Recognition of the Script in Serbian Documents Using Frequency Occurrence and Co-Occurrence Analysis

Darko Brodić, ${ }^{1}$ Zoran N. Milivojević, ${ }^{2}$ and Čedomir A. Maluckov ${ }^{1}$
${ }^{1}$ Technical Faculty in Bor, University of Belgrade, Vojske Jugoslavije 12, 19210 Bor, Serbia
${ }^{2}$ Technical College Niš, Aleksandra Medvedeva 20, 18000 Niš, Serbia
Correspondence should be addressed to Darko Brodić; dbrodic@tf.bor.ac.rs

Received 18 July 2013; Accepted 21 August 2013
Academic Editors: S. Bourennane, C. Fossati, and J. Marot
Copyright © 2013 Darko Brodić et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Any document in Serbian language can be written in two different scripts: Latin or Cyrillic. Although characteristics of these scripts are similar, some of their statistical measures are quite different. The paper proposed a method for the extraction of certain script from document according to the occurrence and co-occurrence of the script types. First, each letter is modeled with the certain script type according to characteristics concerning its position in baseline area. Then, the frequency analysis of the script types occurrence is performed. Due to diversity of Latin and Cyrillic script, the occurrence of modeled letters shows substantial statistics dissimilarity. Furthermore, the co-occurrence matrix is computed. The analysis of the co-occurrence matrix draws a strong margin as a criteria to distinguish and recognize the certain script. The proposed method is analyzed on the case of a database which includes different types of printed and web documents. The experiments gave encouraging results.

1. Introduction

Cryptography studies the problems concerning the conversion of information from a readable to some other state. It deals with information which is changing from one to another state. The initial information represents a plain text. When the information becomes encrypted, it is referred as a cipher text [1]. A substitution cipher is a method of encoding. According to it, the units of plain text are replaced with cipher text [2]. They can be single letters, pairs of letters, triplets of letters, mixtures of the above, and so forth. In our application the encryption function is not needed to be injective [3] due to nature of further statistical analysis. It does not matter if it will encrypt two different plain texts into the same cipher text, because decryption of the cipher text is not considered. Hence, the cryptography is used only as a basis for modeling and analyzing documents written in Serbian language. Serbian language represents the European minority language. However, it is distinct due to its capability to be written in Latin and Cyrillic script, interchangeably. According to the baseline characteristics [4], each letter in the text file is replaced with the cipher which is taken from the set of four counterparts only. The basic idea is to distinguish
the script (Latin or Cyrillic) according to statistical analysis of the cipher text. It is accomplished with frequency analysis concerning occurrence [5] as well as with the method using statistical measures extracted from gray-level co-occurrence matrix [6]. The letter frequency distribution is a function which assigns each letter a frequency of its occurrence in the text sample [7]. The gray-level co-occurrence matrix (GLCM) have used for the extraction of features needed for texture classification [8]. Nevertheless, it can be exploited for a letter co-occurrence in a text document [9]. At the final stage, the experiment is made on a custom oriented database containing text from printed and Web documents.

The rest of the paper is organized as follows. Section 2 describes the full procedure of the proposed algorithm. Section 3 defines the experiment. Section 4 presents the results from experiment and discusses them. Section 5 makes a conclusion.

2. Proposed Algorithm

The proposed algorithm converts document written in Latin and Cyrillic script which represent the plain text into cipher

Figure 1: The flow of proposed algorithm.
text according to predefined encryption based on text line structure definition. Then, the equivalent cipher texts are subjected to the frequency and co-occurrence analysis. The results of frequency analysis indicated a substantial difference between cipher texts obtained from Latin and Cyrillic text. Similarly, co-occurrence analysis shows obvious quantitative disparity in some measures. This draws a strong margin as a criterion in order to distinguish and recognize a certain script type (Figure 1).
2.1. Text Line Structure. Text in printed and Web documents is defined as well-formed text type. It is characterized by strong regularity in shape. The distances between the text lines are adequate to be split up. The words are formed regularly with similar distance. Their inter word spacing is decent as well. However, in certain script, the letters or signs have different position according to its baseline. It is shown in Figure 2.

From Figure 2 four virtual lines can be defined [4]:
(i) The top-line,
(ii) The upper-line,
(iii) The base-line, and
(iv) The bottom-line.

Table 1: Definition of script types according to the baseline characteristics.

Script example	Type of script	Designation
a	Short	S
b	Ascender	A
j	Descender	D
lj	Full	F

Accordingly, a text line can be considered as being composed of three vertical zones [4]:
(i) The upper zone,
(ii) The middle zone, and
(iii) The lower zone.

Each text line has at least a middle zone. The upper zone depends on capital letters and letters with ascenders, while the lower zone depends on letters with descenders. Only a few letters occupy the upper and lower zone.
2.2. Encryption. Two different sets are produced. They are A_{L} and A_{C} for Latin and Cyrillic alphabet, respectively:

$$
\begin{align*}
A_{L} & =\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \ldots, \check{\mathrm{Z}}, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \ldots, \check{\mathrm{z}}\}, \tag{1}\\
A_{\mathrm{C}} & =\{\mathrm{A}, Б, Ц, \ldots, Ш, \mathrm{a}, \text { б, ц}, \ldots, \amalg\}
\end{align*}
$$

Each of them consists of 60 elements that is, letters, which are valid for Serbian language. Furthermore, both sets A_{L} and A_{C} are mapped into set C.

$$
\begin{align*}
& f_{L}: A_{L} \longmapsto C \tag{2}\\
& f_{C}: A_{C} \longmapsto C
\end{align*}
$$

These mappings are achieved in accordance with the text line area definition. The structure of text line allows definition of following script types [4].
(i) Full letter (F), where letter is present in all three zones.
(ii) Ascender letter (A), where character parts are present in the upper and middle zones.
(iii) Descender letter (D), where character parts are present in the lower and middle zones, and
(iv) Short letter (S), where character parts are present in the middle zone only.
Accordingly, all letters will be replaced with the cipher from the following set:

$$
\begin{equation*}
C=\{S, A, D, F\} . \tag{3}
\end{equation*}
$$

All letters can reach certain position, which belongs to set C with a unique designation according to Table 1.

It should be noted that above mappings are surjective.
Serbian language contains 30 letters. Each letter in Latin has a corresponding equivalent letter in Cyrillic. Table 2 shows Latin and Cyrillic letters as well as theirs designation according to Table 1.

Statistical analysis of the letters and theirs corresponding type for Latin and Cyrillic scripts is shown in Table 3.

Figure 2: Definitions of the script characteristics.

Table 2: Serbian Latin and equivalent Cyrillic alphabet according to the script types.

Alphabet	Latin	Script types	Latin	Script types	Cyrillic	Script types	Cyrillic	Script types
1	A	A	a	S	A	A	a	S
2	B	A	b	A	Б	A	б	A
3	C	A	c	S	Ц	F	ц	D
4	Ć	A	c	A	Ћ	A	ћ	A
5	Č	A	c	A	ч	A	ч	S
6	D	A	d	A	Д	F	д	S
7	Đ	A	đ	A	Ђ	A	ђ	F
8	Dž	A	dž	A	Џ	F	џ	D
9	E	A	e	S	E	A	e	S
10	F	A	f	A	Φ	A	ф	F
11	G	A	g	D	Γ	A	г	S
12	H	A	h	A	X	A	x	S
13	I	A	i	S	И	A	и	S
14	J	A)	D	J	A	j	D
15	K	A	k	A	К	A	к	S
16	L	A	1	A	л	A	л	S
17	Lj	F	lj	F	Љ	A	љ	S
18	M	A	m	S	M	A	м	S
19	N	A	n	S	H	A	H	S
20	Nj	F	nj	D	Њ	A	њ	S
21	O	A	o	S	O	A	o	S
22	P	A	p	D	Π	A	п	S
23	R	A	r	S	P	A	p	D
24	S	A	s	S	C	A	c	S
25	Š	A	s	A	Ш	A	ш	S
26	T	A	t	A	T	A	T	S
27	U	A	u	S	y	A	y	D
28	V	A	v	S	B	A	B	S
29	Z	A	z	S	3	A	3	S
30	Ž	A	ž	A	Ж	A	ж	S

2.3. Frequency Analysis of the Occurrence. In the proposed algorithm, all letters from certain script has been substituted with equivalent members of the set C according to Table 2. These circumstances for Latin document are shown in Figure 3 .

