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Abstract
Nutrition related health conditions such as diabetes and obesity
can seriously impact quality of life for those who are affected
by them. A system able to monitor kitchen activities and pa-
tients’ eating behaviours could provide clinicians with impor-
tant information helping them to improve patients’ treatments.
We propose a symbolic model able to describe unscripted
kitchen activities and eating habits of people in home settings.
This model consists of an ontology which describes the prob-
lem domain, and a Computational State Space Model (CSSM)
which is able to reason in a probabilistic manner about a sub-
ject’s actions, goals, and causes of any problems during task
execution. To validate our model we recorded 15 unscripted
kitchen activities involving 9 subjects, with the video data be-
ing annotated according to the proposed ontology schemata.
We then evaluated the model’s ability to recognise activities
and potential goals from action sequences by simulating noisy
observations from the annotations. The results showed that our
model is able to recognise kitchen activities with an average
accuracy of 80% when using specialised models, and with an
average accuracy of 40% when using the general model.

1 Introduction
Proper nutrition is an effective and cheap way to improve both
quality and longevity of human life, since it lowers risk factors
associated with nutrition related diseases [9]. This is particu-
larly true for physical conditions, such as diabetes, or mental
conditions, such as depression, that affect a patient’s willing-
ness to prepare and consume healthy food. People suffering
from dementia also often have poor nutrition since their ability
to prepare food is impaired by their disease [14].

To reduce costs associated with hospitalisation and treat-
ment of these conditions, some research has attempted to au-
tomate home monitoring for patients. This can also improve
general well-being as patients can be monitored and treated
in home settings [10]. Since such systems are designed to
run without the intervention of medical personnel or the pa-
tients themselves, costs associated with frequent doctors visits
or patients unable to self-manage their treatments are reduced.
Composite information compiled from environmental sensor

data ensures the delivery of relevant information accessible to
healthcare professionals, designated carers and/or family.

For more focused tasks, such as monitoring quality of eat-
ing movement in recovering stroke victims, or calorie intake
from images of meals, statistical analysis and simple classifiers
would be appropriate, as in [12] and [2] respectively. However,
more complex systems relevant to a broader range of medical
applications would require the ability to understand some as-
pects of human behaviour.

Activity Recognition (AR) is a key requirement of such
systems as it allows for machine understanding of relevant hu-
man actions. Using sensor data, it allows a machine to reason
about the actions a human performs and therefore estimate the
current state of the world. Such a model could also look at
whole or partial sequences of actions and predict the patients’
goals and the methods by which they achieve those goals. This
can be monitored over time to detect changes in their habits,
which in turn can be used to detect deviations in behaviour in-
dicating progression of a medical condition.

There are two main AR paradigms: data-driven and
knowledge-based (or context aware) [16]. Data-driven ap-
proaches rely on large datasets from which a model is learnt,
with additional modifications afterwards to better fit a specific
purpose. They can be either unsupervised (i.e. clustering) [3],
or supervised (i.e. classification based on training data) [15].
Data-driven approaches suffer from two main limitations: they
need large quantities of sensor data to improve performance,
and they are limited to behaviours present in the training data.

To address these problems, knowledge-based approaches
rely on domain knowledge in the form of symbolic models and
rules to reason about observed behaviours [11, 7]. These ap-
proaches are advantageous since they are able to reason beyond
sensor data and provide information about the patient’s situa-
tion and potential medical reasons for their behaviour [14]. The
main challenge for knowledge-based approaches is a common
inability to cope with problems associated with real world sce-
narios, such as variability of user behaviour resulting in com-
putationally infeasible models and imperfect sensors leading to
recognition ambiguity in purely symbolic models.

In order to meet these challenges, we propose the use of
Computational State Space Models (CSSMs) [4] which com-
bine symbolic representation with probabilistic reasoning to
compensate for behaviour variability and sensor noise. So far,
CSSMs have only been applied to scripted scenarios in simpli-



fied settings that do not address the challenges of complexity
and behaviour variability present in real settings.

