or below an O horizon, in which all or much
of the original rock structure has been obliterated and which are characterized by one or
more of the following: an accumulation of humified organic matter intimately mixed with
the mineral fraction and not displaying properties characteristic of E or B horizons (see
below); properties resulting from cultivation, pasturing, or similar kinds of disturbance;
or a morphology which is different from the underlying B or C horizon, resulting from
processes related to the surface [90]. Organic matter content was determined according to
Tyurin [91]. A direct analog of Tyurin’s method for determining OM is the Walkley-Black
method [92]. The locations of sampling and measurements of the thickness of the humus
horizon are shown in Figures 2 and 8 and Table 1.

Table 1. Determination of soil degradation according to various criteria.

Soil
Pit

OM
Content, %

Thickness
of Humus

Horizon, cm

Soil
Number *

Presence of Degradation According to
Ground Survey Based on:

Cmean

Soil Pit Belongs to the
Degradation Area

Based on Cmean ValueOM
Content

OM
Horizon

One of Two
Signs

1 2.6 31 4 + + + 0.269858 +
2 3.5 60 1 - - - 0.210424 -
3 2.7 39 3 - + + 0.235787 -
4 3.1 53 2 - - - 0.215998 -
5 2.8 47 2 - - - 0.228312 -
6 3.0 42 2 - - - 0.234865 -
7 2.8 36 3 - + + 0.235183 -
8 2.7 36 3 - + + 0.265439 +
9 2.3 29 4 + + + 0.268917 +

10 3.3 47 2 - - - 0.238082 -
11 3.2 54 1 - - - 0.217113 -
12 2.8 40 2 - - - 0.229126 -
13 1.8 27 4 + + + 0.298548 +
14 3.2 38 3 - + + 0.237733 -
15 1.8 25 5 + + + 0.288368 +
16 3.2 56 1 - - - 0.214088 -
17 1.5 25 5 + + + 0.289702 +
18 3.1 37 3 - + + 0.231722 -
19 2.9 39 3 - + + 0.232223 -
20 1.7 20 5 + + + 0.300192 +
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Table 1. Cont.

Soil
Pit

OM
Content, %

Thickness
of Humus

Horizon, cm

Soil
Number *

Presence of Degradation According to
Ground Survey Based on:

Cmean

Soil Pit Belongs to the
Degradation Area

Based on Cmean ValueOM
Content

OM
Horizon

One of Two
Signs

21 3.4 44 2 - - - 0.224676 -
22 3.2 42 2 - - - 0.241021 -
23 3.0 51 2 - - - 0.227908 -
24 1.9 21 5 + + + 0.283136 +
25 2.5 37 3 + + + 0.240682 -
26 3.1 53 2 - - - 0.222253 -
27 2.1 31 4 + + + 0.257937 +
28 2.2 35 3 + + + 0.255329 +
29 2.8 36 3 - + + 0.245738 +
30 2.2 32 3 + + + 0.252331 +
31 2.7 41 2 - - - 0.248755 +
32 3.2 40 2 - - - 0.235532 -
33 2.8 43 2 - - - 0.239885 -
34 2.0 23 5 + + + 0.286224 +
35 2.5 33 3 + + + 0.264084 +
36 3.0 41 2 - - - 0.231409 -
37 3.5 52 2 - - - 0.226734 -
38 3.0 48 2 - - - 0.231922 -
39 3.0 40 2 - - - 0.231901 -
40 2.0 25 5 + + + 0.279424 +
41 2.3 29 4 + + + 0.265249 +
42 2.7 38 3 - + + 0.238856 -
43 2.0 22 5 + + + 0.290922 +
44 2.3 27 4 + + + 0.281172 +
45 2.0 27 4 + + + 0.272576 +
46 2.1 25 5 + + + 0.269552 +
47 3.1 47 2 - - - 0.234590 -
48 2.1 35 3 + + + 0.275097 +
49 3.3 53 2 - - - 0.236870 -
50 2.1 29 4 + + + 0.269566 +
51 2.3 30 4 + + + 0.266714 +
52 3.2 46 2 - - - 0.225910 -
53 3.0 49 2 - - - 0.224724 -
54 3.5 58 1 - - - 0.212186 -
55 3.0 42 2 - - - 0.235597 -
56 2.5 32 3 + + + 0.251919 +
57 2.5 39 3 + + + 0.246120 +
58 2.1 26 4 + + + 0.267368 +
59 2.6 38 3 + + + 0.250798 +
60 2.3 35 3 + + + 0.252240 +
61 2.4 39 3 + + + 0.251858 +
62 3.4 59 1 - - - 0.201962 -
63 3.3 58 1 - - - 0.213384 -
64 2.2 30 4 + + + 0.273555 +
65 3.1 42 2 - - - 0.228488 -
66 2.0 30 4 + + + 0.266775 +
67 3.1 44 2 - - - 0.226033 -
68 2.0 24 5 + + + 0.284077 +
69 3.3 51 2 - - - 0.238200 -
70 2.9 45 2 - - - 0.227276 -
71 2.5 31 4 + + + 0.255995 +
72 3.3 52 2 - - - 0.220846 -
73 2.3 32 3 + + + 0.256425 +
74 2.4 34 3 + + + 0.247516 +
75 3.1 45 2 - - - 0.237499 -
76 2.1 22 5 + + + 0.286072 +
77 1.6 19 5 + + + 0.296866 +
78 2.4 32 3 + + + 0.269443 +
79 2.2 24 5 + + + 0.275200 +
80 3.4 47 2 - - - 0.232959 -