Figure 3(b) shows the cipher text which is obtained from Latin documents according to modeling given in Table 2. Figures 3(c)-3(f) shows a subset of cipher text with each element of set C, that is, S, A, D and F, respectively. Statistical analysis of the cipher text shows following: 2217 elements of S, 598 elements of A, 261 elements of D and 8 elements of F
types. Accordingly, distribution of C set elements for Latin document is shown in Figure 4.

Currently, the same Latin document is converted into Cyrillic one. Similarly as in Latin document, all letters from Cyrillic document are exchanged with the equivalent members of the set C according to Table 2. These circumstances for Cyrillic document are shown in Figure 5.

Figure 5(b) shows the cipher text which is obtained from Cyrillic documents according to modeling given in Table 2. Figures 5(c)-5(f) shows a subset of cipher text with each element of set C, that is, $\mathrm{S}, \mathrm{A}, \mathrm{D}$ and F, respectively.

Abstract

U vecini gradova zagadenje Životne sredine je posledica emisije izduvnih gasova saobraćajnih urbanih sredina. Kada se tako nastali gasovi i cestice akumuliraju u dovoljno visokim koncentracijama, oni mogu da naruše ljudsko zdravlje i da degradiraju żivotnu sredinu. Rad očuvanja i poboljj̧anja životnog i radnog okruženja, potrebno je uticati na smanjenje neželjenih efekata. Dovodenjem radnih parametara postrojenja za proizvodnju u optimalne okvire poboljsava se njihova energetska efikasnost, smanjuju troškovi za nabavku energenata, pa se na taj nači posredno utiče i na smanjenje zagadenja zivotne sredine. Kako bi se kontrolisali radni parametri postrojenja, potrebno je uvesti nadzorne sisteme za tehnološke procese. Nadzorom tehnološkog rada dobijaju maksimalni efekti. To znaZi da nadzorni sistem obezbeduje aktuelne infornacije ne bazi kojih može da se ostvari efikasna kontrolna funkcija. Ovaj sistem treba, pored osnovne uloge da vrsi i akvizicjuu i memorisanje podataka o parametrima procesa kako bi obezbedio naknadne provere i analize njegovog toka, odnosno omogučio kreiranje tehnoloških i proizvodnih izveštaja za zeljene vremenske periode. Kako bi se racionalno iskoristile mogúnosti hardvera razvijeni su odgovarajući programi (eng software), koji mogu da se grupišu u vise celina: testno-kontrolni, servisno izvršni i aplikativni programi. Testno-kontrolni proverava hadversku ispravnost uredaja. Servisni i izvisni programi se sastoje od velikog broja procedura i drajvera za pojedine funkcije uredaja. Prvu grupu saćinjavaju kanala. Rad sa tastaturom odviia se pod kontrolom posebnog drajvera koji koristi digitaln ulazno/izlazni port. Takode se i kontrola ispisa ASCII znakova na dvorednom LC displeju vrşi pomoću kompleksnog potprograma. Program za merenje (uzorkovanje) analognih kanala je jedan od osnovnih radnih modula. Koristi procedure za primenu A/D konverzije i za izbor ulaznih kanala. Sastavni deo ovog programskog modula je i logicka kontrola izmerene vrednosti i njeno smestanje u odgovarajući programski registar. Merenje se aktivira tajmerskim zahtevom, ili na neki drugi način (eksterni zahtev, ili programskim putem). Nakon objavljenog merenja (A/D konverzije, ili uzorkovanja digitalnih ulaza), formira se poruka kojoj se na poétku pridodaje realno vreme nastankn, koje odroduje interni digitalnih signala. Grupa servisno-izvrsnih programa obuhvata i procedure za obradu rezultata. To se odnosi na konverziju iz binarnog u ASClI kod, na aritmetiku pri uvodenju konstanti za pojedin ulazne kanale i na proces prikazivanja rezultata na LC displeju. Nadzomi sistem funkcioniše tako sto se sa PC računara za nadzor (radna stanica) startuje MMS, pri ecmu se prenose svi potrebni parametri za njegov samostalan rad, kao i realno vreme PC računara MMS koninualno meri definisane parametre u odredenom ritmu. Usrednjene vrednosti rezultata merenja prosleduju se nadzomom računaru. Na nadzomom raćunaru vrsi se pryem poruke, analiza prikaz rezultata merenja i njihovo arhiviranje. Takote, veši se i vizuelno i zvuěno upozorenje se u posebnim datotekama sa tačnim vremenom njihovog dogadanja.

(a)

SS SSS SS SSS SS S SS S SSSS SS SSS SSS S SS S SSS SSSSS S SS SSSS SSSSS SSS SS S SS

 S S S S SSSSS, SSSS S S SS SSS SS SS SS S SSSS SSS S, S SS SS S SS SS SSSS SS S S S S S

 S SSSSSSSSS S S S S S SSSSS SSSS SSSSSS S S S S SS S SS SS SS SS SSSSSS S SSS SSS S
 SS S

 SS SSSS SS SSS S S S SS S S SS S SSSS SSS S SS SSSS SS S S SSS SS SS S SSS S S. SSS SS S SS SS SSS S SSSSS SSS SS SSSSS S SSSSS S / SSSSSSS S, SS SSSSSSS S (S SSSSSSS S) SS SS SSSSS-SS SSSS SSS S. SSS SSS S SS S SSS S SS SSSs.
SS SSS SS SSSSS S(SSSS SSSS S) SSS S SS SSS S S S SS S SSSSSSS SS SS SS S S. SSAS

 SSSS S SS S SSESS S SSSS SS SS SSSS, S S SS SS S SS S SS SS (S S SSSS SS SS, S S SS SSA SS SSS). S SS S SS SSS SSSSS S (ISSSSSSS S, SS SSSS SSSSS S SSSS S SSS), SSSSSS S

 SS SSSSSSS S SS SSSSSS S S, SS SSS SS S S SS SSS SS S SSS SS S SS S S SSS S SSSS SS SS SS SSSSS SS SSSSSS S SSSS S SSS SS S S.
S SSSSS SSS SS SS SSSSS S S S S SS SS SS SSSSS SS SS SSS (SS SS S SSSSS) S SS S S , SS SSS SS SSSSSS SSS S SS SS SSSSS SS SS S S SS SSSSS S SS SS, SS S SSS SS SSSSS is SSSSS. SSSSSS S SS S S SS SS SSssss

(c)