In this work we investigate the application of CSSMs to
unscripted kitchen scenarios and the corresponding domain
knowledge representation. To that end, we model the cooking
and eating behaviour of different people preparing unscripted
meals in a living lab. We also make publicly available the on-
tologies, annotations and simulated sensor data, which are use-
ful for evaluation of future AR algorithms and provide new in-
sights into the complexity of unscripted kitchen activities.

Section 2 presents current methods of knowledge-based ac-
tivity recognition. Section 3 gives an overview of the develop-
ment process and the tools used for creation of the CSSM. Sec-
tion 4 outlines the models and ontologies developed. Section 5
evaluates the performance of the models. Section 6 concludes
the paper and suggests future work.

2 Related Work

There are a variety of approaches for knowledge-based activ-
ity recognition that allow incorporation of context information
into a model. One common paradigm features libraries of plans
which are explicitly provided by human experts. For example,
Roy et al. [7] relies on manually created ontology-based plan
libraries. These plans represent partially ordered sequences of
actions that must be carried out in order to achieve a goal. As
Yordanova and Kirste [18] point out, “library-based models are
inherently unable to solve the problem of library completeness
caused by the inability of a designer to model all possible exe-
cution sequences leading to the goal”.

An alternative option for arriving at a suitable model is to
mine action sequences from observations of human behaviour.
For example, Chen et al. [1] use an ontology-based approach to
manually define an initial library of behaviours. Later, obser-
vations of user activities are used to add variations or remove
obsolete behaviours. Although the approach provides an inter-
esting solution to the problem of keeping plan libraries up-to-
date, it still relies on initial manual definitions of behaviours.

To address this problem, Ye et al. [16] proposes an ap-
proach similar to that of Chen et al. [1]. They replaced the
initial ontology definition with an ontology learned from tex-
tual sources and utilised unsupervised sensor segmentation and
learning to build their library of behaviours. This approach suf-
fers from similar problems to data driven approaches as it only
learns observed behaviours, leading to a behaviour variability
which is dependant on the amount of training data.

In order to avoid the problem of low behavioural variabil-
ity without relying on large amounts of sensor data, Com-
putational State Space Models (CSSMs) were investigated
[11, 13, 4, 18]. CSSMs describe actions in terms of pre-
conditions and effects, allowing probabilistic reasoning about
user states, goals and context. This manually defined model
is very compact as it only contains the definition of basic ac-
tion templates which are automatically expanded into different
execution sequences based on their causal relationships. This
provides an alternative solution to the problem of manually
defining all execution sequences, or mining them from large

amounts of annotated sensor data.

3 Methods and Materials

We now describe the formalisms used to model our problem,
the development process we followed, the experimental set-
tings, and the collected sensor data.

3.1 Computational Causal Behaviour Models

We selected Computational Causal Behaviour Model (CCBM)
as the tool for creation of our CSSMs as it has been shown to
perform accurately with large state spaces and imperfect obser-
vations [4].

Domain description Problem description Observation model
name
types

predicates
constants

name
objects

initial state
duration values

P(o|s)

compile

HMM / Particle filter / Marginal filter

actions goal

Figure 1. Elements of a Computational Causal Behaviour
Model. Figure adapted from [17].

Figure 1 shows the structure of a CCBM, consisting of do-
main and problem definitions as well as an observation model.
The domain definition contains the set of possible actions ex-
pressed in terms of precondition-effect rules. Preconditions de-
fine what has to be true in order for the action to take place,
while effects describe how the execution of an action changes
the state of the world. The problem definition defines which
elements of the environment are available (e.g. objects, loca-
tions, persons, etc.), the initial condition or state of the envi-
ronment and possible goals that could be achieved in this prob-
lem. Finally, the last part of the model is an observation model
that gives the probability of observing a certain sensor value,
given the current state. To develop our CSSM, we make use of
the Computational Causal Behaviour Modelling (CCBM) tool
[19], which allows for the definition of the three model ele-
ments. These are then automatically translated by the tool into
a probabilistic inference model (e.g. hidden Markov model,
particle filter, marginal filter) that is capable of estimating the
current state of the world along with predictions about poten-
tial future states or goals. For more details about CCBM, see
the paper by Yordanova and Kirste [18].

