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Abstract 

T h i s  paper describes a me thod  f o r  recognizing partially oc- 
cluded objects for bin-picking ta sks  using the  eigen-space 
analysis.  A l though  effective in recognizing a n  isolated object, 
as was  shown  by Murase  and N a y a r ,  t h e  current  method 
can n o t  be applied t o  piratically occluded objects t ha t  are 
typical  in bin-picking tasks .  T h e  analysis also requires tha t  
t he  object is centered in a n  image  before recognition. T h e s e  
l imitat ions of t h e  eigen-space analysis are due t o  the  f a c t  
t ha t  t he  whole appearance of a n  object i s  utilized as  a t e m -  
plate for t h e  analysis.  W e  propose a n e w  me thod ,  referred t o  
as the  "eigen-window" me thod ,  t h a t  stores multiple partial  
appearances of a n  object in the  eigen-space. S u c h  partial  
appearances require a large n u m b e r  of m e m o r y  space. T o  
reduce the  m e m o r y  requirement  by avoiding redundant  win-  
dows and t o  select only effective w indows  t o  be stored, a 
s imilari ty  measure  among  windows  is developed. Using a 
pose clustering method among  windows,  t h e  method deter- 
m i n e s  the  pose of a n  object and t h e  object type of itself. W e  
have imp lemen ted  the  me thod  and veri fy  t he  validity of  t h e  
method.  

1 Introduction 

Bin-picking, picking up one part from a large number of 
similar objects, is still one of the most challenging prob- 
lems. Some of the earlier works in this domain include: 
[l-51. Despite this long history, this bin-picking problem 
still provides a challenge to  vision researchers. Some of the 
difficulty includes: real-time requirements, difficulty in seg- 
mentation, and difficulty in modeling objects. 

Recently, visual learning methods [6-191, that have a 
potential to solve some of these above-mentioned problems, 
have been proposed. The method learns object models from 
a series of images taken in the same environment as in the 
recognition mode. Thus, this method by-passes the diffi- 
culty in modeling. Furthermore, since such a method stores 
an object model as a collection of appearance parameters, 
recognition speed is very rapid and it can achieve the real- 
time system. 

The bin-picking problem requires the system to handle 
partial occlusion. Although powerful, the eigen-space anal- 
ysis assumes that all the appearances are non-occlusions. 

In order to apply the eigen-space analysis to  recognition 
of partially occluded objects, we propose to  divide appear- 
ances into small windows, referred to  as "eigen-windows" 
and to apply the eigen-space analysis to  each eigen-window 
[ a l l .  The basic idea is that ,  even if some of the windows 
are occluded, the remaining windows are still effective and 
can recover the object pose. In Section 2, we review the 
eigen-space analysis; discuss the limitations of the eigen- 
space analysis; and explain how to overcome these limita- 
tions using the eigen-window method. Since the total num- 
ber of such small windows is very large and since storing all 
of them may require a prohibitive amount of memory space, 
we consider a method to  automatically select only effective 
windows. Section 2.4 explains the method for selecting ef- 
fective windows. Section 3 shows some of the experimental 
results, and Section 4 concludes this paper. 

2 Eigen-Window Method 
First, we will review the eigen-space technique and discuss 
the limitations of the technique under the image shift, oc- 
clusion and noise. Then, we will introduce the new method 
to overcome this problem using the eigen-window method. 

2.1 Eigen-Space Technique 
Let M be the number of the images in a training set. These 
images, z l z 2  . . . X M  are taken using the experimental setup 
as shown in Figure 1 .  Each image z; , of which dimension is 
N2, has been converted into a column vector of the length 
N2:  

[ z l , z 2 , ' . ' , z M I .  ( 1 )  

By subtracting the average brightness of the all images, we 
obtain the training matrix, 

= [ Z I  - C ,  2 2  - c ,  ' ' . , Z M  - C] , ( 2 )  

where c is the average, and the size of the matrix is N 2  by 
M .  

Then the covariance matrix Q, N 2  by N 2 ,  is obtained 
as : 

Q = Z Z T .  (3) 
This covariance matrix provides a series of eigenvalues A; 
and eigenvectors e ; ( i  = 1,. . . , N2). 
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Each pair of eigenvalue and eigenvector holds: 

X i e i  = &e,. (4) 

Namely, the Q matrix can be decomposed into the N 2  
orthonormal components, of which values are X,s. Thus, 
each image set can be described with these eigenvectors and 
eigenvalues. 