Abstract

A SSASSS DSSASSS SSDSASSDS SSSSASS SSSASSS DS DSSASASSS SSSSSDS SSASSSSA DSSSSS SSSASSASDSSA SSSASASSS, SAS S SSAS SSASSASSDSASA DSDSSS, S DSSASSDSSDS SS DSSSSSSASDS ASDASASS SSSSDSDS SS DSASSAS SSASSSA SSSASSS, ASSSSSASSSSDSSS, SSS SSDS AS SSSSAS ADSASAS SASSSADS S AS ASDSSASSSDS SSSSASS SSSASSS. ASAS SASSSSDS S DSASADASSDS SSSSASSD S SSASSD SASSSSSDS, dSassass ds Sassias ss sssidssds ssssadsssa sasasas. ASSSASSDSS SSASSA DSSSSSASSS DSSASSDSSDS SS DSSSSSSASDS S SDASSSASS SASSSS DSASADASSS SS SDASSS SSSSDSASAS SASASSSSSA, SSSSDSDS ASSAASSS SS SSASSAS SSSSDSSSAS, DS IS SS ASSASSASSSAS SSASS DSSSSSASS DSSASSDSSDS, DSASSASS DS SSSSAS SSASSSSS SSSASSS SS ASASSASAAS DSSSSSS. ASASSSSS ASASSASAASD DSSSSSS ASSAS AS SS DSSASDSS DSSSSSSSASS ASSASSAS ASAS DSSSSSS, DSS ASSS SS S SSSASSS SSASSSSS SSAS ASASDSDS SSASSSSASS SASAAS. AS SSSAS AS SSASSSSS SSSASS SASSASASDS SAASSASS SSASSSSSSDD SS ASSS ASDSA SSSS AS SS SSASSSS SASASSSS ASSASSASS ASSASSDS. ASSD SSSASS ASSAS, DSSSA SSSSSSS SASDS, AS SSAS S SASSSSSSDS S SSSSSSSSSDS DSASASAS S DSSSSSASSSS DSSSSSS ASAS AS SASSASASS SSASSASS DSSSSSSASSA SSSSAASDS SS SSADSSS SSSSSSSAS DSSSSAS. ASAS AS SS SSSSSSSASS SSASSSSASAS SSDSASSSAS ASSASSSS SSSSSDSSS SS SADSSSSSDSAS DSSDSSSS (SSD: SSAASSSS), ASDS SSDS AS SS DSSDSAS S SSAS SSASSS: ASSASS-ASSASSASS, SSSSSSSS SSSSAASS S SDASASASSSS DSSDSSSS. ASSASS-ASSASSASS SSSSSSSSS ASASSSSAAS SSDSSSSSSAA SSSAADD. ASSSSSSS S SSSSASS DSSDSSSS SS ASSS DSSDS SSASSDSSSDS DSSSSASSS SS SSSSSDSASSSSSDS A/A ASSSSSSSDS, DSSDSSSSSSSSDS (ASASSSSSSDDS) ASDSASASSA SASSSS-SSASSSSA ASSSAS. ASA SS ASSASASSSS SASSDS SS DSA ASSASSASS DSSSASSD ASSDSSSS ASDS ASSSSAS asdSasass Sassis/SSASSSS DSSA. ASASAS SS S ASSASSAS SSDSSS AAAAA SSSASSS SS ASSSSASSS AA ASSDASDS SSAS DSSSAS ASSDASASSSD DSADSSDSSSSS. SSDSSS SS SSSSSDS (SSSSASSSSDS) SSSASDSSA ASSSAS DS DSASS SA SSSSSSSA SSASSA SSASAS. ASSSSAS DSSSSASSS SS DSSSSSS A/A ASSSSSSSDS S SS SSASS SASSSSA ASSSAS. SSSASSSAS S SDSSS SSSAASSDS S SADSSSSSDDSAS DSSDSSSSAS SSDSSASS. ASSSSDD SS SAASSSSS ASDSSSSASS SSAASSSS, SAS SS SSAS ASSDS SSASS (SASASSSS SSAASS, SAS DSSDSSSSASS DSASS). ASASS SADSSADSSSD SSSSSDS (A/A ASSSSSSSDS, SAS SSSSASSSSDS ASDSASASSA SASSS), ASSSSSS SS DSSSAS ASDSD SS SS DSASAAS DSSASASDS SSSASS SSSSS SSSASSAS, ASDS SASSASDS SSASSSS SSA. ADSSASSS DS SSASSSSA ASDSASASSA SSDSSSAS. ASSDS SSSSSSSS-SSSSASSA DSSDSSSS SASASSAS S DSSSSASSS SS SASSAS SSSSAASAS. AS SS SASSSS SS ASSSSSSSDS SS ASSSSSSD S AAAAA ASA, SS SSSASSASAS DSS SSSASSDS ASSSASSAS SS DSDSASSS SASSSS ASSSAS S SS DSSSSS DSSASSSSSSDS SSSSAASAS SS AA ASSDASDS. ASASSSSS SSSASS ASSASSSSSAS ASAS AAS SS SS AA SSASSSSS SS SSASSS (SSASS ASSSSS) SASSASDS AAA, DSS ASSS SS DSSSSSS SSS DSASSASS DSSSSSASS SS SDSDSS SSSSASASS SSA, ASS S SSSASS SSSSS AA SSASSSSS. AAA ASSSSSSASS SSSS ASASSSSSSS DSSSASASDS SS SSASSSSSS SSASSSSS. AS SSASSSSSS SSASSSSS SSAS SS DSSDSS DSSSAS, SSSASSS S DSSASS SSSSAASAS SSSSSDS S SDSASSS SSASSSSSSDS. ASASAS, SSAS SS S SSSSSASS S SSSASS SDSSSSSSSDS SDSSSASSS S SSSASASS SAS SSDSAASS SSSSSASDSSS S ASSSDS. ASASSS SASSSSS SASSDS SDSSSASS DSSSAAASSS S DSSASSSSS SADSSSSSSDSAS SASSDS SS SAAAASSDSSDS SSSSAS. ASSSASSASS SASSDS S SSSASSDS SD

(b)

(d)

DDD DDDDD DDD DDD DDDDD D D D D D DD DD D DDDD D ODD DDD D D DOD DD D DD DD DD DD D D DDDD DDDDDD D DD DDD DD DD DD D DD DD DDDDD D DDD DD DD D D D DDDDDWDD DD DDD D DD DD D DDD D DDDD DD DD D DD DDDDDD DDDDDDDD D DD DDDDPD DDDDDD DDD DDDDDD DD DDDDDD D D DDD DDDDDD D DDD DDD DD DD DD D DD DDD DD D D D DD DD DDD DD D D D DD DD
DD DDOD DD D DDD D DDD
DDD (f)

Figure 3: Application of the proposed algorithm: (a) Original Latin text, (b) Cipher text according to set C, (c) Only "S" text, (d) Only "F" text, (e) Only "A" text, (f) Only "D" text.

Table 3: Statistical analysis of Latin and Cyrillic script types.

Script	Type of letters	Occurrence of script types							
		S	A	D	F	Distribution of script types			
	Capital letters	0	28	0	2	0	93.33	0	6.67
Latin	Small letters	12	13	4	1	40.00	43.33	13.33	3.34
Latin	Capital letters	0	27	0	3	0	90.00	0	10.00
Cyrillic	Cmall letters	21	2	5	2	70.00	6.67	16.66	6.67
Cyrillic	Sm								

Figure 4: Distribution of C set's elements in cipher text obtained from Latin document.

Statistical analysis of the Cyrillic document image shows following: 2516 elements of S, 53 elements of A, 445 elements of D and 26 elements of F types. It should be noted that the sum of all C set elements in Latin and Cyrillic document is not quite identical. It is valid due to difference in definition of letters in two scripts. In the Cyrillic script, each letter is given one and only one sign. However, in Latin script letters such as dž, lj and nj are represented by two letters. Distribution of C set elements for Cyrillic document is presented in Figure 6.

According to Figures 4 and 6, the comparison chart is drawn. It is shown below in Figure 7.

Quantification of the script type appearance in a document written in Latin and Cyrillic is shown in Table 4.