3.2 A Process for developing CSSMs

To develop a CSSM we follow the process described in Yor-
danova and Kirste [18] as illustrated in Figure 2. This begins
with the analysis phase where the problem to be modelled is
analysed and sets of possible actions and relevant environment
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Figure 2. Development process for CSSMs as proposed in [18].

elements are selected. Later, sensor data that is used to test the
model to be developed is collected. In this phase, an ontology
is created that incorporates the context information about the
problem to be modelled. The collected sensor data is then an-
notated based on the action schema described in the ontology.

Development of the causal model constitutes the second
phase, in which the symbolic model needs to be designed, im-
plemented and validated. These are the rules describing the ac-
tions in terms of preconditions and effects as well as the prob-
lem description, as shown in Figure 1. The third phase covers
development of the action selection heuristics, with an empha-
sis on action preference dependant on a given state. This phase
mainly consists of design, implementation, and validation of
these heuristics. The fourth phase is the development of the
actions’ durations, represented in terms of probability distri-
bution, including the decision about which type of probability
distribution to use. Finally, the developed model is evaluated
based on the collected sensor dataset to see if it is able to per-
form activity recognition.

In this work, we concentrate on the problem analysis and
the development of the causal model, beginning with mod-
elling the symbolic rules and observation model in the CCBM
notation and then validating them. The validation consists of
generating plans (descriptions of action sequences) from the
annotated data and checking whether the model is able to ex-
plain them. This can be done both with taking action durations
into account or without, and is useful for highlighting potential
issues in the model earlier in the project. We used noisy sim-
ulated observations generated from the annotation sequences
for this validation, without taking the action durations into ac-
count.

3.3 Experimental design

In order to evaluate the model, a dataset describing cooking
and eating behaviour was collected in the SPHERE House. The
SPHERE project (a Sensor Platform for HEalthcare in a Res-
idential Environment) is an interdisciplinary research project
with the remit to provide an in-home monitoring solution to as-
sist medical professionals in providing care for their patients
[6]. The SPHERE House in Bristol (UK) is a typical terraced
residence which is used as a living lab for experimentation on
sensors and systems in a realistic environment. The house it-
self is deliberately normal and the systems within have been
installed as they would be in a patient’s residence, forcing de-

sign considerations which would be standard for a functioning
dwelling.

The sensor network in the SPHERE kitchen collects data
on temperature, humidity, light levels, noise levels, dust levels,
motion within the room, cupboard and room door state and
water and electricity usage. There is also an RGB-D (depth
sensing) camera in the room which is used to provide positional
data on the occupants [5]. A head-mounted camera was used to
record the actions of the participants during the study to allow
for better annotation of the observations.

The collected dataset contains sequences of individual hu-
man protagonists performing varied and complex activities in
the SPHERE kitchen, without any predefined scripts. Thus,
the dataset is a good example of natural human behaviour and
highlights some key issues which need addressing by models
attempting to recognise “real” human activities, such as irra-
tional behaviours, multitasking, and working towards two or
more goals at the same time.

Each data collection event took place over the course
of around two hours including breaks in the kitchen of the
SPHERE house, involving 9 participants. The only instruc-
tions they received were to prepare a meal and/or a drink of
their choice in the kitchen. This resulted in the collection of
15 unscripted meal preparation and consumption tasks. The
meals/drinks included: pasta, ready meal, carrot sticks, rice
and vegetables, toast, juice, tea, coffee, chicken and vegetables,
snack, rice and curry, macaroons, salad, and toasted cheese
sandwiches. A total of 449 minutes were recorded with in-
dividual recording durations between 10 and 88 minutes.

