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Abstract: The approach of inferring user’s intended task

and optimizing low-level robot motions has promise for mak-

ing robot teleoperation interfaces more intuitive and respon-

sive. But most existing methods assume a finite set of can-

didate tasks, which limits a robot’s functionality. This paper

proposes the notion of freeform tasks that encode an infi-

nite number of possible goals (e.g., desired target positions)

within a finite set of types (e.g., reach, orient, pick up). It

also presents two technical contributions to help make free-

form UIs possible. First, an intent predictor estimates the

user’s desired task, and accepts freeform tasks that include

both discrete types and continuous parameters. Second, a

cooperative motion planner continuously updates the robot’s

trajectories to achieve the inferred tasks by repeatedly solv-

ing optimal control problems. The planner is designed to re-

spond interactively to changes in the indicated task, avoid

collisions in cluttered environments, handle time-varying ob-

jective functions, and achieve high-quality motions using

a hybrid of numerical and sampling-based techniques. The

system is applied to the problem of controlling a 6D robot

manipulator using 2D mouse input in the context of two

tasks: static target reaching and dynamic trajectory track-

ing. Simulations suggest that it enables the robot to reach in-

tended targets faster and to track intended trajectories more

closely than comparable techniques.

1 Introduction

Safe, intuitive, inexpensive interfaces could bring robotics

in touch with a broad user base and lead to new applica-
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tions in teleoperated household tasks, remote medicine, and

space exploration. The notion of assisted teleoperation pro-

poses to embed greater intelligence in the interface to make

robots safer and easier to use [1,3,9,25]. One promising ap-

proach is to predict the user’s intent and provide task-appro-

priate assistance [2,18,24,26,28]. In this approach, the robot

estimates the operator’s intended task using raw input sig-

nals and then chooses its action in order to best achieve the

desired task. This strategy is appealing for several reasons.

First, it can improve performance in the presence of time

delays because the robot can anticipate the desired task in

the midst of a partially-issued command [8]. Second, it can

also address asymmetry between input devices and robots

when the robot has many more degrees of freedom than a

user can control at once. Task-level control can be simpler

that the robot, presents a potential advantage over modal in-

terfaces, which provide users control over subsets of degrees

of freedom at once (e.g., [22]), but are quite tedious. Human

input is also noisy and error-prone, and intent estimation can

filter out noise and assistance can prevent execution of un-

safe commands. Finally, this approach decouples the overall

problem into two subproblems — intent estimation and mo-

tion planning — which can be refined at an algorithmic level

using quantitative benchmarks.

This paper proposes algorithmic contributions for ex-

tending intent prediction frameworks to handle the notion

of freeform tasks, such as reaching, pointing, or tracking a

trajectory, in which the user’s intent ranges over a continu-

ous infinity of possibilities. Compared to other approaches

that only consider a finite number of tasks, freeform tasks

broaden the capabilities of intelligent teleoperated robots be-

cause they provide an operator with greater flexibility in un-

structured scenarios. But they are more challenging to im-

plement because the robot must not only estimate the task

but also several continuous parameters. Moreover it is not
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Fig. 1 The system integrates new contributions for prediction of in-

tended tasks and real-time optimal control.

practical to precompute task-specific motion strategies, and

instead the robot must optimize motions on-the-fly.

We present new techniques for estimating freeform tasks

as well as planning high quality motions to achieve them

(Figure 1). In the intent inference framework, the system de-

duces a task type and parameters using statistical features of

the input time series. Methods are presented for learning and

inference with a new time series representation, Gaussian

Mixture Autoregression, which has the capability to model

nonlinear dynamic processes in the training data. Off-line,

the method learns an autoregressive, hybrid discrete/continuous

Dynamic Bayesian Network from a database of demonstra-

tions; on-line, task estimation is handled in real-time using

Bayesian filtering techniques. This method models and es-

timates static target and dynamic trajectory estimation in a

unified framework, and is able to estimate intended static

and dynamic targets with 43% and 13% lower error, respec-

tively, than using the cursor position alone. Experiments demon-

strate that it exhibits superior performance to linear models

and hidden Markov models in this task.

The second contribution of this paper exploits predictive

capabilities to improve trajectory tracking by anticipating

future goal movements. We present a novel cooperative mo-

tion planner that optimizes the robot’s trajectory to match

the forecasted one, while also handling highly cluttered en-

vironments. Clutter and complex robot kinematics pose a

major problem for local trajectory optimization methods,

which are prone to fall into local minima. We present a hy-

brid planner that combines sampling-based planning tech-

niques [21], to explore globally, with numerical trajectory

optimization techniques [5], to refine locally. The planner is

responsive and produces higher-quality, collision-free paths

than planners that purely rely on global exploration or local

optimization.

The integrated system achieves fluid and real-time op-

eration by interleaving inference, planning, and execution

while streaming in user input. Experiments on a simulated

6DOF robot suggest that it improves tracking performance

by up to 65% compared to systems that either do not per-

form inference, or that use simpler planners.

2 Related Work

Intent recognition. As recommended by Goodrich and Ol-

sen (2003) [12] and Green et. al. (2008) [13], one guide-

line for effective human-robot interaction is to avoid explicit

UI mechanisms (e.g., buttons, drop-down menus) for role-

switching. It is argued that role-switching unnecessarily bur-

dens the human operator, and instead robots ought to infer

their appropriate roles by understanding user intent. Several

authors have studied human intent and activity recognition

for robot control, primarily in the context of telemanipula-

tion and surgical assist systems [2, 18, 24, 26, 28]. Past work

has largely made use of the well-established machinery of

Hidden Markov Models, and as a result is limited to a fi-

nite number of discrete tasks, such as navigating to a hand-

ful of target locations or picking and placing objects in a

constrained manner. By contrast, our system learns and es-

timates models with continuous parameters which makes it

applicable to freeform tasks. It also employs real-time mo-

tion planning techniques to generate behaviors on the fly,

rather than pre-defining a motion or control strategy for each

task.