It is obvious that the Latin document compared to Cyrillic one has slightly smaller number of short (S), descender (D) and full (F) letters. Nonetheless, the crucial margin is seen in ascender (A) letters. Hence, it can be a measure of confidence for detection of the script in a document given in Serbian language.
2.4. Co-Occurrence Analysis. Let I be the gray scale image which is under consideration. It has M row and N columns, while T is the total number of gray levels. The spatial relationship of gray levels in the image \mathbf{I} is expressed by the grayscale co-occurrence matrix (GLCM) C $[6,10]$. Hence, C is a matrix that describes the frequency of one gray level appearing in a specified spatial linear relationship with another gray level within the area of investigation [11]. In order to compute a co-occurrence matrix \mathbf{C}, we considered a central pixel $I(x, y)$ with a neighborhood defined by the window of interest. This window is defined by two parameters: inter-pixel distance (d) and orientation (θ). Typically, the choice of d is 1 (one pixel),
while the value of θ depends on the neighborhood. Because of that, each pixel has 8 neighbors given at following angles $\theta=0^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}, 180^{\circ}, 225^{\circ}, 270^{\circ}, 315^{\circ}$. However, the case of neighbors at $\theta=0^{\circ}$ or at $\theta=180^{\circ}$ is similar to the GLCM definition [12]. So, the choice may fall to 4 neighbors pixels at $\theta=0^{\circ}, 45^{\circ}, 90^{\circ}$ and 135°, that is, horizontal, right diagonal, vertical and left diagonal [13]. These orientations refer to 4-adjacent pixels at $(x+d, y),(x, y-d),(x-d, y)$ and $(x, y+d)$, where d is 1 . For each pixel of the neighborhood, it is counted the number of times a pixel pair appears specified by the distance, and orientation parameters. The (i, j) th entry of C represents the number of occasions a pixel with an intensity i is adjacent to a pixel with an intensity j. Hence, for the given image \mathbf{I}, the co-occurrence matrix \mathbf{C} is defined as [14]:

$$
C(i, j)=\sum_{x=1}^{M} \sum_{y=1}^{N} \begin{cases}1, & \text { if } I(x, y)=i \tag{4}\\ I(x+\Delta x, y+\Delta y)=j \\ 0, & \text { otherwise }\end{cases}
$$

where i and j are the image intensity values of the image, x and y are the spatial positions in the image I. The offset $(\Delta x, \Delta y)$ is specifying the distance between the pixel-ofinterest and its neighbor. It depends on the direction θ that is used and the distance d at which the matrix is computed. The square matrix \mathbf{C} is of the order N. Using a statistical approach like GLCM provides a valuable information about the relative position of the neighboring pixels in an image [12]. In order to normalize matrix \mathbf{C}, matrix \mathbf{P} is calculated as [10]:

$$
\begin{equation*}
P(i, j)=\frac{C(i, j)}{\sum_{i=1}^{N} \sum_{j=1}^{N} C(i, j)} \tag{5}
\end{equation*}
$$

The normalized co-occurrence matrix \mathbf{P} is obtained by dividing each element of \mathbf{C} by the total number of cooccurrence pairs in \mathbf{C}.

To illustrate the computing of GLCM, a four gray level image \mathbf{I} is used. The window parameters are $d=1$ and $\theta=0^{\circ}$ (horizontal). Initial matrix I is shown in Figure 8.

The procedure of calculating co-occurrence matrix for grayscale matrix I ($d=1$ and $\theta=0^{\circ}$) [12] is given in Figure 9.

In order to GLCM be applied in our case, set C is mapped into set C_{N} by bijective function as:

$$
\begin{equation*}
f_{C}: C \longmapsto C_{N} \tag{6}
\end{equation*}
$$

where $C_{N}=\{0,1,2,3\}$. Furthermore, the neighborhood is given as 2 -connected ($x-d$ and $x+d$ around x, where $d=1)$. According to that, the same document in Latin and Cyrillic script is converted into cipher text. It is shown below in Figure 10.

У веһини градова загађење животне средине је последица емисије издувних гасова саобраћајних средстава, али и рада индустријских погона, и постројења за производњу топумтирају у дје за потребе урбаних средина. Када се тако настали гасови и честице деградирају животну средину. Ради очувања и побољшања животног и радног окружења, потребно је утицати на смањење нежељених ефеката. Довођењем радних параметара постројења за производњу у оптималне оквире побољшава се њихова енергетска ефикасност, смањууу трошкови за набавку енергената, па се на тај начин посредно утиче и на смањење
загађења животне срелине. Како би се контролисали радни параметри постројења, потребно загађјења животне средине. Како би се контролисали радни параметри постројења, потребно је увести надзорне системе за технолошке процесе. Надзором технолошког процеса треба да се постигне перманентна контрола тока процеса, при чему се у реалним условима рада на бази којих може да се оствари ефикасна контролна функнија Овај систем треба, порел основне улоге, да врши и аквизицију и меморисање података о параметрима процеса како би обезбедио накнадне провере и анализе његовог тока, односно омогуһио креирање технолошких и производних извештаја за жељене временске периоде.
Како би се рационално искористиле могуһности хардвера развијени су одговарајуһи програми (енг: софтшаре), који могу да се групишу у више целина: тестно-контролни, сервисно извршни и апликативни програми. Тестно-контролни проверава хадверску исправност уређаја. Сервисни и извршни програми се састоје од великог броја процедура и драјвера за поједине функције уреғаја. Прву групу сачињавају процедуре за иницијализацију А/Д конверзије, програмирање (дефинисање) дигиталних улазно-излазних канала. Рад са тастатуром одвија се под контролом посебног драјвера који користи дигитални улазно/излазни порт. Такође се и контрола исп
Програм за мерење (узорковање) аналогних канала је један од основних радних модула. Користи процедуре за примену A /Д конверзије и за избор улазних канала. Саставни део ово програмског модула је и логичка контрола измерене вредности и њено смештање у одговарајући програмски регистар. Мерење се активира тајмерским захтевом, или на неки друти начин (екстерни захтев, или програмским путем). Након објављеног мерења (А/Д конверзије, или узорковања дигиталних улаза), формира се порука којој се на почетку придодаје реално време настанка, које одређује интерни сат. Уграђена је и просебна процедура за узорковање битовних улаза, као и за генерисање излазних дигиталних сигнала. Група сервисно-извршних програма обухвата и процедуре за обраду резултата. То се односи на конверзију из бинарног у АСЦИИ код, на аритметику при увођењу константи за поједин
улазне канале и на проиес приказивања резултата на ЛЦ дисплеју. Налзорни систем функционише тако што се са ПЦ рачунара стартује ММС, при чему се преносе сви потребни параметри за његов сар (радна станица) реално време ПЦ рачунара. ММС конинуално мери дефинисане параметре у одређеном ритму. Усредњене вредности резултата мерења прослеђују се надзорном рачунару. На надзорном рачунару врши се пријем поруке, анализа и приказ резултата мерења и њихово архивирање. Такође, врши се и визуелно и звучно упозорење оператера о насталим или могућим аномалијама у процесу. Уочена алармна стања оператер поништава и предузима одговарајуће акције на отклањању узрока. Инцидентна стања и реакције оператера памте се у посебним датотекама са тачним временом њиховог догађања
(a)