4 Developed Model

Below we provide information about our reasoning when mod-
elling the domain knowledge. We also present the resulting
ontologies, data annotation and the CCBM model. The ontolo-
gies and the simulated data are publicly available1.

4.1 Ontologies

The ontology represents the set of actions that can be executed
in our problem, locations where they can be executed, and
objects in the environment relating to their execution. When
designing our models, we considered two different ontologies
which could be compared to each other in order to examine
how different levels of detail could be applied to the problem.
For the first, we made a fine-grained ontology describing each
action with a high level of detail, and for the second, a coarse-
grained ontology describing a more general overview of actions
being performed without consideration for finer details.

Fine-grained ontology – The fine-grained ontology covers
a variety of potential kitchen actions and as such is reasonably
exhaustive, with prepare and prepare-meal being used to make
sense of many different preparation actions, such as removing
packaging, stirring, and chopping. Action schemata for this
ontology are shown in Table 1. Subjects of these actions (i.e.
location, cupboard, appliance, item, counter, food, container)

1https://data.bris.ac.uk/data/dataset/raqa2qzai45z15b4n0za94toi

https://data.bris.ac.uk/data/dataset/raqa2qzai45z15b4n0za94toi


1) move < location > 7) clean < counter >
< location > 8) drink < food >
2) open < cupboard > 9) eat < food >
3) close < cupboard > 10) take < item > < container >
4) turnon < appliance > 11) put < item > < container >
5) turnoff < appliance > 12) prepare < food > < counter >
6) wash < item > 13) prepare − meal < counter >

Table 1. The actions schemata for the first iteration of the fine-
grained ontology.

are sets of objects included within the experimental space. The
names of these sets are self-descriptive with some overlap be-
tween sets, for example the oven is both a cupboard (things can
be put into it) and an appliance (it can be turned on and off).

The move, open, close, turnon and turnoff actions were in-
cluded in the ontology because they roughly align with the sen-
sor data available (cupboard door sensors, power usage sen-
sors, and position tracking sensors). wash, clean, drink and
eat relate to potential goals to be considered, such as whether
washing up had been done and whether food or drink had been
consumed. Finally, take, put, prepare and prepare-meal are all
actions which a protagonist performs in pursuit of the above
goals, such as moving items around the kitchen to the correct
positions and preparing food and drink.

Revised fine-grained ontology – While developing the
fine-grained model, we determined that the fine-grained action
schemata and corresponding objects ontology was too com-
plex, resulting in many possible states when executing an ac-
tion. This in turn reduced the probability of each potential ac-
tion to almost zero. Hence, we revised the fine-grained ontol-
ogy to strike a better balance between ease of annotation, com-
putability, and model complexity. The modified version with
the new action schemata is shown in Table 2.

1) move < location > < location > 9) eat < food >
2) open < cupboard > 10) clean
3) close < cupboard > 11) drink < food >
4) turnon < appliance > 12) wash < food >
5) prepare − meal < location > 13) turnoff < appliance >
6) prepare < food > < location > 14) dispose − waste
7) take < item > < location > 15) wash − hands
8) put < item > < location > 16) wash − items

Table 2. The actions schemata for the second iteration of the
fine-grained ontology.

Included are three additional composite actions to describe
common tasks, as well as revisions for other actions to reduce
the number of object sets. These sets are still descriptive of
items in the kitchen, but with less differentiation between items
of similar types leading to better model performance (see Table
3)2. One key removal was the idea of containers, which were
leading to expensive nested searches for items.

Coarse-grained ontology – The coarse-grained ontology
is simpler by design, and aims to represent the bare minimum
information needed to recognise the type of meal and cooking

2Note that grouping items does not reduce the CCBM granularity
as activities are still executed in the same way. The difference is a
reduction in complexity, as instead of tracking n distinct instances of
the same object, we now track the presence of a type of object (e.g. an
action is performed using any knife in the area).