Cursor target prediction. Another related area in the

intelligent user interfaces community is predictive modeling

of cursor targets to help select icons in graphical user in-

terfaces. Several methods have been proposed for, such as

linear regression from peak velocity [4], directional char-

acteristics [19], kinematic motion models [20], and inverse

optimal control techniques [27]. Unlike [19] our work is ap-

plicable to a fully continuous set of targets. It also achieves

better prediction accuracy than linear models [4, 20, 27] be-

cause the Gaussian Mixture Autoregression technique used

here is capable of modeling nonlinear characteristics that are

observed in user behavior.

Real-time motion planning. Sampling-based motion plan-

ners such as Probabilistic Roadmaps (PRMs) and Rapidly-

Exploring Random Trees (RRTs) are effective at planning

collision-free motion for high-dimensional robot systems [21],

and have also been successfully applied to hard real-time

planing for 2D helicopters [10] and ground vehicles [23].

Recently they have been applied to teleoperation interfaces

for robot manipulator arms [14]. But these works have tradi-

tionally focused on finding feasible paths rather than optimal

ones. Sampling-based approaches have been recently devel-

oped for the optimal motion planning problem [16], but they

have not yet been applied to time-varying cost functions and

moreover converge too slowly for real-time use. An alter-

native approach is numerical optimization over a trajectory

parameterization [7]. Optimization approaches can achieve

optimality with a fast convergence rate, albeit only locally.

Our hybrid planner combines the strength of sampling-based

and numerical approaches and is designed specifically to
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Fig. 2 Illustrating observation variables ot , history variables ht , and

hidden parameters in reach tasks (top) and tracking tasks (bottom).

produce high-quality paths quickly for a broad class of cost

functions.

3 Problem Overview

We consider the setting of a user operating a mouse or other

2D input device to control a 6DOF industrial robot arm in

a cluttered, known 3D environment. The user issues com-

mands through a GUI that displays the robot and its environ-

ment, and can translate, rotate, and zoom the camera freely.

The operator uses a basic “click-and-drag” operation in

which he/she clicks on a point to move and then drags it

in the manner in which he/she wishes for it to move. This

“manner” is stated intentionally vaguely so that the robot’s

motion is underspecified. For example, a user may wish to

reach a target as quickly as possible (e.g., to grasp and move

an object), or to perform a gesture, such as a wave hello

or to indicate direction for a coworker. Another possibility

might use the underspecification to achieve depth control,

or actions upon specific objects in the environment. While

executing a task, a robot may exploit underspecification to

avoid obstacles or to optimize other criteria, such as energy

consumption.

The notion of task is used to act an intermediary between

user input and robot motion. We define a task as a sufficient

representation of the optimality criterion for a robot to com-

plete an action primitive, such as reaching a target, picking

up an object, or pressing a button. In this paper we focus

on freeform tasks, which include both a discrete task type

it ∈ 1, . . . ,M and continuous task parameters zt ∈ R
N . (Note

that N depends on the type.) Here we consider M = 2 task

types:

1. Reach tasks. Four task parameters include the position of

the goal relative to the cursor (gx,gy), size gr, and “ur-

gency” u which is approximated as the average mouse

velocity before reaching the goal.

2. Trajectory following. Six task parameters include the goal

position relative to the cursor (gx,gy), its velocity (ġx, ġy),

and its acceleration (g̈x, g̈y).

These parameters are illustrated in Figure 2.

In advance, it is worth noting some limitations of the cur-

rent work. We currently only consider 2D devices because

of their widespread use in commodity input devices, but our

approach could be extended to other simple and/or noisy

input devices. We also assume the environment is known,

which means that motion constraints are deterministic and

we are able to exploit relatively mature technology for real-

time motion planning. It may be possible to extend this work

to uncertain environments, but motion planning under un-

certainty for many-DOF systems is still an active research

topic.

Reach and trajectory following tasks were chosen for

proof-of-concept purposes and because intent modeling from

user data is tractable; in future work we are interested in ex-

tending this approach to more complex tasks, such as depth

control, manipulation actions, and end-effector orientation

control. It is assumed throughout this paper that the task

space is defined such that it covers all of the objectives that

the user might wish to accomplish with the robot. As a re-

sult, “move joint 3 to angle 55◦” is not a goal that can be

achieved in the current system. However, if single-joint con-

trol were considered to be a relevant task, then it could be

encoded into the system and predicted just like any other

task. An important question in implementing a task-based

approach is whether the human input’s has sufficient signal-

to-noise ratio and flexibility for the robot to distinguish be-

tween tasks.

The system (Figure 1) is composed of two major com-

ponents: the Freeform Task Inference Engine (FTIE) (Sec-

tion 4) and the Cooperative Motion Planner (CMP) (Sec-

tion 5). The FTIE attempts to recover the intended task from

the manner in which the mouse is dragged, and infers a prob-

abilistic distribution over tasks. The CMP uses the estimated

task and forecasted evolution of the task in the future to im-

prove trajectory tracking.

While the combination of FTIE and CMP is itself novel,

we also present new technical contributions in each subsys-

tem that improve performance compared to prior approaches.