* soil names are given in Table 2.
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Table 2. Classification of ranges of the Cmean coefficient according to soil varieties.

Soil Number Soil Name Cmean Range

1 meadow-chestnut 0.200–0.220
2 dark chestnut 0.220–0.245
3 dark chestnut slightly eroded 0.245–0.260
4 dark chestnut medium eroded 0.260–0.275
5 dark chestnut strongly eroded 0.275–0.300

When describing soil profiles and using the values of the OM content in the plow
horizon and the thickness of the humus horizon, the type and subtype of soil and the
presence of degradation were determined. The presence of soil degradation was determined
during a field soil survey according to the methodological recommendations for a field
survey [1]. In the methodological recommendations, degradation is understood as a
decrease in the thickness of the humus horizon and/or a decrease in the OM content in the
plow horizon compared to typical for a given soil under given conditions. The threshold
values of the OM content and the thickness of the humus horizon (2.7% and 40 cm), as
characteristics of degradation, were also determined during the field survey based on the
typical characteristics of soil types and subtypes in the study area.

The quality of the interpretation was estimated by the percentage of coincidence of
degradation definitions from ground surveys and the calculation of Cmean values obtained
by automated interpretation of multi-temporal RSD arrays. The results are presented in
Table 1.

2.10. Cartographic Analysis

AcrGIS was used for cartographic analysis [93]. All materials were combined in this
GIS. The main method of analysis was the pairwise intersection of different layers of the GIS
project. The results of the intersection were recorded in tables. The quantitative parameters
of the resulting combinations were evaluated and regression equations were determined.

2.11. GIS Project

For the territory of the Morozovsky district of the Rostov region, a GIS project was
assembled, including the following layers:

1. Topographic maps at scales of 1:25,000 and 1:50,000.
2. Panchromatic aerial photography (2012) with a spatial resolution of 0.6 m

(orthophotomap).
3. Digital elevation model Shuttle radar topographic mission (SRTM) [26], horizontal

resolution is 1 arc second and vertical resolution is 1 m.
4. Scanned analogue space imagery of 1968 with a spatial resolution of 1.8 m (panchromatic,

KH-4B satellite, US CORONA mission).
5. Scanned analogue space imagery of 1975 with a spatial resolution of 6 m (panchromatic,

KH-9 satellite, US CORONA mission).
6. RSD Landsat 4, 5, 7 and 8 1985–2021 (133 scenes).
7. RSD Sentinel-2 2016–2021 (224 tiles).

All materials used in the work have accurate georeferencing based on large-scale
topographic maps. Local-affine transformations were used for exact georeferencing. For
aerial photography and the US CORONA mission data, atmospheric correction was not
performed. The ATCOR module of the ERDAS imagine software package [94] was used for
Landsat and Sentinel data atmospheric correction.