Location

bin, corridor, counterkettle, counterleft, countermiddle, counterright,
counterrightback, cupboardleft, cupboardright, cupboardtopleft,
cupboardtopright, drawbottom, drawmiddle, drawtop, dryingrack,
floormiddle, fridge, hob, oven, self, sink

Item
bread, clean-tool, container, cup, dishware, fruit, implement, juice,
kettle, meat, milk, oil, pasta, readymeal, sauce, snack, spices,
vegetables, waste, water

Food bread, fruit, juice, meat, milk, oil, pasta, readymeal, sauce, snack,
spices, vegetables, waste, water

Cupboard
counterrightback, cupboardleft, cupboardright, cupboardtopleft,
cupboardtopright drawbottom, drawmiddle, drawtop, fridge,
microwave, oven

Appliance hob, kettle, microwave, oven, tap, toaster

Table 3. Object sets for the fine-grained ontology.

activity. This ontology is more goal oriented, with actions re-
ferring to the meal they are contributing towards instead of the
process by which they are being completed. The action schema
for this ontology is shown in Table 4.

1) move<location > < location > 5) eat < meal >
2) get < item > < meal > 6) drink < meal >
3) put < item > < meal > 7) clean
4) prepare < meal >

Table 4. The actions schemata for the coarse-grained ontology.

Again, location and item are sets of objects included within
the experimental space, with meal refering to the eventual goal.
With a reduced number of different sets in this ontology, result-
ing models are much simpler and quicker to compute.

The move, eat and drink actions are similar to their equiv-
alents in the fine-grained model, while get, put, and prepare
have been changed to focus less on location and more on the
goal of the food making process. clean no longer has an argu-
ment, since for this ontology we are more interested in whether
cleaning has been done than what has been cleaned.

Both ontologies have an irrational action, unknown, which
is used in situations when the current action being performed
is not relevant when considering potential goals.

Figure 3 shows the object ontology for the coarse-grained
action schemata. Rectangles represent concrete objects while
ellipses represent types to which objects belong. These types
correspond to types in the action schemata; for example
in move <location> <location>, “location” represents
the type for all locations, including the concrete instances
“kitchen” and “study” (see Figure 3).

4.2 Data annotation

The next step in the model creation process is to annotate the
observation data which can be used as ground truth for evalu-
ating the developed model. For the annotation process we used
ELAN [8], a free annotation tool. For the fine-grained annota-
tion, the action schema resulted in action sequences that com-
prised 24 to 676 execution steps. For the coarse-grained an-
notation, the action schemata resulted in considerably shorter
and less complex action sequences with the shortest being 8
execution steps and the longest 199 steps.
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Figure 3. Coarse-grained objects ontology. Rectangles represent the concrete objects while ellipses the object types.

Parameters Fine general Coarse general Coarse specialised

People 1 1 1

Locations 21 2 2

Objects 23 17 3–6

Action types 15 8 8

Action templates 27 8 8

Ground actions 442 92 10 – 28

States > 108 450144 40 – 1288

Valid plans > 108 21889393 162 – 15689

Table 5. Parameters for the different models.

4.3 Causal Models

Using the ontologies developed, the CCBM tool was used to
implement several models: one fine-grained model using a
single problem and domain file, and multiple coarse-grained
models each using the same problem file but with different do-
main files. These were comprised of one general model which
could handle all coarse-grained sequences, and one specialised
coarse-grained model for each individual sequence. The model
dimensions for the different implementations are in Table 5.

From this we can see that the fine-grained model is much
more complex than the coarse-grained models, as a result of
containing more context information about actions and ele-
ments in the environment. This information was mostly omit-
ted in the coarse-grained model, with only the meal being pre-
pared and the action being executed remaining.

Table 5 also shows that the specialised coarse-grained mod-
els are much simpler than the general model, with smaller
state spaces due to the omission of unused objects focusing the
model on the specific meal being prepared. This reduces the
specialised models’ ability to explain behaviour variability, but
increases the model performance in terms of recognition rate
as can been seen from its smaller log likelihood in Table 6.