In particular, we introduce new methods for 1) modeling

and estimation of nonlinear probabilistic dynamics for im-

proved task inference, and 2) hybridizing sampling-based

planning and numerical optimization for improved real-time

motion planning under time-varying objective functions. In

Section 6 we describe how these components are integrated

to achieve better performance than either component in iso-

lation.

4 Freeform Task Inference Engine

The FTIE estimates a time series of unobserved task pa-

rameters (it ,zt) from a streaming time series of observa-
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tions ot , t = 1,2, . . ., obtained from the raw cursor move-

ment. A hybrid discrete/continuous Dynamic Bayesian Net-

work (DBN) is used to infer a distribution over freeform

task variables. We implement the DBN using a Gaussian

mixture autoregression (GMA) technique, which uses Gaus-

sian mixture models to learn and represent complex, multi-

modal transition models. Experiments on our mouse mo-

tion datasets suggest that GMA has superior performance to

simpler models, such as linear regressions and Kalman fil-

ters, as well as comparable nonlinear modeling techniques

like Gaussian hidden Markov models (GHMMs) [11] and

switching linear dynamic processes [17] (SLDPs).

4.1 Overview

Given observations ot of cursor velocities ot = (∆cx,t ,∆cy,t),

we wish to infer the distribution over the task parameters it
and zt . We model the evolution of the parameters as a DBN,

which is autoregressive because we include the observation

history ht = (ot−1, . . . ,ot−k) for the prior k time steps as part

of the state variable xt = (it ,zt ,ht). The observation is as-

sumed to be generated according to the probabilistic obser-

vation model P(ot |xt), while the state evolves according to

the transition model P(xt+1|xt ,ot). Note that in traditional

HMMs the transition model is typically not dependent on

ot ; this only requires a minor adjustment to the inference

procedure. Our model is shown in Figure 3.

As usual in Bayesian filtering, the belief over xt+1 is

derived from the prior belief over xt and the observation

ot+1 in a recursive manner. Specifically, we maintain a be-

lief bt(xt) =P(xt |o1, . . . ,ot) and update it using the recursive

filtering equation:

bt+1(xt+1) = P(xt+1|o1, . . . ,ot+1)

=
∫

xt

P(xt+1|xt ,ot+1)P(xt |o1, . . . ,ot)dxt

=
∫

xt

P(xt+1|xt ,ot+1)bt(xt)dxt .

(1)

This procedure is performed in in two steps:

1. The predict step, which computes the unconditioned be-

lief over b′t+1(xt+1) independently of the new observa-

tion:

b′t+1(xt+1) =
∫

xt

P(xt+1|xt ,ot)bt(xt)dxt . (2)

2. The update step, which conditions b′t+1(xt+1) on the ob-

servation

bt+1(xt+1) ∝ P(ot+1|xt+1)b
′
t+1(xt+1). (3)

The following sections will describe the GMA implementa-

tion of the filter.

4.2 Gaussian Mixture Regression

First we will provide some preliminaries on Gaussian mix-

ture regression. A Gaussian mixture model (GMM) with m

components describes a weighted combination of m Gaus-

sian distributions. If X is distributed with respect to a GMM,

the probability that X = x is given by

P(x) = GMM(x;w1, . . . ,wm,µ1, . . . ,µm,Σ1, . . . ,Σm)

=
m

∑
c=1

wcN (x; µc,Σc).
(4)

where N (x; µ,Σ) denotes the probability that a normally

distributed variable X ∼N (µ,Σ) takes on the value x. The

values w1, . . . ,wm are component weights that sum to one.

GMMs can be interpreted as introducing an auxiliary

hidden class variable C taking values in {1, . . . ,m} that iden-

tifies the component of the GMM from which x is generated.

The distribution over x conditional on C = c is N (x; µc,Σc),

while the prior distribution over C is given by the weights

P(c) = wc.

GMMs can be applied to nonlinear regression tasks un-

der an operation known as a Gaussian mixture regression,

or GMR. It is based on the application of Gaussian con-

ditioning (see Appendix) to each component in the GMM,

and reweighting components according to the probability of

observing the independent variable. Suppose X and Y are

jointly distributed according to a GMM with m components.

Given the value of x, P(y|x) is a GMM with weights

wc|x =
1

Z
wcP(x|c) (5)

where Z is a normalization factor and

P(x|c) = N (x; µc,x,Σc,x) (6)

is the marginal probability that x is drawn from the c’th com-

ponent. Each component in P(y|x) has a mean µc determined

by a linear fit µc = Acx+ bc with a constant covariance Σc.

The parameters Ac, bc, and Σc are determined in a straight-

forward manner from the joint GMM using the Gaussian

conditioning equation (22). The resulting regression model

is:

GMR(y|x) =
1

Z

m

∑
c=1

wcN (x; µc,x,Σc,x)N (y;Acx+b,Σc).

(7)

Figure 4 shows that GMRs can model nonlinearities and

nonuniform variance in data better than linear regression

(which is equivalent to a GMR with m = 1). These models

are fitted to a 2D projection of our cursor reaching dataset.
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Fig. 4 Gaussian mixture regressions can model complex nonlinear

conditional distributions. This data comes from the reach task training

set, with the horizontal target position on the x axis and the horizontal

cursor velocity on the y axis (both normalized to unit variance). Curves

indicate the mean and standard deviation of the relationship y(x) esti-

mated by GMRs with a varying number m of components.