The GIS project was used for determination of field boundaries using the technology
of retrospective monitoring and organization of ground surveys. Only Landsat data were
used in the calculation of Cmean maps and soil degradation maps using deep machine
learning (Table S3).
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3. Results
3.1. Deep Machine Learning: Implementation of the Method of Convolutional Neural Networks

During the implementation of machine learning, 133 masks of bare soil for the Landsat
path/row 173/026 (Table S3) were constructed for 889,525 prediction elements for eight
agricultural fields (Figure 2). The spectral brightness in the RED and NIR channels for
the open soil surface was averaged over 35 years over all Landsat scenes for each pixel.
The long-term average spectral brightnesses of RED and NIR were used as coordinates of
the position of each Landsat pixel in the spectral space of RED and NIR. The distance to
the point with average long-term values of RED and NIR from the origin of coordinates
is taken as a characteristic of the soil cover and its degradation in the form of the Cmean
coefficient. The map of Cmean coefficient values was constructed for eight agricultural fields
(Figure 2).

No ground or other calibration data are required to map Cmean values. Only Landsat
data were used in the calculations for the construction of soil maps and soil degradation
maps using deep machine learning. The maps were built before ground verification surveys.
In this regard, the proposed method is similar to the method of identifying degraded areas
of arable land based on the frequency filter of NDVI binary masks [6] or the long-term
average EVI+ [7,95].

The choice of eight fields for the formation of the acceptance sample is due to the
possibility of ground surveys. The territory of groundworks is selected and limited by the
owner of agricultural land.

3.2. Additions to the GIS Project

After predicting the presence of the bare soil surface on the RSD, the following layers
were added to the GIS project:

8. Scheme of agricultural fields (limits of distribution of calculations of the coeffi-
cient Cmean).

9. Map of Cmean coefficient values.
10. Binary map of the distribution of soil degradation.
11. Soil map constructed in the result of the classification of the Cmean coefficient.

3.3. Ground Verification and Soil Interpretation of the Cmean Coefficient Map

On the territory of the study, the coefficient Cmean takes values from 0.2 to 0.3 conven-
tional units of the spectral space, i.e., it is a dimensionless coefficient. The values are in the
form of a continuous numerical series. In the monochrome color scale, the coefficient Cmean
is shown in Figure 8a. Higher ratio values are light, while lower values are dark. More
clearly, the spatial distribution of the Cmean coefficient can be represented in the palette
from blue to brown tones (Figure 8b). The maps show the results of averaging the spec-
tral brightness over 35 years. Maps are the results of big satellite data processing [27,42].
Machine learning is used in this work for data mining [48,49].

Figure 8a shows the values of the OM content for the soil pits (Table 1). It is easy to
note that the lower the values of OM content, the higher the values of Cmean. A graphical
representation of the dependence of the OM content on the value of the Cmean coefficient
is shown on Figure 9a. The high values of the R2 coefficient (0.841) make it possible to
interpret the Cmean coefficient map as a map of the OM content in the plow horizon.
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From Tables 1 and 2, it is also possible to establish the relationship between the
names of the soil varieties and the Cmean values. Ground-based methods identified five soil
varieties: meadow-chestnut, dark chestnut, dark chestnut slightly eroded, dark chestnut
medium eroded and dark chestnut strongly eroded. Each soil variety has its own range
of Cmean values (Table 2). Based on empirically determined ranges of Cmean values, a
soil map of the study area was constructed. The areas of the soil map obtained by the
empirical classification of Cmean were analyzed for statistical significance according to
the data of ground studies and the values of Cmean. The Cmean coefficient classification is
statistically significant for soil varieties according to the analysis of variance (ANOVA)
(Tables S4 and S5). A post hoc analysis of the means according to the Tukey test showed
that all soils differ in the thickness of the humus horizon (Table 3). According to the content
of OM, meadow-chestnut and dark chestnut soils, as well as slightly and medium eroded
dark chestnut soils, do not differ from each other (Table 4).

Table 3. Post hoc analysis of the means of thickness of humus horizon in soil varieties (significant
differences are shown in red).

Soils

Approximate Probabilities (p-Values) for Post Hoc Test *

1
Mean = 56.857

2
Mean = 44.152

3
Mean = 35.000

4
Mean = 29.769

5
Mean = 24.214

1 0.000124 0.000123 0.000123 0.000123
2 0.000124 0.000125 0.000123 0.000123
3 0.000123 0.000125 0.017242 0.000123
4 0.000123 0.000123 0.017242 0.009697
5 0.000123 0.000123 0.000123 0.009697

* Error: Between groups MS = 17.464, ds = 75.00.

Table 4. Post hoc analysis of the means of OM content in soil varieties (significant differences are
shown in red).