5 Activity recognition results

To evaluate the models, we performed activity recognition with
noisy simulated data. This was generated by assigning the ob-
servation matching the current annotation a value of 0.7, with
all other potential observations set to 0.3. Table 6 shows the
results of activity recognition on this data in terms of average
branching factor (i.e. average number of actions which could

Model Plan Length Branching Factor Log Likelihood

Fine-grained (g) 149 43.13 -542.42

Coarse-grained (g) 58 65.82 -239.90

Coarse-grained (s) 58 11.12 -144.48

Table 6. Average model performance statistics. “g” indicates
the generalised model, “s” the specialised.

potentially be executed from each state) and the final log likeli-
hood (i.e. likelihood of correct description of the observations).

As shown, the fine-grained model has a larger branching
factor than the specialised coarse-grained models, and a lower
log likelihood indicating poorer performance when explaining
the observed data. This is partly due to the larger average
plan length for the fine-grained model, resulting from its more
atomic actions which reduce log likelihood as each actions adds
uncertainty to the final state. We expect log likelihood to in-
crease when action durations are introduced into the models.

Table 6 also shows that the general coarse-grained model
has a higher branching factor than the fine-grained model. This
is because the potential actions for the coarse-grained model
were less constrained, since concepts such as specific locations
and availability were not included.

Furthermore, it can be seen that the general coarse-grained
model also has a much higher branching factor than the spe-
cialised models. The log likelihood is also affected, indicat-
ing that the specialised models explain the observations much
better than the general model. Figure 4 shows the average ac-

0.
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4

0.
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0.
8

1.
0

Performance of coarse−grained model

general specialised

Figure 4. Performance of general and specialised coarse-
grained models. The data has an error probability of 0.3.



curacy of the specialised coarse-grained model as 80%, with
the accuracy of the general model only 40%. This difference
in performance is due to the specialised models following only
one goal, significantly reducing the number of possible actions
that can be executed and therefore increasing accuracy.

6 Conclusion and Future Work
In this work we presented a CSSM for the recognition of un-
scripted kitchen activities in a real home. The recognition of
such activities can provide better monitoring of nutrition re-
lated health conditions and thus potentially improve quality of
life for patients in their own homes. Furthermore, we have
made the model ontologies, simulated data and corresponding
annotations publicly available. These contributions can provide
important insights for the community into the complexity and
behaviour dynamics of natural kitchen activities as well as test
data for developing future activity recognition algorithms.

The next step in our work is the creation of an action du-
ration model and evaluation of the models based on the actual
sensor data. The ontologies for both the coarse and the fine-
grained models need re-examining to cover a wider range of
kitchen related activities in an efficient manner. At this time, it
would be prudent to evaluate our model in comparison to alter-
native approaches in terms of accuracy of action identification
and the overall complexity of the model.

Additional testing of the relevance of different sensors
within the SPHERE kitchen would allow for improvements to
the accuracy of the model, while adding new sensor groups
(such as accelerometers) could improve the model perfor-
mance. Collection of data from other kitchens would validate
the effectiveness of the models in different settings.
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the model building process and their CCBM tool.

References
[1] L. Chen, C. Nugent, and G. Okeyo. An ontology-based

hybrid approach to activity modelling for smart homes.
IEEE Trans. Human-Mach. Syst., 44(1):92–105, 2014.

[2] A. Myers et al. Im2Calories: towards an automated mo-
bile vision food diary. In ICCV, 2015.

[3] D. Trabelsi et al. An unsupervised approach for auto-
matic activity recognition based on hidden markov model
regression. IEEE Trans. Autom. Sci. Eng, 10(3):829–835,
2013.
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[19] K. Yordanova, F. Krüger, and T. Kirste. Tool support for
activity recognition with computational causal behaviour
models. In German Conference on Artificial Intelligence,
pages 561–573, 2012.


	Introduction
	Related Work
	Methods and Materials
	Computational Causal Behaviour Models
	A Process for developing CSSMs
	Experimental design

	Developed Model
	Ontologies
	Data annotation
	Causal Models

	Activity recognition results
	Conclusion and Future Work