4.3 Transition and Observation Modeling

We use GMRs in both the observation model P(ot |it ,zt ,ht)
and transition model P(xt+1|xt ,ot) (Figure 3). In the obser-

vation model, a GMR is estimated for each task type, each

of which has independent variables zt and ht .

The transition model is factored into three parts: 1) the

task type drift, 2) the deterministic history update, and 3) the

z transition model as follows:

P(xt+1|xt ,ot) = P(it+1|it)P(ht+1|ht ,ot)P(zt+1|it ,zt ,ht+1).

(8)

The type drift is given by a transition matrix, and in our im-

plementation we simply use a uniform probability of switch-

ing P(it+1 = it) = 1− p, and P(it+1 6= it) = p/(M−1). The

history update simply shifts ot into the first position of ht

and drops the oldest observation. Finally, P(zt+1|it ,zt ,ht+1)

is encoded as a GMR specific to the task type it , with the

independent variables zt and ht+1.

4.4 GMM Filtering and Forecasting

Given GMM belief representations and GMR transition and

observation models, the filtering equation (1) has an exact

closed form. For computational efficiency we represent bt(xt)

in factored form as a distribution over task types P(it), the

history ht (which is deterministic), and a set of type-con-

ditioned GMMs bzt |i, i = 1, . . . ,m each denoting P(zt |it =

i,o1, . . . ,ot).

Predict. The predict step evaluates (8) in the context of

(2). The history and task type are updated directly as usual,

while the task parameters are updated via the propagation

of each bzt |i through the transition GMR. Suppose the tran-

sition GMR is given by (7), and bzt |i has n components:

bzt |i(zt) = GMM(zt ;w′1, . . . ,w
′
n,µ

′
1, . . . ,µ

′
n,Σ

′
1, . . . ,Σ

′
n). It is

not hard to show that the distribution of zt+1 is a GMM with

mn components, given by:

bzt+1|i(zt+1)=
1

Z

m

∑
c=1

n

∑
d=1

wcdN (zt+1;Acµ ′d +b,Σc+AcΣ ′dAT
c ),

(9)

with

wcd = wcw′dN (µ ′d ; µc,x,Σc,x +Σ ′d) (10)

being the probability that the d’th component of bzt ,i is ob-

served in the c’th component of the transition GMR. The last

term in this product is the probability that two variables x1

and x2, distributed respectively according to N (µ ′d ,Σ
′
d) and

N (µc,x,Σc,x), are equal.
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Update. The update step applies the GMR observation

model (7) to the update equation (3) via the following deriva-

tion. Let the predicted, unconditioned belief b′t+1(xt+1) be a

GMM with weights wc, means µc, and covariances Σc, with

c = 1, . . . ,m. We also have P(ot |xt) as GMR with weights

w′d , x-components N (µ ′d,x,Σ
′
d,x), and linear fits Ad , bd , Σ ′d,o

with d = 1, . . . ,n. We perform a Kalman observation update

(23) conditional on each pair of components (c,d) from each

of the state and observation models (see Appendix) to deter-

mine P(xt+1|ot+1,c,d). Unconditional on the components,

we have the update equation:

bt+1(xt+1) =
1

Z

m

∑
c=1

n

∑
d=1

wcdP(xt+1|ot+1,c,d) (11)

where Z is a normalization term and the weighs wcd indicate

the probability that the observation was generated by the c’th

component of the state prior and the d’th component of the

observation GMR:

wcd = wcwdN (ot+1;Ad µc +bd ,Σd,o +AdΣcAT
d ). (12)

Mixture collapse. Although these equations are exact

and polynomial-time computable, over time the number of

components in the belief state would grow exponentially.

Hence it is necessary to frequently collapse the belief state

representation into a more manageable number of compo-

nents, in a manner similar to the interacting multiple model

(IMM) algorithm that extends the Kalman filter to handle

switched linear dynamic processes [6]. We collapse GMMs

with n > k components into a constant number k of com-

ponents after both the predict and update steps (k = 10 is

used in our experiments). The collapse operation begins by

sampling k components c1, . . . ,ck without replacement pro-

portionally to their weights. The n original components are

partitioned into k subsets S1, . . . ,Sk by assigning component

d to subset i if i is the index for which the KL divergence

between N (µd ,Σd) and N (µci
,Σci

) is minimized. The out-

put GMM contains one component for each subset Si, with

weight w′i, mean µ ′i , and variance Σ ′i matched to the subset

using the method of moments:

w′i =
1

Z
∑
j∈Si

w j µ ′i =
1

Zw′i
∑
j∈Si

w jµ j

Σ ′i =
1

Zw′i
∑
j∈Si

w j[(µ j−µ ′i )(µ j−µ ′i )
T +Σ j].

(13)

Efficient forecasting. Forecasting of future zt is per-

formed via repeated application of the predict step, with-

out an associated observation update. However our experi-

ments determined that repeated propagation and collapsing

for distant forecasts is too expensive for real time use. So,

our method only propagates a few steps into the future (5 in

our implementation) and for the remaining steps collapses

the transition GMR into a single linear Gaussian process

Fig. 5 Training GUIs for reach tasks (top) and tracking tasks (bottom).

Target positions, sizes, trajectories, and speeds are sampled at random.

xt+1 = Axt +b+ ε linearized around the estimated state dis-

tribution. The n’th forecasted state is then computed easily

in O(log2 n) matrix multiplications through repeated squar-

ing. Memoization is another effective approach if the fore-

casting horizon is fixed.