SSSSS SSSSSS SSSSSSS SSSSSSS SSSSSS S SSSSSSSS SSSSSS SSSSSSS SSSSSS SSSSSSSS
 SSSSS SSSS SSSSSS. SSSS SS SSSS SSSSSSS SSSSSS S SSSSSS SSSSSS SSSSSSS SSSSSSS SSSSSSSSSSS, SSS SSS SS SSSS SSSSS SSSSSS S SS SSSSSSS SSSSSS SSSSS. SSS SSSSSS
 sssssssss sssssssss, ssss sssssss ss sssss sssssssss, ss ss ss ss sssss issssss sss S SS SSSS5ss SSSSSS S SSSSS SSSSSSS SSSSSSS SS SSSSSSSSSS SSSSS. SSSSSSS SSSSSSSSSSS SSSSS SSS SS SS SSSSSSSS SSSSSSSSSS SSSSSSS SSSS SSSSS, SS SSS SS SSSSSS SSSSSSS SSS SSSS SSSSSSSSSS SSSSS. SS SSSSS SS SSSSSSS SSSSSS SSSSS SSSSSSS SSSSSSS SS SSS SSSS SSSS SSSSSSS S SSSSSSSSS SSSSSSSS S SSSSSSSSS SSSSS SSSS sssssss sssssss ssss, sssssss ssssss ssssss sssssssssss s ssssssssss ssssssss ss SSSSSS SSSSSSSS SSSSSS.
SSSS S SS SSSSSSSS SSSSSSSSSS SSSSSSSS SSSSSS SSSSSSS S SSSSSSSS SSSSSS (SSS SSSSSS), SSS SSS SS SS SSS SSSS SSSS: SSSSSS-SSSSSSSS, SSSSSSS SSSSSS
 ssssssss sssss ss ssssssesss s/S ssssssss, sssssssss (SSSssssss) ssssssssss sssss ssssssss ssssss. ss ss ssssssss sssss ss sss ssssssss sssssss sssss sss ssssss sssssssss ssssss sss ssss sssssssssss sssssssss
SSSSS SS SSSSS (SSSSSSSS) SSSSSSSSS ssssss s sses ss ssssssss sssss sssss. SSSsss S sssss ss sssssss ssssssss ssssssss, SSs SS ssss sss sssss (SSSSssS ssssss, SSS sssssssss ssss). sssss sssessss sssss (SIS ssssssss, sss ssssssss ssssssssss ssss) SSSS SS SSSS SSS SS SS SSSSSS SSSSSSS SSSSS SSSS SSSSSSSS, SSS SSSS SSSSSS SSS. SSSSS S S SSSSSS SSSSS SS SSSSSSSS SSSSSSS SSSS, SSS S SS SSSSSSSSS SSSSSSSS SSSSSSSSSS
 ss ssss ssssssssss sssssss ss s ssesss
sssssss ssssss ssssssss ssss sss ss ss s sssss ss sssss (ssss ssssss) sssss sss, ss sss ss ssssss sss ssssss sssssss ss sssss ssssssssss ss, SSS 5 sssss ssss s sssss. SS8 sssssssss sse sssssssss sssssss ssessss sss. sssssss ssssssss sssssss sssss sssss SS SSSSSSSS SSSS. SS SSSSSSSS SSSS SSS SS SSSS SSSS, SSSSSSS S SSSSS SSSSSSS SSSSS S
 ss ssssssss ssss. sssssssss sssss s sssss sssssss ssses ss sssssss ssssssssss ss ssssss sssssss sssssss sssssss.
(c)

(d)

D DDDDD DDD, DDDD, DD DD DD DDDD. D DDDDD D DDDD, D DDDD DODUDDDDD DDD, DDDD DDDDD DDD D DODD DD, D DD D-D ODDDD, DDDD DD, D DDD DD DD, DD DDDDDDO . D DDDDDD D D D DDD. D D, D D, D DDV D DDDD DD , DDD DD DD.
DD D D DD DD D DDD DD (: D). D D DDD D D;-D, D D DD. -D DD DD D DDD. D D DD D DD DDDD DDD D DDD DDD. DD DDD DD DDDD DDDDD / DD, DDD 0 D-, D DD D DDDDD D/D. D D DDDDDD DD.
DD D (DD) DD DD. D DDDD DD/DD DD, DD DD DDD D DDD DD DD. D DDD, DD (D, DD D). DD (DD , DD D), DD DD DD D DD DD, D DDD D. DDD D DDDD DD D, DD D-D OD D ODDO ODDDO OODDDDD DDD D DDDDD D D

Figure 5: Application of the proposed algorithm: (a) Original Cyrillic text, (b) Cipher text according to set C, (c) Only "S" text, (d) Only "F" text, (e) Only "A" text, (f) Only "D" text.

Table 4: Percentage of script type occurrence in document.

Type of script (TOS)	Latin	Cyrillic	x times
S	71.88%	82.76%	0.87
A	19.39%	1.74%	11.14
D	8.46%	14.64%	0.57
F	0.27%	0.86%	0.31

It is obvious that the Latin document compared to Cyrillic one has slightly smaller number of short (S), descender (D), and full (F) letters. Nonetheless, the crucial margin is seen in ascender (A) letters. Hence, it can be a measure of confidence for detection of the script in a document given in Serbian language.

Figure 6: Distribution of C sets elements in cipher text obtained from Cyrillic document.

Figure 7: Comparison between distributions of C set elements in Latin and equivalent Cyrillic document.

$\mathbf{I}=$| 1 | 0 | 0 | 2 |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 1 |
| 2 | 2 | 1 | 1 |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 0 | 2 | 3 |
| 0 | 0 | 1 | 1 |

Figure 8: Initial 4-level grayscale matrix \mathbf{I} (featuring $M=7, N=4$, and $L=4$).

Table 5: Normalized cooccurrence matrix.
(a) For cipher text obtained from the Latin text

0.3722	0.2212	0.0623	0.0048
0.2220	0.0343	0.0072	0
0.0623	0.0072	0.0016	0
0.0048	0	0	0

(b) For cipher text obtained from Cyrillic text

0.5863	0.0327	0.1326	0.0064
0.0391	0.0104	0.0144	0
0.1262	0.0200	0.0224	0.0016
0.0072	0	0.0008	0

To evaluate these cipher documents GLCM method is employed. Nevertheless, various statistic measures obtained from the co-occurrence matrix is introduced. The primary goal is to characterize the cipher text. Five descriptors can be used to describe the image [15]:
(i) Uniformity (UNI),
(ii) Entropy (ENT),
(iii) Maximum probability (MAX),
(iv) Dissimilarity (DIS), and
(v) Contrast (CON).

Uniformity (UNI) which is sometimes called angular second moment (ASM) or energy (ENG) measures the image homogeneity. It receives the highest value when GLCM has few entries of large magnitude. In contrast, it is low when all entries are nearly equal. The equation of the uniformity is [15]:

$$
\begin{equation*}
\mathrm{UNI}=\sum_{i=1}^{N} \sum_{j=1}^{N} P(i, j)^{2} \tag{7}
\end{equation*}
$$

Entropy (ENT) measures the disorder or the complexity of the image. The highest value is found when the values of $P(i, j)$ are allocated quite uniformly throughout the matrix. This happens when the image has no pairs of gray level, with particular preference over others. The equation of the entropy is $[15,16]$:

$$
\begin{equation*}
\text { ENT }=-\sum_{i=1}^{N} \sum_{j=1}^{N} P(i, j) \cdot \log P(i, j) \tag{8}
\end{equation*}
$$

$j \Rightarrow$				
i	0	1	2	3
ת 0	6	4	2	0
1	2	4	0	0
2	0	1	1	1
3	0	0	0	0

(a)

$\Rightarrow \quad \mathbf{C}=$| 6 | 4 | 2 | 0 |
| :--- | :--- | :--- | :--- |
| 2 | 4 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 |$\gg \mathbf{P}=$

(b)

$6 / 21$	$4 / 21$	$2 / 21$	0
$2 / 21$	$4 / 21$	0	0
0	$1 / 21$	$1 / 21$	$1 / 21$
0	0	0	0

(c)

Figure 9: Co-occurrence matrix for grayscale matrix I $\left(d=1\right.$ and $\left.\theta=0^{\circ}\right)$: (a) The number of occasions a pixel with an intensity I is adjacent to a pixel with intensity j, (b) Co-occurrence matrix \mathbf{C}, (c) Normalized matrix \mathbf{P}.

(a)

(c)

(b)

(d)

Figure 10: Document conversion: (a) Original Cyrillic text, (b) Cipher text obtained from Cyrillic text according to set C_{N}, (c) Original Latin text (equivalent to Cyrillic one), (d) Cipher text obtained from Latin text according to set C_{N}.