For the sake of memory efficiency, we will ignore smaller 
eigenvalues and corresponding vectors using a threshold 
value, Ts : e A, 

Wk = 2 T,, ( 5 )  

c 
i= 1 

where IC is sufficiently smaller than original dimension N 2 .  
Once we can get these eigenvectors, we can construct 

the eigenvector matrix E = [elez . . . e k ]  to project an image 
z,, (dimension N 2 )  into the eigen-space as an eigen point, 
g, (dimension k) . 

2.2 Limitations of the Eigen-Space Tech- 
nique 

An eigen-space representation, a collection of points in the 
eigen-space, is very sensitive to image conditions ~ back- 
ground noise, image shift, and occlusion of objects. For 
example, Figure 2 shows the effect of the image shift in 
the eigen-space. In this figure, one of the closed loops, de- 
noted by ”o”,  depicts those points projected from a series 
of 128 x 128pizel images of the object in Figure 1. Another 
closed loop, denoted by ”*”, depicts those given by a series 
of 16pixel shifted images of the same object. This figure 
demonstrates that the image shift gives a significant effect 
on eigen-space representations. We have also evaluated the 
other factors, such as occlusion and noise in the eigen-space, 
and verified that each factor has a similar degree of effect 
on eigen-space representations. 

As an effort to  reduce these disturbance effects in the 
eigen-space, Murase and Nayar segmented only a window 
circumscribing the object using the movement of the ob- 
ject. Unfortunately, however, the usual bin-picking scenario 
does not provide such convenient clues for segmenting out 
a target region. Moreover, it often occurs that one window 
contains other objects due to the cluttered environment typ- 
ical in a bin-picking scenario. Thus, we need a method to 
overcome these limitations This eigen-space analysis can drastically reduce the dimen- 

sion of the images, N 2  to  the eigen-space dimension I C ,  while 
keeping several of the most effective features to reconstruct 
the original images. 

Original Images Shifted Images 

v 
Turn-Table 

180deg. 

Figure 1. Experimental Setup 

25M 

Figure 2 Disturbance Effect in the Eigen-space 
Given by Shifted Images 

2.3 Eigen-Window Technique 
To reduce the disturbance effects, we propose to apply small 
windows to  the original images and to  project all of them 
into the eigen-space. We refer to this method as the ”eigen- 
window” technique. Figure 3 shows the overview of the 
technique 
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2.3.1 Training Eigen-Windows 

The training set of eigen-windows is given as: 

space. Here, the eigen-space point, g;", , from an input eigen- 
window, ztn, provides the maximum similarity to  the point, 
gf, from a training eigen-window, z: : 

(10) 
k = [Cl,C2," ' lCMl GFn = min(IIgi e J - ginII>. 

1 2 = [[zl - c , x 1  - c, ' .  , 2;' - e ] ,  
1 2 We will denote 2fn as the corresponding training eigen- 

window to the input window, z,", and the content of itn is 
[z2 - c , z 2  -c,---,2;2 - c ] ,  

. ' .  , [z; - c ,  2; - c, ' .  . ,z;R" - c]] , (7) x i j .  

where Cz denotes the collection of eigen-windows from the 
i th training image; za does the j eigen-window in the ith 
training image; 12% does the number of eigen-window in the 
i th image; c is the average value. In Figure 3, the upper left 
white square denotes one of the training eigen-window. 

The total number of eigen-windows in the training set 

2'3'3 

The previous matching operation selects a set of training 
eigen-windows, i!n against input windows. We will group 
this set into a group of eigen-windows so that all the eigen- 
windows in one group have the same training image, ini. 

Voting *peration 

is given by: 

Note that all the projected points of these eigen-windows 
are represented in the common eigen-space as shown in Fig- 
ure 3. Each point in the space has the label of the origi- 
nal eigen-window and original training image (for example, 
eigen-window 1 in image 1, i.e., g: in Figure 3) .  

2.3.2 Matching Operation 

We prepare a pose space for voting from the correspon- 
dences. In this operation, we consider only the translation 
effect. Thus, the space is two dimensional. Here, the size of 
the pose space is twice the size of the input image size, i.e., 
256 x 256. Each pose space is prepared to  each group, ini. 

Each pair,&, and 25, in one group provides the posi- 
tions of the input eigen-window, Xtn"(tn,>, and the training 
eigen-window, Xi(2f). Then, the difference, Xin(ztn,)  - 
Xi(.{) is calculated. 

The corresponding cell in the two-dimensional pose 

From an input image, a set of sub-window images is ob- 
tained: 

z,, = [z;n - c, z,", - c . . . zll.1, - (9) 

such as the white window in the lower left corner in Figure3. 
The similarity between training eigen-window and input 

eigen window is evaluated using the distance in the eigen- 

space to this distance gets a voting. In order to absorb 
the digitization error, 5 x 5 cells around the center cell ac- 
tually get votes from a single correspondence. We repeat 
this operation using all the correspondences in the group 
(all the correspondences from the same training image.) 