4.5 Gathering Training Data

To acquire training data we constructed a GUI for each task

type that instructs users to execute an explicitly given task

by clicking and dragging an on-screen widget (Figure 5. In

the reach GUI, users are asked to drag a widget to circular

targets with center and radius chosen randomly from a uni-

form range. In the trajectory-tracking GUI, users are asked

to drag a widget at the same pace as a reference widget that

moved along a trajectory. We pick from triangular, rectan-

gular, circular, and figure-eight patterns that were randomly

stretched and compressed in the x and y directions and ro-

tated at an arbitrary angle. The speed of the reference widget

was also chosen at random.

Using these GUIs mouse movements and task parame-

ters were gathered from five volunteers at 50Hz, resulting

in over 830 trials. Trials were mirrored in x and y directions

to reduce the effects of asymmetric training data. We no-

ticed that trackpads and mice produce very different cursor

movements, so for consistency we gathered all data using a

trackpad. The GMM transition and observation models were

learned using the standard Expectation-Maximization (EM)

algorithm. The history length and number of components
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were chosen through five-fold cross-validation based model

selection, and learning was completed in approximately 10

hours on a 2.8 GHz PC.

4.6 Experiments

We find that the resulting task models infer desired goals in

qualitatively different ways. The reach model predicts the

goal location essentially as an extrapolation of the cursor

velocity, with greater variance in the direction of travel. The

trajectory following model essentially performs smoothing,

and evens out jerkiness in the cursor motion.

First, we test study estimation accuracy on single tasks.

We compared GMA to the following techniques:

– Cursor only: simply use the cursor position as the esti-

mate.

– Linear Reg.: a linear regression of target position on the

last 5 cursor positions, fit using ordinary least-squares.

– Kalman filter: a Kalman filter with target position as hid-

den state and the last 5 cursor velocities as observations.

– GHMM: a Gaussian Hidden Markov Model (GHMM)

with the observation vector containing the target posi-

tion and last 5 cursor positions, adapted for regression

tasks. Fitting was performed using EM techniques [11],

and out of 10, 50, 100, 200, and 500 discrete states the

200-state GHMM was chosen because it had the best

likelihood on the test set. Target position estimates were

calculated using Gaussian mixture regression.

– SLDP: a switching linear dynamic process (SLDP) with

target position as hidden state and the last 5 cursor po-

sitions as observations. Fitting was performed using ap-

proximate EM techniques [17], and out of 5, 10, and 20

discrete states the 10-state SLDP was chosen because it

had the best empirical likelihood on the test set.

GMA is similar in spirit to SLDPs and GHMMs, except

GMA uses one complex process model rather than many

simple process models. One disadvantage of GHMMs is that

they do not model the continuous dynamics of hidden pa-

rameters. SLDPs have the disadvantage that they must be

trained using approximate EM, so fitting is often less ro-

bust. Each technique is trained and tested on examples from

a single task. The results of testing are shown in Figure 6.

In reach tasks, GMA is 43% better than using the cur-

sor position alone. Figure 7 illustrates how this works. This

figure plots the distance-to-target along all test examples for

the cursor and the GMA prediction, where each example is

normalized to a common initial distance and time. Distance-

to-target drops sharply as GMA extrapolates from the cur-

rent mouse velocity. There is a curious jump in prediction

variance once the cursor reaches approximately 20% of the

original distance. It appears that this may be an artifact of

the input device: in some of our training examples, users
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Fig. 7 Normalized and time-scaled distance-to-target in static target

reaching tasks for the cursor position (solid lines) and the GMA esti-

mated target (dotted lines). Mean and standard deviation are plotted.

Table 1 Cross-task mean squared target prediction errors, normalized

to Cursor Only error. Best in column is bolded.

Reach Tracking Tracking forecast (1s)

Cursor Only 100% 100% 100%

GMA (reach only) 57% 151% 86%

GMA (track only) 112% 87% 60%

GMA (reach+track) 83% 108% 73%

made an initial coarse motion toward the target, paused and

possibly lifted their finger off of the trackpad, and then ap-

proached the target with a fine-grained motion. The pause

causes GMA to be significantly thrown off, if only temporar-

ily. Future work might look into improving prediction accu-

racy by modeling this switching phenomenon, combining

the strengths of GMA and SLDPs.

For trajectory tracking, GMA only estimates the current

goal position with 13% lower MSE than simply using the

cursor position, which is not a major improvement. But its

main strength is its ability to anticipate future target posi-

tions. GMA reduces the error in forecasts at 1 s by 40% com-

pared to using the cursor position itself. We also compared

two new techniques for forecasting:

– Velocity Extrapolation: extrapolate the cursor’s current

velocity, as estimated by a moving average with window

size 5.

– Linear Reg. (forecast): a linear regression trained specif-

ically to predict 1 s forecasts from the last 5 cursor ve-

locities.

Figure 8 shows some typical trajectory tracking results.

Our second set of experiments evaluates cross-task per-

formance (Table 1). When GMA does not know the task type

(reach+track row), its performance decreases as compared

to when it is given perfect type information (reach only and

track only rows). This suggests that better task classification

accuracy would yield further performance benefits.
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Fig. 6 Comparing target prediction errors for several models on reach and track datasets. The rightmost plot displays errors in forecasting target

position at 1 s in the future. Error bars indicate standard errors, as measured across trials.
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Fig. 8 Tracking two test trajectories. Top row: target estimates pro-

duced by the trajectory tracking model are slightly more accurate than

the cursor itself. Bottom row: GMA target forecasts 1 s in the future are

substantially more accurate than using the cursor position alone (19%

lower MSE on both figures), or velocity extrapolation (42% and 14%

lower MSE on the triangle and circle, respectively).