Maximum probability (MAX) extracts the most probable difference between gray scale value in pixels. It is defined as [15]:

$$
\begin{equation*}
\mathrm{MAX}=\max \{P(i, j)\} \tag{9}
\end{equation*}
$$

Dissimilarity (DIS) is a measure of the variation in gray level pairs of the image. It depends on distance from the
diagonal weighted by its probability. The equation of the dissimilarity is [15]:

$$
\begin{equation*}
\text { DIS }=\sum_{i=1}^{N} \sum_{j=1}^{N} P(i, j) \cdot|i-j| . \tag{10}
\end{equation*}
$$

PANORAMA

U doba moga detinjstva, dakle vrlo davno, u naš grad je došla stalna panorama. U jednoj od glavnih ulica, njen "direktor", mršav Austrijanac, iznajmio je prazan dućan na uglednom mestu, i u njemu otvorio tu radnju. Iznad vrata je bio solidan natpis, zlatnim slovima na crnom staklu, "Panorama svijeta".
Velika prostorija je lepo urenena i diskretno osvetljena. Ništa tu nije ličilo na jevtine šatre u kojima su dosad boravile prolazne panorame. Sve je odavalo trajnost i stalnost. Unaokolo je išao uzak crven ćilim, u uglovima su bile veštačke palme, ali najveći deo prostora, celu sredinu, zauzimala je - panorama. To je bila drvena granevina u obliku višestrane prizme, od finog drveta koje je bilo tako obojeno da ostavlja utisak mahagonija. Ta poligonska zgradica ličila je na drveno turbe, a krov joj je dopirao do ispod dućanskog plafona. Na njoj su uokrug, u pravilnim razmacima, bili otvori za gledanje: po dva velika durbinska oka s naročitim staklima, uokvirena crnim kaučukom. Pored svakog takvog otvora bila je mala stolica bez naslona, presvučena crvenim plišem. Svega petnaest otvora - na svakoj strani poligona po jedan - i isto toliko sedišta.
U nevidljivoj unutrašnjosti te zgrade bile su kružno rasporenene slike u boji, pomoću naročito postavljenih ogledala i jakog električnog osvetljenja one su pred
gledaočevim očima postajale uveličane, jarko osvetljene i veoma žive i plastične.
Naročita, i opet nevidljiva, mašinerija pokretala je ceo taj pojas slika uokrug. Svaka slika zadržavala se pred svakim gledaocem dva do tri minuta, a onda se kretala dalje udesno, i na njeno mesto dolazila je nova slika, sleva. Tako, dok svaki gledalac ne vidi sve slike.
Program se sastojao od petnaest slika jedne odrenene zemlje ili jednog velikog grada, i menjao se svake nedelje. Jednom je to bio Rio de Žaneiro, drugi put Lisabon, pa Cejlon, i sve tako redom, iz sedmice u sedmicu, sve daleke zemlje i nepoznati gradovi. Cena ulaznice nije bila visoka, pa ipak je za siromaha naka trećeg razreda realne gimnazije predstavljala znatan novac do koga nije bilo uvek lako doći. Ali taj novac se morao naći. Panorama je za mene postala neka vrsta neophodne droge. Dovijao sam se na sve moguće načine kako da donem do niklenog novca koji otvara vrata "Panorame svijeta", a čim bih uspeo da ga dobijem, trčao sam pravo u glavnu ulicu u predavao ga debeloj ženi za kasom na ulazu u panoramu. A kad bih jednom seo na crveni tabure, za mene je počinjao pravi, veliki i obasjani život. Sve što je dotle značilo moj stvarni život, tonulo je u nepostojanje. A sve što sam čitao u romanima ili želeo i gradio u mašti, sve se moglo povezati sa ovim slikama. Moje vidno polje, a sa njim i cela svest, bilo je potpuno ispunjeno zemljama i gradovima koji su preda mnom klizili i u kojima sam se gubio. Tišina je bila svečana i potpuna, samo je s vremena na vreme fini dečački sluh mogao da uhvati slab šum, jedva čujnu škripu mehanizma.
(a)

Beograd dobija Pupinov spomenik
Ispred tehnickih fakulteta u Beogradu sledećeg septembra biće postavljen spomenik Mihajlu Pupinu, u okviru programa kojim če se obeležiti 160 godina od rođenja tog naučnika. Značajnu sumu za izgradnju obezbediće Fond "Mladen Selak".

U okviru programa kojim će se obeležiti 160 godina od rodenja Mihajla Pupina, sledećeg septembra ce naspram spomenika Nikoli Tesli, ispred zgrade tehnickih fakulteta u Beogradu, biti postavljen spomenik tom naučniku. Spomenik će hiti delo profesera Miroljuha Stamenkovića.

Značajnu sumu za izgradnju obezbediće Fond "Mladen Selak". To je Fond jednog od najbogatijih i najuticajnijih Srba u Americi.
"Ja duboko, duboko, verujem u nauku, duboko verujem u moć coveka, da covek je tu da stvara, da pomaže, da širi dobro oko sebe. Za mene su Pupin i Tesla ljudi koji zaslužuju naše najveće postovanje", kaže Mladen Selak.

Selak je i finansirao izloz̈bu o Pupinovim delima u Srpskoj akademiji nauke i umetnosti, a sada objavljuje knjigu koju će podeliti našim školama. Za autobiografiju "Sa pašnjaka do naučenjaka", Pupin je dobio Pulicerovu nagradu.

Selak kaže da je literatura skupa, ali i da je ta knjiga dobro urađena. "Knjiga nosi istorijat coveka koji je ovaj svet zadużio", kaže Sclak.

Prema njegovim recima, telefoni, koje mi danas upotrebljavamo, su Pupinovo delo.
Fondacija je već obnovila Pupinovu rodnu kuću u Idvoru i izdala prigodnu poštansku marku. Sve u cilju da se delo velikog naučnika otrgne od zaborava, kako bi prave vrednosti bile putokaz mladima.

ПАНОРАМА

У доба мога детињства, дакле врло давно, у наш град је дошла стална панорама. У једној од главних улица, њен "директор", мршав Аустријанац, изнајмио је празан дућан на угледном месту, и у њему отворио ту радњу. Изнад врата је био солидан натпис, златним словима на црном стаклу, "Панорама свијета". Велика просторија је лепо уренена и дискретно осветљена. Ништа ту није личило на јевтине шатре у којима су досад боравиле пролазне панораме. Све је одавало трајност и сталност. Унаоколо је ишао узак црвен ћилим, у угловима су биле вештачке палме, али највећи део простора, целу средину, заузимала је панорама. То је била дрвена граневина у облику вишестране призме, од финог дрвета које је било тако обојено да оставља утисак махагонија. Та полигонска зградица личила је на дрвено турбе, а кров јој је допирао до испод дућанског плафона. На њој су уокруг, у правилним размацима, били отвори за гледање: по два велика дурбинска ока с нарочитим стаклима, уоквирена црним каучуком. Поред сваког таквог отвора била је мала столица без наслона, пресвучена црвеним плишем. Свега петнаест отвора - на свакој страни полигона по један и исто толико седишта.
У невидљивој унутрашњости те зграде биле су кружно распоренене слике у боји, помоћу нарочито постављених огледала и јаког електричног осветљења оне су пред гледаочевим очима постајале увеличане, јарко осветљене и веома живе и пластичне. Нарочита, и опет невидљива, машинерија покретала је цео тај појас слика уокруг. Свака слика задржавала се пред сваким гледаоцем два до три минута, а онда се кретала даље удесно, и на њено место долазила је нова слика, слева. Тако, док сваки гледалац не види све слике.
Програм се састојао од петнаест слика једне одренене земље или једног великог града, и мењао се сваке недеље. Једном је то био Рио де Жанеиро, други пут Лисабон, па Цејлон, и све тако редом, из седмице у седмицу, све далеке земље и непознати градови. Цена улазнице није била висока, па ипак је за сиромаха нака трећег разреда реалне гимназије представљала знатан новац до кога није било увек лако доћи. Али тај новац се морао наћи. Панорама је за мене постала нека врста неопходне дроге. Довијао сам се на све могуће начине како да донем до никленог новца који отвара врата "Панораме свијета", а чим бих успео да га добијем, трчао сам право у главну улицу у предавао га дебелој жени за касом на улазу у панораму. А кад бих једном сео на црвени табуре, за мене је почињао прави, велики и обасјани живот. Све што је дотле значило мој стварни живот, тонуло је у непостојање. А све што сам читао у романима или желео и градио у машти, све се могло повезати са овим сликама. Моје видно поље, а са њим и цела свест, било је потпуно испуњено земљама и градовима који су преда мном клизили и у којима сам се губио. Тишина је била свечана и потпуна, само је с времена на време фини дечачки слух могао да ухвати слаб шум, једва чујну шкрипу механизма.
(b)

Београд добија Пупинов споменик
Испред техничких факултета у Бсограду следсћег септембра биће поставъен споменик Михајлу Пупину, у оквиру програма којим Һе се обележити 160 година од робена тог научниха. Зиачану суму за изградину обезбедиће Фонд "Младен Селак".