Soils

Approximate Probabilities (p-Values) for Post Hoc Test *

1
Mean = 3.3143

2
Mean = 3.0545

3
Mean = 2.4231

4
Mean = 2.2769

5
Mean = 1.9286

1 0.182848 0.000123 0.000123 0.000123
2 0.182848 0.000123 0.000123 0.000123
3 0.000123 0.000123 0.437679 0.000124
4 0.000123 0.000123 0.437679 0.001194
5 0.000123 0.000123 0.000124 0.001194

* Error: Between groups MS = 0.0478, ds = 75.00.
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The average OM content for dark chestnut soils in our study is 3.1%, which is in
good agreement with the characteristics of this zonal soil—dark chestnut weakly solonetzic
clayey and heavy loamy soil on loess-like clays and loams (Haplic Kastanozems) [96]. This
soil is characterized by the following values: the thickness of the humus horizon is 40–60 cm
and the OM content is 3–4% [97].

A similar relationship is shown by the thickness of the humus horizon and the values
of Cmean (Figure 9b). The thickness of the humus horizon also decreases with increasing
Cmean values (Table 1). The correlation is also high, and the R2 value is 0.86. Thus, the map of
the Cmean coefficient can also be interpreted as a map of the thickness of the humus horizon.

The high correlation of the Cmean coefficient values with the thickness of the humus
horizon and the content of OM in the plow horizon is quite logical for the object of study
(Figure 10). Indeed, with the development of erosion processes, the thickness of the humus
horizon decreases due to the upper, most humus horizons. Horizons containing less humus
appear on the surface. The correlation between the thickness of the humus horizon and the
content of OM is high—R2 is 0.824.
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The accuracy of the thematic interpretation of the Cmean calculated from big satellite
data can be analyzed in terms of information theory. It is possible to set the values of
errors of the first and second type for five soil varieties. According to information theory,
we have type I errors (α errors, false positive) and type II errors (β errors, false negative).
Type I error is a false alarm. In this study, this means that another soil variety fell into the
range of Cmean values for one soil variety. Type II error is the omission of the target. In this
study, the omission of the target means that the soil variety did not fall within the range of
Cmean coefficient values selected for it. Type I and II errors for soil varieties are presented
in Table 5. It follows from the table that both omission of the target and false alarm are
different for different soils. False alarms range from 14.3 to 30.8%. Omission of the target
range from 0 to 84.6%. On the whole, according to the soil map based on the ranges of the
Cmean coefficient, 62 soil pits out of 80 soil pits fell into their legend classes (the ranges of
the values of the Cmean coefficient). The overall accuracy of the map can be determined as
77.5%. The maximum contribution to the error is made by slightly eroded and moderately
eroded dark chestnut soils.
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Table 5. Type I and II errors for soil varieties identification.

Soils

Total Number of Soil Pits
in the Corresponding

Interval of Cmean Values

Properly Defined Soil
Varieties

Type I Errors
(False Alarm)

Type II Errors
(Omission of Target)

(Soil Pits
Number) % (Soil Pits

Number) % (Soil Pits
Number) %

1. meadow-chestnut 7 6 85.7 1 14.3 0 0.0
2. dark chestnut 33 26 78.8 7 21.2 2 6.1
3. dark chestnut
slightly eroded 13 10 76.9 3 23.1 11 84.6

4. dark chestnut
medium eroded 13 9 69.2 4 30.8 4 30.8

5. dark chestnut
strongly eroded 14 11 78.6 3 21.4 1 7.1

It can be considered established (Figure 11a) that the map of the values of the Cmean
coefficient of the study area is a soil map with a legend shown in the Table 2.

3.4. Ground Verification of the Degradation Distribution Map

When mapping the soil cover, identifying the zone of distribution of soil cover degra-
dation is one of the most important tasks [2–7]. In this work, 3 out of 5 soil varieties
characterize the degradation of dark chestnut soil to varying degrees.

The distribution areas of these three soils are characterized by a higher mean long-term
spectral brightness over 35 years. Thus, the degradation zone is detected on the basis of
big satellite data [27,42]. We emphasize that the degradation area is detected in this work,
not on the basis of an analysis of the state of vegetation. Data sifting is carried out in the
direction opposite to the previous work [6].

According to the legend for the soil map (Figure 11a), the range of Cmean values for
soils with signs of degradation is between 0.245 and 0.30. Figure 11b shows a map of the
distribution of soil degradation indicating the location of the ground survey points. Using
Table 1 it is possible to calculate the average values of the OM content and the thickness
of the humus horizon for degraded and non-degraded soils. The average values of OM
content in the upper horizon are 2.2% for eroded soils and 3.1% for non-eroded soils.