5 Cooperative Motion Planner

The second component of our system is a cooperative mo-

tion planner that accepts optimal control problems from the

task inference engine. Before describing how FTIE and CMP

are integrated, this section will first describe the core algo-

rithm that is applicable to general optimal control problems.

CMP accepts optimal control problems with time-vary-

ing objective functions and hard constraints like collision

avoidance and actuator limits, but incorporates several con-

tributions to make it particularly appropriate for real-time

user control. First, a hybrid sampling-based and optimization-

based scheme is used to quickly generate high-quality mo-

tions while also avoiding the local minima problems of op-

timization approaches. Second, as the user-specified goal

changes, the trajectory is adjusted by replanning. The re-

planning framework obeys hard real-time constraints, and

tolerates planning and communication delays [14].

5.1 Overview

The robot’s motion in the configuration space C is subject

to joint, velocity, and acceleration limits:

qmin ≤ q≤ qmax

|q̇| ≤ q̇max

|q̈| ≤ q̈max

(14)

where all inequalities are taken element-wise. A trajectory

q(t) : [t1, t2] is said to be dynamically feasible if each of these

constraints is met for all t. Collision constraints furthermore

limit the set of valid configurations to the collision-free sub-

set of the configuration space q ∈F ⊆ C .

At each time step the planner searches for a dynamically

feasible, collision-free trajectory q(t) : [0,T ]→F that opti-

mizes a cost functional of the form

J =
∫ T

0
L (q(t), t)dt +Φ(q(T ),T ) (15)

where L is an incremental cost and Φ is a terminal cost. We

take t = 0 to be the current time.

Rather than optimizing to convergence, the planner stops

when it finds a trajectory with lower cost than the robot’s

current trajectory. If planning is successful then the new tra-

jectory is sent to the robot. To guarantee safety, the trajectory

is ensured to be completely collision free and to terminate

in velocity zero. If planning fails, the planner simply begins

anew on the next step.

5.2 Hybrid Sampling-Based/Numerical Planning

Our hybrid planner grows a tree of collision-free states T

from the start state forward in time in the configuration /

velocity / time space C × Ċ ×R
+. Each edge in T is a rel-

atively short, dynamically-feasible trajectory segment. Each
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node N also maintains an accumulated incremental cost L (N)

for the trajectory from the start to N.

Like the RRT planner, the tree is grown by sampling a

configuration qr at random and extending a path from an ex-

isting node, ending in a configuration qd . We utilize a steer-

ing function to ensure that each extension is dynamically

feasible and terminates at qd with zero velocity (a similar

strategy was used in [10]). In our case, the steering function

constructs a time-optimal acceleration-bounded curve using

the method of [15]. Interleaved with random RRT-like ex-

pansion, our method also performs numerical optimization

to construct trajectory extensions that locally optimize (15).

Pseudocode is listed in Figure 10. Several performance

enhancements are used here:

1. We initially seed the tree with the trajectory computed

on the prior iteration and attempt to make improvements

through local optimization (Lines 1–3). This approach

helps the robot cope better with suboptimal paths caused

by terminating queries early because subsequent itera-

tions are likely to improve the path further.

2. Following [10] we produce more fluid paths by bisecting

each edge in the tree to produce intermediate states with

nonzero velocity.

3. To expand the tree toward the the random state qr, we

choose the closest state under the pseudometric that mea-

sures the optimal time to reach qr in the absence of ob-

stacles. The combination of this metric and the prior bi-

section technique makes the planner less likely to find

inefficient paths that repeatedly start and stop.

4. We prune branches of the tree that have greater incre-

mental cost L (N) than the current best cost found so

far.

5. Lazy collision checking is used to delay expensive edge

feasibility checks until the planner finds a path that im-

proves the cost.

6. We devote 50% of each time step to trajectory smooth-

ing using a shortcutting heuristic (Line 8). We use the

method described in [15], with some minor modifica-

tions to ensure that each shortcut makes an improvement

in the time-varying cost function.

Local optimization. The Local-Optimize subroutine per-

forms numerical optimization of J on the trajectory leading

to a node from its parent. The integral in (15) is evaluated

using Gaussian quadrature, and the optimization parameters

are the target configuration of the steering function qd ∈ C

as well as a time scale α ≥ 1 that extends the time at which

qd is reached. The α parameter helps the planner follow

slowly time-varying objectives more closely. A boundary

constrained quasi-Newton optimization is run for a hand-

ful of iterations (10 in our implementation). If the resulting

configuration is infeasible, the optimization is rejected.

Random expansion. The Expand-Tree subroutine ex-

tends T at random by sampling a desired configuration qr,

C

g(t)

y
cur
(t)

qr

qd

Fig. 9 Our planner grows a tree in the configuration space C to fol-

low a goal trajectory g(t), using the current trajectory qcur(t) as a seed

(top left). The start and end of the trajectory are numerically optimized

(top right). The tree is also extended toward randomly selected config-

urations (bottom left). Finally, the best trajectory is smoothed using a

“shortcutting” heuristic (bottom right).

Hybrid-Planner(ycur,J, tmax)
1. T ← Seed-Tree(ycur)
2. Let Nstart and Nend be the nodes in T corresponding to the start

and end of the existing path.