У оквиру програма којим һе се обележити 160 година од роһена Михајла Пупина, еледеһег септембра Һе наспрам споменика Николи Тесли, исиредзграле технияких факултета у Бсограду, бити постављсн споменик том научннку. Споменик һе бити дело професера Мировуба Стамевковиіа.
Значајну суму за изградну обезбедиие Фонд "Младен Селак". То је Фона једног од најбогатијих и најутииајнијих Срба у Азерици.
"Ја дубоко, дубоко, всрујсм у науку, дубоко всрујем у мо申 цовека, да човск је ту да ствара, да помажс, да шири добро око себе. За мене су Пупин и Тесла људи који заслужују наше најпеће поитоване", каже Младен Сетак.

Селак је и финансирао изложбу о Пупиновим делима у Срлској академији ниуке и уметности, а сада објавъује књигу коју һе поделити нашим школама, За аутобюографију "Сa пашњака до научењака", Пупин је добио Пулицерову нарраду.
Селак каже да је литература скупа, али и да је та књига добро ураңена. "Квига носи историјаг човека који је оиајј свет задужио", каже Селак.
Према његовимя речима, телефони, које ми данас употреблавамо, су Пупиново дело.
Фондаиија јс всћ обнновила Пупинову родну кућу у Идвору и излала пригодву поитанску марку. Спе у пиљу да се дело великог научника отргне од заборава, како би праве вредности биле путоказ младима.

FIgure 11: Custom-oriented database: (a) Printed document in Latin, (b) Printed document in Cyrillic, (c) Web document in Latin, (d) Web document in Cyrillic.

Contrast (CON) or inertia is a measure of the intensity contrast between a pixel and its neighbor over the entire image. Hence, it shows the amount of local variations present in the image. If the image is constant, then the contrast will be equal 0 . The highest value of contrast is obtained when the image has random intensity and the pixel intensity and
neighbor intensity are very different. The equation of the contrast is [15, 16]:

$$
\begin{equation*}
\mathrm{CON}=\sum_{i=1}^{N} \sum_{j=1}^{N} P(i, j) \cdot(i-j)^{2} \tag{11}
\end{equation*}
$$

FIGURE 12: The ratio of the script type occurrence: (a) short, descending and full, (b) ascending.

Table 6: Cooccurrence descriptors for Latin and Cyrillic cipher text.

Serbian language	Latin	Cyrillic	Characterization
Uniformity (energy)	0.2459	0.3811	Latin < Cyrillic
Entropy	-1.6298	-1.4363	Latin > Cyrillic
Maximum probability	0.3722	0.5863	Latin < Cyrillic
Dissimilarity	0.7356	0.6669	Latin > Cyrillic
Contrast	1.0423	1.2660	Latin < Cyrillic

From the above results, it is clear that co-occurrence descriptors can fully characterize the difference between Latin and Cyrillic script. This means that frequency analysis of the occurrence can be supplemented with additional attributes in order to define a strong margin as a criterion to distinguish a certain script.

A brief look at the normalized co-occurrence matrix \mathbf{P} for the same document written in Latin and Cyrillic scripts (text representing the excerpt of the first four paragraphs from a document given in Figure 10) shows quite a different characterization. The test results are given in Table 5.

Furthermore, the calculation of five co-occurrence descriptors shows the values given in Table 6.

3. Experiments

For the sake of the experiment, a custom-oriented database is created. It consists of 10 documents. These documents represent excerpts from printed and web documents written in Serbian language. The documents are created in both scripts: Latin and Cyrillic. Printed documents are created from PDF documents, while web documents are extracted from web news. The total length of documents given in the database is approx. 75000 letter characters per script (approx. 40 pages). The length of printed documents is from 2273 to 15840 letter characters. Web documents are smaller compared to printed documents. Their length is from 1231 to 2502 letter characters. It should be noted that all documents have more than 1000 letter characters. The example of the
printed and web document from the database is shown in Figure 11.

4. Results and Discussion

According to the proposed algorithm, all documents from the database are converted into equivalent cipher texts and subjected to the frequency and co-occurrence analysis. First, the frequency analysis of the script type occurrence in Latin as well as in Cyrillic documents is examined (Table 7). The obtained results for each document are given in Table 8.

The final processing of the results is based on cumulative measures like sum, average, max and min of script type occurrence in the database. According to that the criteria are established. All these are shown in Table 9.

From cumulative results given in Table 10 some criteria can be established. It can be noted that the biggest margin between results are seen in the ratio of ascending letters. This ratio has the value of at least 8 . Hence, it is the strongest point of qualitative characterization and recognition of the certain script. Furthermore, the smaller number of short and descending scripts are common in Latin compared to Cyrillic documents. At the and, full letters are quite rare in a Latin document. However, its characterization in criteria form is

Table 7: Frequency analysis of the script type occurrence in documents from database.

Type of script	Printed documents									
	Doc 1		Doc 2		Doc 3		Doc 4		Doc 5	
	Latin	Cyrillic								
S	2243	2764	11396	13593	1510	1914	2217	2516	2069	2542
A	906	53	4060	306	693	65	598	53	897	64
D	183	468	724	1933	82	286	261	445	151	461
F	0	7	0	8	0	8	8	26	0	12

Web documents

Type of script	Doc 6		Doc 7		Doc 8		Doc 9		Doc 10	
	Latin	Cyrillic								
S	1486	1799	1358	1682	783	996	1657	2078	1328	1637
A	598	48	636	46	408	48	750	62	588	68
D	99	304	75	292	58	174	134	344	99	284
F	0	7	0	9	0	13	0	18	0	9

The above results are further processed in order to calculate the ratio of script type occurrence between Latin and Cyrillic document. Complete results are given in Table 8.

Table 8: The ratio of script type occurrence between Latin and Cyrillic documents.

Type of script	Doc 1	Doc 2	Doc 3	Doc 4	Doc 5	Doc 6	Doc 7	Doc 8	Doc 9	Doc 10
S	0.81	0.84	0.79	0.88	0.81	0.83	0.81	0.79	0.80	0.81
A	17.09	13.27	10.66	11.28	14.02	12.46	13.83	8.50	12.10	8.65
D	0.39	0.37	0.29	0.59	0.33	0.33	0.26	0.33	0.39	0.35
F	0.00	0.00	0.00	0.31	0.00	0.00	0.00	0.00	0.00	0.00

The results are presented in Figure 12.
Table 9: The ratio of script type occurrence measures.

Type of script		\sum		Ratio	Min.	Criteria
	Latin	Cyrillic	Average	Max.	Min	0.82
0.88	0.79	>0.75				
S	26047		31521	12.21	17.09	8.50
D	10134		813	0.36	0.59	0.26
F	1866		4991	0.03	0.31	0.00

Table 10: GLCM five descriptors of the script type co-occurrence in documents from database.