These values are in good agreement with the general characteristics of zonal soils
for the study area [96,98]. The average thickness of the humus horizon is 29.5 cm for
degraded soils and 46.4 cm for non-degraded ones. The thicknesses of the humus horizon
also correspond to dark chestnut soils. The content of OM and the thickness of the humus
horizon differ statistically significantly for degraded and non-degraded soils (Tables 6 and 7).

Table 6. ANOVA of the difference between degraded and non-degraded soils by thickness of
humus horizon.

Sum of Squares df Mean Square F p-Value F Crit

Between groups 5678.45 1 5678.45 146.31 1.42 × 10−19 3.96
Within groups 3027.35 78 38.81

Total 8705.80 79

Table 7. ANOVA of the difference between degraded and non-degraded soils by OM content.

Sum of Squares df Mean Square F p-Value F Crit

Between groups 16.11 1 16.11 219.31 2.27 × 10−24 3.96
Within groups 5.73 78 0.07

Total 21.84 79
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2—dark chestnut, 3—dark chestnut slightly eroded, 4—dark chestnut medium eroded, 5—dark chest-
nut strongly eroded); (b) Degradation distribution map: 1—non-degraded soils, 2—degraded soils.

Dark chestnut soils clayey and heavy loamy in arable conditions contain 3–4% of OM
in plow horizon and a humus horizon thickness is about 40–60 cm [99]. With a lighter
particle size distribution, the OM content can decrease to 2.5%. Thus, the degradation
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threshold for OM content is below 3%, but above 2.5%. In this study, OM content in the
upper horizons of less than 2.7% is attributed to degradation. Soils with a thickness of the
humus horizon less than 40 cm can be classified as degraded [97].

The accuracy of the binary map of the distribution of degraded soils (Figure 11b) as
well as the accuracy of the soil map (Figure 11a) can be described in terms of information
theory. In this study false alarm means that non-eroded soils fell into the range of Cmean
values for eroded soils. The omission of the target means that the eroded soils fell within
the Cmean range for non-eroded soils. Type I and II errors for soil degradation identification
are presented in Table 8. It follows from the table that the omission of the target was 17.5%,
and the false alarm was 2.5%. In general, according to the map, 8 soil pits out of 80 did not
fall into their binary degradation classes. The accuracy of the map reaches 90%.

Table 8. Type I and II errors for soil degradation identification.

Degraded Soils Based
on Cmean Value

(Soil Pits Number)

Non-Degraded
Soils Based on

Cmean Value
(Soil Pits Number)

Type I Errors
(False Alarm)

Type II Errors
(Omission of Target)

(Soil Pits
Number) % (Soil pits

Number) %

40 40 1 2.5 7 17.5

Consequently, maps of degradation obtained by analyzing big satellite data make it
possible to identify the areas of distribution of degraded soils.

4. Discussion
4.1. Sources and Methods for Detecting Soil Degradation

Information about soil degradation should traditionally be included in soil maps.
There is a range of soil maps in different scale for the agricultural territory of Russia:
1:10,000–1:25,000 (Figure 12) [97], 1:50,000–100,000 [100], 1:200,000–1:350,000 [101],
1:1,000,000 [102], 1:2,500,000 [103]. For scales 1:10,000–1: 100,000, the 1973 instruction
on soil surveys is applied on the territory of Russia [1].

The instruction of 1973 [1] refers to the methods of manual interpretation of large-scale
topographic maps (Figure 2c) and orthophotomaps with a spatial resolution better than
1 m (Figure 2e). Further ground surveys are intended to confirm the types and subtypes of
soils that are identified by interpretation. This method is very time consuming and not very
accurate. The main advantage of the method is the compilation of a very detailed legend
for soil maps of the study area. In this study, the legend to the archival soil map (Figure 12)
was sufficient for naming the identified objects.

The retrospective monitoring of soil and land cover is also a manual interpretation
method. However, this method is based on the analysis of multi-temporal RSD for the
period from 1968 to 2022. Retrospective monitoring makes it possible to reveal various
types of soil degradation, including in the Rostov region [28–32], where the present work
was carried out. The interpretation also involves digital elevation models and topographic
maps. But these materials are for reference only. Degraded territories are mapped only if
their direct interpretation on RSD is possible. Retrospective monitoring can be considered
a method of analysis of big satellite data in manual mode. The method gives high accuracy,
but is very laborious.