3. Do Local-Optimize(Nstart) and Local-Optimize(Nend).
4. Until 0.5tmax time elapses, do:

5. N←Expand-Tree(T )
6. Local-Optimize(N)

7. Let y be the best feasible trajectory in T .

8. Shortcut y until tmax time elapses.

9. Return y.

Fig. 10 Pseudocode for the CMP planner.

then generating an extension toward qr from the “closest”

existing node N that satisfies L (N) < Jbest . This condition

ensures that extensions are not attempted from parts of the

tree that have no chance of improving upon the current ob-

jective value. To measure closeness we use the optimal-travel-

time pseudometric dt((q(N), q̇(N)),(qr,0)), which uses the

the method of [15] to calculate the minimum travel time

between two configuration / velocity states under velocity

and acceleration bounds. Next, we extend an edge of T ,

limited by the distance parameter δ . The destination of the

edge qd is set to qr if ||qd−q(N)|| ≤ δ , and otherwise qd ←

q(N) + δ
qr−q(N)
||qr−q(N)|| . If qd lies in collision, the process re-

peats. Otherwise, a new node N′ at state (qd ,0) is added

as a child of N. As in [10], we also insert a node N′′ at the

midpoint of the trajectory from N to N′ so that subsequent

steps can proceed from N′′ without stopping.

Lazy collision checking. We use a lazy strategy that de-

lays relatively expensive trajectory collision checking. We
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Fig. 11 Top: Uncluttered and cluttered test scenarios in which the end-

effector is instructed to move along a circular trajectory. The trajectory

is a priori unknown to the robot. Bottom: Comparing tracking perfor-

mance when CMP features are disabled. Graphs show the mean, min,

and max targeting errors over 10 runs on the uncluttered and cluttered

scenarios.

maintain the cost Jbest of the best collision-free path found

so far, and is initialized to J(Pcur). Every time a node N is

added to T we test whether the cost J(N) is lower than Jbest .

If so, collision checking is performed on the path leading to

N. If successful, we set Jbest ← J(N). If not, the offending

edge and all descendants in T are deleted.

Hard real-time constraints. To obey the hard real-time

constraint, the planner is not initialized at the robot’s cur-

rent state because once planning is completed, the robot will

have already moved. Instead, following [10, 23] the plan-

ner is initialized to the predicted state along the current tra-

jectory, propagated forward in time by the planner’s time

limit ∆ t. As in [14] we adapt the time step ∆ t to the diffi-

culty of problems by increasing it if the planner failed on

the prior time step (indicating a hard plan), or reducing it

if the planner succeeded on the prior time step (indicating

an easy plan). To improve responsiveness we also reduce ∆ t

when the user changes goals by introducing a scaling factor

e−cD where D is the distance between the cursor position on

the prior planning iteration and the current iteration. Here c

is a sensitivity parameter chosen via a small amount of tun-

ing (in our implementation, c = 4/h where h is the screen

height). It is also a simple matter to interrupt a long replan-

ning cycle and start anew if the goal makes a large change.

5.3 Experiments

We tested the performance of CMP on a synthetic circle

tracking task in both uncluttered and cluttered environments

(Figure 11). Experiments suggest the combination of com-

ponents in the hybrid approach helps our planner perform

well across problem variations. The “No rand.” case dis-

ables randomized exploration, and the planner simply lo-

cally optimizes the path with collision checking. Random-

ized exploration improves performance by 30% and 34% in

the uncluttered/cluttered scenarios respectively, because it

is able to better circumvent obstacles. “No opt.” turns off

the optimization step, and performance suffers in the un-

cluttered scenario because the convergence of random ex-

ploration is slow. “No smooth” turns off the postprocessing

smoothing step, and performance suffers on both scenarios.

Results from pairwise t-tests indicates that each component

improves performance at significance level p < 0.001.

6 Integrating FTIE and CMP

To integrate the FTIE and CMP, we convert predictive task

estimates into a planning cost function of proper determinis-

tic form (15). We also introduce an introspective cost func-

tional that monitors both the task distribution and the likeli-

hood of a successful replan.

6.1 Expected Cost Functional

Let g(t) denote a screen-coordinate realization of the in-

tended target’s trajectory. We want to find a robot trajectory

q(t) that minimizes the distance between g(t) and x(q(t)),

where x(q) is the image-space position of the clicked point at

the robot’s configuration q. When the user clicks and drags

a point on the robot, the FTIE provides a time-varying prob-

ability distribution P(g, t) on g(t) derived from the inferred

task bt(zt). Here we estimate P(g, t) for all t from the current

time t = 0 to some maximum forecasting horizon.

We then optimize the expected cost:

J = Eg

[

∫ T

0
Ld(q(t), t|g(t))dt +Φd(q(T ),T |g)

]

(16)

where the expectation is taken over goal position g. By lin-

earity of expectation, we have

J =
∫ T

0
Eg(t) [Ld(q(t), t|g(t))]dt +Eg [Φd(q(T ),T |g)] .

(17)

Now let the deterministic cost functionals Ld and Φd mea-

sure squared distance to the goal g(t). Specifically, reach and

tracking tasks measure the distance between g(t) and the

robot’s end effector position projected to the screen x(t) ≡

x(q(t)). We will also introduce a discount factor λ (t) that

will be defined below. The resulting formulation is:

J =
∫ T

0
λ (t)Eg

[

||x(t)−g(t)||2
]

dt

+
∫ ∞

T
λ (t)Eg

[

||x(T )−g(t)||2
]

.

(18)
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Fig. 12 The empirical distribution of introspective weights λ (t) (solid)

and an exponentially decaying fit (dashed).

Using the fact that E[||X ||2] = tr(Var[X ]) + ||E[X ]||2, this

expression simplifies to

J =
∫ ∞

0
tr(Var[g(t)])dt +

∫ T

0
λ (t)||x(t)−E[g(t)]||2dt

+
∫ ∞

T
λ (t)||x(T )−E[g(t)]||2dt.