7 , zn cl 1 

ictionary image 1 

nM 

2 gM.  

Dictionary Images t 
image M 

I I 

Pose Determination 

Input Image 
Figure 3 Eigen-Window Technique 
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2.3.4 Pose Determination 

Some small peaks are due to  noise; other prominent peaks 
are due to actual objects in an input image. By thresholding 
these peaks, the system eliminate noise peaks and extract. 
actual prominent peaks. 

The number of the prominent peaks in the space is equal 
to the number of objects that have roughly same rotation, 
but a different translation. By retrieving voted pairs, the 
system further divides the group into sub-groups so that 
each sub-group belongs to each prominent peak, and thus, 
isolated object in the input image. 

Although we consider only the translation - the train- 
ing set is sampled along the rotation dimension, there is 
small rotation in object pose due to the sampling interval. 
To obtain this small rotation and the precise translation 
value, the system further employes the least square mini- 
mization using the pairs in each sub-group: 

where R and T denote the small rotation and translation, 
respectively. 

2.4 How to Select Effective Eigen- Win- 
dows 

One of the problems in the eigen-window technique is how 
to select the optimal set of eigen-windows. If all the eigen- 
windows are utilized, 1) the number of eigen-windows be- 
comes very large and storing them requires a large amount 
of memory space, 2 )  due to the similarity among eigen- 
windows, the matching process becomes erroneous. In this 
section, we will consider the selection method. First, we 
shows that the local goodness, the traditional trackability 
criteria, can detect several appropriate corners in an im- 
age, without considering the similarity of these appearance. 
Then, we introduce a new global goodness method based on 
the similarity measure. Finally, we can get the optimal set 
of eigen-windows with these two methods. 

2.4.1 Local Goodness: Trackability 

The window selection may be considered as selecting feature 
points for object tracking. Some researchers proposed to use 
the 2 x 2 matrix as the trackability measure in a window, R 
Dol. 

(14) 

This matrix G, has two eigenvalues X I ,  X 2 .  The window is 
accepted as a good one, if the equation, 

min(X1,Xa) > A, (15) 

holds, where X is a predefined threshold. This measure 
works well for detecting all important corners. 

Unfortunately, however, the trackability measure does 
not guarantee the uniqueness of the window. In Figure 4, 
the window with a corner may be easy to track. However, 

the same window will be confused between the upper and 
lower corner. Figure 5 shows the results given by a track- 
ability measure proposed in [20]. The left vertical edges 
are selected as good windows. Certainly, the confusion oc- 
curs among these windows along the edge. Thus, we can 
conclude that the trackablity does provide local goodness 
around the feature but does not provide a global good- 
ness over the entire image. Next subsection will discuss 
this global goodness. 

Figure 4 Corner Detection with Trackability 

(a) Original Image (b) Point Feature 

Figure 5 Feature Detection with Trackability 

2.4.2 Global goodness: Similarity 

The global goodness of windows can be determined as the 
uniqueness of an eigen-window. This uniqueness may be 
measured using the similarity (difference) among windows. 
As was discussed in Section 2.3.2, the similarity between 
training and image eigen-windows was evaluated using the 
distance in the eigen-space, namely, 
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where 11x11 denotes the norm of z using Ll-norm or L2- 
norm. This similarity Sl,, denotes how similar these two 
dictionaries gl and gm are in the eigen-space. We can use 
the same measure for evaluating the global goodness of the 
window, i.e., the similarity among training eigen-windows. 

The similarity, St,,, between two training eigen win- 
dows, gl and g m ,  is evaluated using the equation. If this 
measure is less than a certain threshold Tsim, then these 
two eigen-windows g l ,  g,, are removed from the training 
set as shown in Figure 6. 

si ,m 1 11gl - gmll L Ztm. (17) 

This elimination of similar eigen-windows can make the 
size of a training set smaller than the original one. This 
operation also makes the matching process more robust. 
Because the set only contains unique eigen-windows, and 
the matching evaluation will not consider a sum of random 
contributions from a large number of similar windows. 