Erosion modeling allows one to identify areas of degraded land distribution by au-
tomated methods [15–18]. Modeling is a mathematical analogue of erosion identification
from topographic maps. The method is based on the analysis of relief parameters (slopes,
exposure, catchment area, etc.) [21–24]. The main disadvantage of modeling is the allocation
of potential rather than actual erosion, which do not always coincide [8].
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Figure 12. Soil map [97] on a scale of 25,000; numbers in circles indicate soil varieties: 2—meadow-
chestnut and dark chestnut soils, 3—dark chestnut soils, 7—dark chestnut slightly eroded soils,
9—dark chestnut slightly deflated soils, 10—dark chestnut medium eroded soils, 20—strongly eroded
and accumulated soils of gully-ravine network; red lines indicate field boundaries; red dots with
numbers are soil pits.

RSD analysis is widely used for mapping the physical and chemical parameters of the
soil [30,104]. Determination of land degradation in the form of soil salinity allows to create
salt content maps [105] or soil conductivity maps [106]. The disadvantage of the methods
is their narrow specialization for one type of degradation.

Machine learning methods often use the same set of morphometric characteristics of
the relief and climatic data as the modeling of erosion processes [107–109]. The require-
ments for the quality of the DEM increase with the detail better than the SRTM DEM [26].
Obtaining accurate DEMs is a costly and laborious procedure, which reduces the value
of the method. The main drawback remains in the form of mapping potential rather than
actual erosion.

Vegetation indices make it possible to develop automated or automatic methods for
constructing maps of intra-field heterogeneity of soil fertility [6,7]. Complex and hard-to-
reach materials are not required to calculate vegetation indices [35,39,40]. Vegetation indices
make it possible to identify zones of soil degradation [36,37,41]. The main disadvantage of
mapping intra-field heterogeneity by vegetation indices is the lack of information about
the reasons for the formation of heterogeneity [9]. Even the analysis of multi-temporal RSD
series [37] will reveal only the presence of vegetation suppression. But even in one field, the
suppression of vegetation can be caused by both degradation factors and natural causes.

In our study, the method of mapping the soil cover by the spectral brightness of
the bare soil surface was tested. The method is one of direct diagnostic methods. Since
the spectral brightness of the bare soil surface depends on its state (mainly moisture), a
procedure of averaging of spectral brightness over more than 35 years is proposed. The
use of big satellite data made it possible to obtain average spectral characteristics for each
Landsat pixel of entire study area of arable land. The averaging results in the form of the
Cmean coefficient allow to create a soil map with a legend of 5 soil varieties. Three out of
five soil varieties are classified as degraded. The values of the Cmean coefficient showed a
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high correlation with the content of OM in the upper soil horizon and the thickness of the
humus horizon.

Automation of the soil map construction based on the analysis of the bare soil surface
was achieved through the use of deep machine learning. The accuracy of the method in
our study is 77.5% when constructing a soil map and 90% when compiling a degradation
distribution map.

The proposed method is not demanding on the sources of information, which suggests
the possibility of its distribution outside the territory of this study.

4.2. Analysis of I and II Type Errors

The construction of a soil map based on the ranges of the Cmean coefficient makes it
possible to analyze the causes of I and II type errors. It should be noted that out of 80 soil
pits on the map of the distribution of soil degradation, only 8 soil pits did not coincide
with the predicted presence/absence of degradation. In 90% of cases, predictions based on
multi-temporal spectral characteristics were correct.

The locations of 7 soil pits were predicted as non-degraded soils, but when describing
the soil pits, they were assigned to slightly degraded soils. Degradation in these sections
was determined by the thickness of the humus horizon less than 40 cm. The OM content in
the upper horizon of these soil pits is relatively high and is not a sign of degradation. Since
the tested method for diagnosing degradation is based on spectral characteristics, it can be
assumed that, with low degradation, the spectral brightness in some cases does not change
because of the high values of OM content. Note that the thickness of the humus horizon
does not directly affect the spectral characteristics of the soil surface.

Degradation was predicted in one soil pit, whereas degradation was not described in
this soil pit during ground survey. In this case, the thickness of the humus horizon and
the OM content are close to the degradation/non-degradation threshold: 41 cm and 2.7%,
respectively. It is possible that spectral brightness fluctuations occur in the plow horizon at
threshold values. It should also be taken into account that the pixel size is 30 × 30 m, and
the soil pit is a point object.