(19)

Since the first term is independent of x it can be dropped

from the optimization, resulting in an expression in the form

of (15) as desired.

6.2 Introspective Discounting

The introspective discount function weighs the contribution

of each point in time to reflect its expected cost taking into

account the fact that the path will be replanned in the future:

λ (t) = Ext

[

||Xt(t)−E[g(t)]||2

||x(t)−E[g(t)]||2

]

(20)

where Xt indicates the unknown trajectory actually executed

by the robot, taking future replans into account. The ratio-

nales for this discount factor is that 1) later planning steps

are likely to significantly change the path actually taken, and

2) the belief on g will change while the user input changes.

Hence, the planner should spend less effort optimizing the

portions of the trajectory in the distant future.

We estimate this expectation by gathering planning statis-

tics on many example problems. We find that for a given

problem, an exponentially decreasing fit e−bt provides a good

fit to the empirical data. However, the rate parameter b is

highly sensitive to the difficulty of the problem. Fortunately

the current time step ∆ provides a first order approxima-

tion of problem difficulty. So, we adaptively discount less

in harder regions of the configuration space by scaling the

t axis of λ proportionally to ∆ and estimate a single b that

provides the best fit to our training data (Figure 12).
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Fig. 13 Traces of the end effector in the cluttered environment without

(left) and with (right) predictive tracking. Because it is planning and

executing in real-time, once the non-predictive planner finishes plan-

ning the target has already moved a great distance. Predictive tracking

anticipates the target’s movements and leads to substantially lower er-
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Fig. 14 Targeting errors with and without intent inference. Results av-

eraged over 20 runs. Error bars indicate one standard deviation.

6.3 Experiments

Figure 13 shows an example of how task prediction com-

bined with CMP leads to better trajectory tracking than non-

predictive CMP. Overall, our experiments found that pre-

diction improves tracking error by 30% on both the unclut-

tered and cluttered scenarios, compared to a non-predictive

system. Compared to a non-predictive, optimization-based

system, our implementation improves tracking by 50% and

54% on these two scenarios, respectively. Compared to a

non-predictive, sampling-based system, our implementation

improves tracking by 65% and 39%, respectively. All results

are statistically significant with p < 0.001.

Figure 14 lists mean distance from the robot’s end effec-

tor to the intended target, with and without task prediction.

The Reach and Tracking columns use the natural reach and

tracking motions from our testing set as user input, and Cir-

cle and Circle+obst use the synthetic circle motions in the

uncluttered and cluttered environments, respectively. FTIE

improves upon the cursor-only approach by 27% on the nat-

ural cursor trajectories and 30% on the circular trajectories.

We also examined whether FTIE discriminates well between

tasks, and found out that classification performance is in
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fact rather poor; the most probable task estimated by GMA

is correct only 66% of the time. Surprisingly, this does not

have a major effect on overall performance! The rightmost

column of Figure 14 suggests that even if perfect task knowl-

edge is introduced into the estimation, targeting error does

not change significantly. This indicates that confusing inputs

tend to indicate similar intended motions of the end effec-

tor. Future work ought to investigate whether similar effects

are observed for other tasks besides reaching and trajectory

tracking.

7 Conclusion

This paper presented algorithms for estimating, predicting,

and planning freeform tasks for assisted teleoperation of a

6DOF robot manipulator using 2D cursor input. Our contri-

butions are twofold. First, a freeform intent inference tech-

nique based on Gaussian mixture autoregression (GMA) was

used to predict static targets, dynamic targets, and to distin-

guish between the two. Second, a cooperative motion plan-

ner was used generate higher quality trajectories by antici-

pating users’ desired tasks. Results in simulation show im-

proved task performance, and suggest that better task dis-

crimination may yield even further benefits.

Future extensions of this work may consider a wider

variety of freeform tasks, such as manipulation tasks and

richer spatial movements (e.g., depth control and rotations),

that cannot be described by screen-space targets. Another

interesting line of research might improve task prediction

accuracy by considering contextual features of the robot’s

environment, such as proximity to obstacles and manipulat-

able objects. Perhaps the most significant challenge in pur-

suing these avenues is acquiring sufficiently large datasets

for learning accurate models of such tasks. Finally, human-

robot interaction studies may help determine whether intent

inference and cooperative motion planning techniques lead

to a better user experience for controlling real robots.

Appendix

Gaussian Conditioning. If X and Y are jointly normally dis-

tributed as follows:

[

X

Y

]

∼N

([

µx

µy

]

,

[

Σx Σxy

Σyx Σy

])

, (21)

then the conditional distribution over Y given the value of X

is another Gaussian distribution N (µy|x,Σy|x) with

µy|x = µy +ΣyxΣ−1
x (x−µx)

Σy|x = Σy−ΣyxΣ−1
x Σxy.

(22)

This form is in fact equivalent to the ordinary least-squares

fit y = Ax+b+ε with A = ΣxyΣ−1
x , b = µy−ΣyxΣ−1

x µx, and

where ε ∼N (0,Σy|x) is an error term.

Kalman Update. Given a linear observation model

o = Ax+b+ ε with ε ∼N (0,Q), and prior x ∼N (µ,Σ),

the posterior P(x|o) is a Gaussian with mean and covariance

µx|o = µ−ΣATC−1(o−Aµ)

Σx|o = Σ −ΣATC−1AΣ
(23)

where C = AΣAT +Q.
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