	Printed documents									
	Doc 1		Doc 2		Doc 3		Doc 4		Doc 5	
	Latin	Cyrillic								
Uniformity	0.2885	0.4725	0.2473	0.4167	0.2557	0.4120	0.2759	0.4545	0.2707	0.4498
Entropy	-1.5191	-1.1774	-1.6379	-1.3079	-1.6047	-1.2999	-1.5675	-1.1650	-1.5847	-1.1799
Max. probability	0.4655	0.6636	0.3952	0.6139	0.4120	0.6098	0.4439	0.6457	0.4349	0.6405
Dissimilarity	0.6847	0.5933	0.7469	0.6592	0.7502	0.6427	0.7064	0.6041	0.7117	0.6217
Contrast	1.0324	1.1790	1.1106	1.2859	1.1258	1.2261	1.0577	1.1449	1.0630	1.1949

Web documents

	Doc 6		Doc 7		Doc 8		Doc 9			Doc 10	
	Latin	Cyrillic									
Uniformity	0.2447	0.3714	0.2754	0.3817	0.2533	0.5005	0.2252	0.3147	0.2522	0.3325	
Entropy	-1.6524	-1.3738	-1.5725	-1.3412	-1.5990	-1.0779	-1.6778	-1.5650	-1.6144	-1.5059	
Max. probability	0.3964	0.5650	0.4409	0.5753	0.3972	0.6844	0.3195	0.5154	0.4016	0.5318	
Dissimilarity	0.7723	0.7320	0.6912	0.7209	0.7294	0.5686	0.8317	0.7667	0.7256	0.7416	
Contrast	1.1862	1.3869	1.0287	1.3681	1.0459	1.1158	1.2122	1.4220	1.0641	1.3716	

The above results are further processed in order to calculate the ratio of script type co-occurrence in between Latin and Cyrillic document. These results are shown in Table 11.

Figure 13: Continued.

(e)

Figure 13: Illustrations of co-occurrence descriptors in Latin and Cyrillic text (left) and its ratio (right): (a) Uniformity, (b) Entropy, (c) Maximum probability, (d) Dissimilarity, (e) Contrast.

Table 11: The ratio of the co-occurrence descriptors between Latin and Cyrillic documents.

	Doc 1	Doc 2	Doc 3	Doc 4	Doc 5	Doc 6	Doc 7	Doc 8	Doc 9	Doc 10
Uniformity	0.61	0.59	0.62	0.61	0.60	0.66	0.72	0.51	0.72	0.76
Entropy	1.29	1.25	1.23	1.35	1.34	1.20	1.17	1.48	1.07	1.07
Max. probability	0.70	0.64	0.68	0.69	0.68	0.70	0.77	0.58	0.62	0.76
Dissimilarity	1.15	1.13	1.17	1.17	1.14	1.06	0.96	1.28	1.08	0.98
Contrast	0.88	0.86	0.92	0.92	0.89	0.86	0.75	0.94	0.85	0.78

The final processing of the above results is based on cumulative measures like average, max. and min. of script type co-occurrence in the database. According to that certain criteria are established. All these are shown in Table 12.

Table 12: The ratio of script type co-occurrence descriptors.

	Latin			Cyrillic				Ratio		
	Min.	Max.	Average	Min.	Max.	Average	Max.	Min.	Average	Criteria
Uniformity	0.23	0.29	0.26	0.31	0.50	0.41	0.76	0.51	0.64	0.3
Entropy	-1.68	-1.52	-1.60	-1.57	-1.08	-1.30	1.48	1.07	1.25	$?$
Max. probability	0.32	0.47	0.42	0.52	0.68	0.60	0.77	0.58	0.68	0.5
Dissimilarity	0.68	0.83	0.74	0.57	0.77	0.67	1.28	0.96	1.11	$?$
Contrast	1.03	1.21	1.12	1.12	1.42	1.27	0.94	0.75	0.86	$?$

quite problematic due to their absence in Latin documents from time to time.

Furthermore, the analysis of the script type cooccurrence in Latin as well as in Cyrillic documents is examined according to GLCM method. The obtained results for each document are given in Table 10.

The co-occurrence descriptor for Latin and Cyrillic text and its ratio is presented in Figure 13.

From the above results, some criteria can be established. It is clear that uniformity and maximum probability receive the most distinct values in Latin and Cyrillic text. Hence, these descriptors are suitable for qualitative characterization of Latin and Cyrillic text as well as for creating criteria to distinguish a certain script type. From the above results, the margin criteria should be uniformity of 0.3 and maximum probability of 0.5 . These values of both descriptors represent the strong margin in qualifying the script in certain Serbian text. If we accompany them with the criteria obtained from
frequency analysis of the script type occurrence, then the full criteria of decision making can be established. This will lead to correct recognition of the script in Serbian text.

5. Conclusion

The paper proposed the algorithm for recognition of exact script in Serbian document. Documents in Serbian language can be written in two different scripts: Latin or Cyrillic. The proposed algorithm converts document written in Latin and Cyrillic script into cipher text. This way, all alphabetic characters are exchanged with only four different encrypted signs according to predefined encryption based on text line structure definition. Such ciphers texts are then subjected to the frequency and co-occurrence analysis. According to the obtained results a criteria for recognition of the certain script is proposed. The proposed method is applied to the customoriented database which includes different types of printed
and web documents. The experiment shows encouraging results. Possible applications can be seen in the area of web page recognition.

Future work will be toward the recognition of related languages as well as different languages written in the same script.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this article ("Recognition of the Script in Serbian Documents using Frequency Occurrence and Co-occurrence Analysis" by Darko Brodić, Zoran N. Milivojević, Čedomir A. Maluckov).

References

[1] C. Smith, "Basic cryptanalysis techniques," Tech. Rep., SANS Institute, 2001.
[2] J. Hoffstein, J. Pipher, and J. H. Silverman, An Introduction to Mathematical Cryptography, Springer, New York, NY, USA, 2008.
[3] K. Ruohonen, "Mathematical cryptology," Lecture Notes, 2010.
[4] A. Zramdini and R. Ingold, "Optical font recognition using typographical features," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp. 877-882, 1998.
[5] P. Quaresma, "Frequency analysis of the Portuguese language," TR, 2008/003, University of Coimbra, Portugal, 2008.
[6] R. M. Haralick, K. Shanmugam, and I. Dinstein, "Textural features for image classification," IEEE Transactions on Systems, Man and Cybernetics, vol. 3, no. 6, pp. 610-621, 1973.
[7] G. Jaskiewicz, "Analysis of letter frequency distribution in the voynich manuscript," in Proceedings of the International Workshop (CSeP '11), pp. 250-261, Putusk, Poland, 2011.
[8] S. Cagnoni, Evolutionary Image Analysis and Signal Processing, vol. 213 of Studies in Computational Intelligence, Springer, Berlin, Germany, 2009.
[9] R. Nosaka, C. H. Suryanto, and K. Fukui, "Rotation invariant co-occurrence among adjacent LBPs," in Proceedings of the 11th International Conference on Computer Vision (ACCV '11), vol. 7088 of Lecture Notes in Computer Science, pp. 82-91, Daejeon, Republic of Korea, 2011.
[10] D. A. Clausi, "An analysis of co-occurrence texture statistics as a function of grey level quantization," Canadian Journal of Remote Sensing, vol. 28, no. 1, pp. 45-62, 2002.
[11] A. Baraldi and F. Parmiggiani, "Investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters," IEEE Transactions on Geoscience and Remote Sensing, vol. 33, no. 2, pp. 293-304, 1995.
[12] F. R. Renzetti and L. Zortea, "Use of a gray level co-occurrence matrix to characterize duplex stainless steel phases microstructure," Frattura ed Integrità Strutturale, vol. 16, no. 5, pp. 43-51, 2011.
[13] R. Susomboon, D. Raicu, J. Furst, and T. B. Johnson, "A Cooccurrence texture semi-invariance to direction, distance and patient size," in Medical Imaging 2008: Image Processing, vol. 6914 of Procedings of SPIE, San Diego, Calif, USA, February 2008.
[14] A. Eleyan and H. Demirel, "Co-occurrence matrix and its statistical features as a new approach for face recognition,"

Turkish Journal of Electrical Engineering and Computer Sciences, vol. 19, no. 1, pp. 97-107, 2011.
[15] D. A. Clausi and Y. Zhao, "Rapid extraction of image texture by co-occurrence using a hybrid data structure," Computers and Geosciences, vol. 28, no. 6, pp. 763-774, 2002.
[16] R. Jobanputra and D. A. Clausi, "Preserving boundaries for image texture segmentation using grey level co-occurring probabilities," Pattern Recognition, vol. 39, no. 2, pp. 234-245, 2006.

Advances in
Civil Engineering

International Journal of Distributed
Sensor Networks

Hindawi

Submit your manuscripts at
http://www.hindawi.com