The maximum contribution to errors is made by weakly and moderately eroded soils.
These soils are characterized by a decrease in the thickness of the humus horizon with
a partial preservation of the OM content in the upper horizon. Therefore, the spectral
brightness values of these soils are close or intersect.

4.3. Analysis of Previously Compiled Degradation Maps

The most detailed soil information available for the study area at the time of the work
is an archival soil map at a scale of 1:25,000 [97] (Figure 12). On the traditional soil map,
6 classes of the legend are allocated for 8 studied fields. Two classes refer to non-degraded
soils, four to degraded ones. Thirty-seven soil pits fall on the non-degraded areas of the
archival soil map. Of the 37 soil pits, 20 show signs of degradation. The error is 54%.
Forty-three soil pits fall on the degraded areas of the traditional soil map. Of the 43 soil pits,
17 have no signs of degradation. The error is 39.5%. On the whole, out of 80 sections on the
map, 37 do not have characteristics marked on the traditional soil map. The accuracy of an
archival soil map can be determined at 54%.

All soil varieties that are highlighted on the soil map were identified during ground
research. With relatively low accuracy, the traditional soil map is of great value as a
reference resource.

4.4. Perspective Remote Sensing Data

When identifying promising RSDs for bare soil analysis, consideration should be
given to their conformity to Landsat data selection criteria for this study. As shown in this
work, Landsat archives can contain more than 1000 scenes per one discretization element
of the Earth’s surface with a spatial resolution of 30 × 30 m for 37 years (1984–2022). When
training the neural network, 6 spectral bands (Blue, Green, Red, NIR, SWIR1, SWIR2)



Remote Sens. 2022, 14, 2224 24 of 30

are involved, which are the same for the entire Landsat archive. There are no complete
analogues of Landsat archives. The closest analogue, the Terra ASTER archive, has a
significantly shorter time period, since launched in 1999. In addition, the ASTER archive
contains fewer scenes for the time period 1999–2022. The Sentinel 2 archive has an even
shorter time period.

It can be assumed that at the moment, RSD ASTER and Sentinel 2 data cannot replace
Landsat data in the calculations of the long-term average spectral characteristics of the bare
soil surface. The main reason is the less of values of spectral characteristics for calculating
the long-term averages.

In addition to replacement, the possibility of supplementing the Landsat multi-
temporal series with ASTER and Sentinel 2 data should be considered. The spectral
characteristics of these RSDs are close to those of Landsat. Spatial resolution is similar
(ASTER) or more detailed (Sentinel 2).

The Sentinel 2 data has spectral characteristics similar to Landsat data. Tasseled caps
graphs in the RED-NIR spectral space of are almost identical at close dates of surveys. It
can be assumed that a neural network trained on Landsat scenes will be able to recognize
the bare soil surface on Sentinel 2 tiles. Work in this direction will be carried out in the
following studies on the construction of soil maps based on the analysis of multi-temporal
spectral characteristics of the bare soil surface.

ASTER data is more difficult to use to supplement Landsat archives. Additional
spectral processing is required-calibration with Landsat 4, 5, 7, 8 data. The ASTER archive
is relatively small, the development of the ASTER program is not currently planned.
Therefore, the use of ASTER is less promising than Sentinel 2.

4.5. Physical Interpretation of Work Technology

The bare surface of each individual soil variety has a different spectral brightness at
RSD of different periods and dates of survey. The main reason of BSS spectral brightness
variations on RSD is soil moisture. In the RED-NIR spectral plane water bodies are closer
to the origin of coordinates than bare soil [13]. As soil moisture increases, its spectral
brightness approaches the spectral characteristics of water bodies. As the soil dries out, its
spectral brightness increases. In this work, it is assumed that soil moisture has different
values over a long period of observations. Along with soil moisture, the spectral brightness
of the bare soil surface will also change. For 35 years, on hundreds of images for each
RSD pixel, an array of possible spectral brightness values of the bare soil surface is formed
(Figure 7a,b) [14].

At equal humidity, the OM content affects the spectral characteristics. More OM areas
of the soil are darker than less OM ones. In other words, soils with a high content of OM
have a lower spectral brightness than soils with a lower content of OM.