Figure 7 shows an example of the similarity evaluation 
in eigen-space. At first, the 637 eigen-windows in Figure 
5(b), are selected using the local goodness measure, the 
trackability. Using the global goodness measure, the simi- 
larity in the eigen-space, the 178 eigen-windows are selected 
in Figure 7(a). Note that most of the redundant windows 
such as those in right corner edges in Figure 5(b) are elim- 
inated in Figure 7(a). Figure 7(b) and (c) show the points 
projected in the 3D eigen-space. Notice that in Figure 7(c), 
the distribution of projection is more uniform than that in 
Figure 7(b). 

t e3 

(a) Eliminated Eigen-Windows 

(b) Local Goodness Pro- 
jection in 3D Eigen-space 

(c) Global Goodness Pro- 
jection in 3D Eigen-space 

Figure 7 Eigen-Window Extract with Local Goodness Mea- 
sure and Global Goodness Measure 

3 Experimental Results 

This section shows experimental results. Figure 8(a) and (b) 
show two kinds of the training objects’ images and Figure 
9 shows one of the input images from which the system 
determines poses of the objects and objects itself. In order 
to emphasize the difficulty in modeling, we intentionally use 
specularity objects in this experiment. 

Figure 6 Eigen-space Distribution in 3D. 
el 3.1 Training Mode 

In training mode, a series of images of an object is taken 
at 10 deg. intervals each for each object using a rotary 
table and a CCD camera. The resolution of these images is 
128 x 128pizels and the intensity levels of images have eight 
bits. 

In each image, we make eigen windows only on those 
highly detectable feature points with detectability measure 
as shown before. We set the size of an eigen window as 
15 x 15pizels. Thus, the dimension of this eigen window is 
225 (15 x 15pizels), which is sufficiently smaller than the 
original image dimension 15360 (128 x 128pizel). From each 
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training image, we obtain 200 eigen windows on average. 
The eigenvectors and eigenvalues are calculated from 

eigen windows using equation (4). Figure 10 shows the 
eigenvalues X i  and Wk in the equation (5). This figure shows 
that up to the 20th dimension of the eigen-spaces are enough 
to recover the 80% of original image data. 

We apply the global measure directly to  those eigen- 
windows. Since specular features are all isolated edges and 
points, all features are good features in trackability. We did 
not apply the local measure. We eliminate redundant eigen- 
windows by evaluating the similarity among them. This 
process can select the eigen-windows that are very different 
from each other. 

I 

3.2 Run Mode 
Figure 11 shows the results in run mode. Here, &,,, depicts 
those eigen-windows whose counterparts are found in the 
training eigen-windows. The figures in <in, depicts window 
positions that come from the same rotation angles. The 
next column depicts the voting results in the pose space, by 
the calculation of Xan(zfn,) - Xi(.:). The number of votes 
represents the probability of the existence of the object in 
that rotation angle. From these voting results, we can cal- 
culate the rotation and translation of the objects as shown 
in Table 1. 

The final column shows the reconvention results super- 
imposed on the original input image. The system can iden- 
tify eight bolts out of ten and two BNC connector exactly 
in the input image. In this case, the missing bolts are not 
bright enough to  pass the intensity threshold operation for 
detecting input eigen windows. 

4 Conclusions 
This paper describes a novel method, referred to as eigen- 
window, to extend the eigen-space analysis to be able to 
recognize partially occluded objects. To reduce the redun- 
dancy among eigen-windows, a similarity measure among 
eigen-windows was developed. We have implemented the 
system and verified the validity of this method by experi- 
ments that involve multiple specularity objects. 

Figure 8 (a) A Sample of Figure 8 (b) A Sample of 
Training Bolt Images. Training BNC Images. 

Figure 9 Multi Objects 
Image. 
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Pose Result 
angle(deg.) t i n k  Determination Position 

Figure 12 Recognition Results 

Table 1: Position Parameters for each Objects 

Figure 11 Components of the Recognition Result. 

angle(deg.) 

Bolt -0 

Bolt -10 

Bolt -20 

Bolt -80 

Bolt -130 

Bolt -150 

Bolt -270 

Bolt -280 

Bolt -320 

BNC -80 

BNC -260 

rotation 

0.975 1 -0.1494 

0.0059 1.0556 

0.9427 0.0344 

-0.041 1 1.0342 

0.9 128 -0.0419 

-0.0978 0.8219 

1.2884 -0.3037 
0.0142 0.9635 
1.0168 0.1180 

0.0000 1 .0000 

0.8655 -0.0846 

-0.0112 1.0776 

1.0022 0.0453 

-0.0234 1.0555 
0.9482 0.0347 
-0.0088 1.001 1 
1 .oooo 0.0000 

0.0000 1 .0000 

1.1579 -0.4820 

0.0567 1.0709 
0.8135 0.1992 

-0.0390 1.0683 

translation 

-10.3 179 

13.4182 

-21.7046 

18.5854 

-47.9302 

?.9277 

-34.0457 
9.8536 
22.4607 

16.0000 

59.4585 

28.1560 

-40.1660 

-27.0799 
5.0386 
24.5654 
-54.0000 
-29.0000 

29.8313 
- 10.3385 

-3.0655 

-26.8598 
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