Both parameters (OM and humidity) change independently of each other. Less OM
but more moist soil may be darker than more OM but drier soil. That is why soil cover
mapping based on one RSD scene may not allow distinguishing one soil from another.

When analyzing big satellite data, the situation changes. The arrays of spectral
brightness values for a long period of time are compared. For dark soils, the mean values
differ from those for light soils.

It is unlikely for several arable fields to be in the state of bare soil at the same time.
This is a consequence of the alternation of crops (crop rotation). Due to crop rotation, it is
not possible to analyze the bare soil surface of several agricultural fields using only one
RSD image. When analyzing long-term arrays of spectral values for the bare soil surface,
the effect of crop rotation is leveled. For each pixel, the number of bare soil surface values
is equalized.

Of course, moisture and OM content are not the only factors affecting the spectral
brightness of soils. Soil-forming rocks and granulometric composition of soils have a great
influence. But within the same parent rock and the same type of particle size distribution,
the content of organic matter is the main factor that determines the spectral brightness of
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the soil. Increased spectral brightness of soil is also an indicator of non-compliance with
the rules of soil use, which leads to an increase in losses due to erosion and, as a result, a
decrease in soil organic matter [110].

In this study, the conditions for the uniformity of the granulometric composition and
parent rocks are met. The long-term average values of the spectral brightness of more OM
soils turned out to be lower than those of less OM soils.

The Cmean coefficient as an average long-term indicator of the RED and NIR spectral
brightness well characterizes the OM content in the soils of the study area (Figure 9a).
Since the OM content and the thickness of the humus horizon simultaneously decrease
during soil degradation (Figure 10) [6], the Cmean coefficient also carries information on the
thickness of the humus horizon (Figure 9b). Since the thickness of the humus horizon and
the content of OM are the main indicators of soil degradation, the Cmean coefficient allows
to map soil degradation (Figure 11b).

This is the physical interpretation of the work, the need for interpretation is substanti-
ated in [111]. As a physical interpretation, regression models of calculated indicators from
field measurements were used [107,108].

5. Conclusions

An analysis of several works on creating soil degradation maps allowed us to make
several assumptions about the ways and possibilities of achieving the aim of this study—to
develop a method for detecting degraded areas of arable land in the south of the European
part of Russia based on the recognition of bare soil surface on satellite images using
deep machine learning methods and methods for calculating average long-term values
of the spectral brightness of the bare soil surface. During the study, all assumptions were
confirmed. Indeed, maps of the distribution of soil cover degradation can be built on the
basis of big remote sensing data without the use of vegetation indices (indicator botany). In
calculations, it is sufficient to use the spectral characteristics of the bare soil surface of the
RED and NIR bands. The indicator of soil cover degradation was the long-term average
spectral characteristics of degraded lands. The identification of bare soil surface on RSD
is possible based on the use of convolutional neural networks (deep machine learning).
The processing of multi-temporal RSD proved to be effective not only for mapping the
distribution of soil cover degradation, but also for constructing soil maps.

A new method for constructing soil maps and maps of the distribution of soil cover
degradation has been developed. The method uses deep machine learning and calculation
of long-term average spectral characteristics of the open soil surface. The high spectral
brightness of the bare soil surface (above the average spectral brightness of the study area)
is an indicator of the distribution of degraded soils. The developed method showed a high
correlation of the long-term average spectral brightness of the bare soil surface with the OM
content (R2 = 0.841) and the thickness of the humus horizon (R2 = 0.8599). The accuracy of
the degradation map is determined by the type I errors (false alarm)-2.5% and the type II
errors (omission of target)-17.5%.

In general, according to the map, 8 soil pits out of 80 did not fall into their binary
degradation classes. The accuracy of the map reaches 90%. For the soil map, out of
80 sections, 62 sections fell into their legend classes. The overall accuracy of the map can be
determined as 77.5%. The maximum contribution to the error is made by slightly eroded
and moderately eroded dark chestnut soils. The soil map and the map of degradation
distribution were calculated from 133 BSS masks for Landsat scenes over 35 years, obtained
on the basis of deep machine learning. The accuracy of predicting the presence of BSS with
deep machine learning was 0.79.

In this work, we applied the original technology of selecting the spectral neighborhood
of the soil line (SNSL). SNSL assumes that the exposed soil surface in the RED-NIR spectral
plane occupies a special elliptical region that cannot be automatically detected based on the
vegetation index theory. A neural network was used to automate the selection of an BSS on
each RSD scene.
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