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ABSTRACT Coaches and athletes need to understand the kinematics and dynamics of karate kicks to 

improve the training process and results. The research was aimed at studying the automatic recognition of 

punches in karate using only linear acceleration sensors. Accelerometers were part of the Inertial 

Measurement Units (IMUs), which were attached to the left and right wrist of the athlete. To develop a model 

of punches, highly qualified athletes with 3-7 years of karate experience participated in the research. We 

analyzed the acceleration fields of various karate punches: Yun Tsuki, Mawashi Tsuki, Age of Tsuki, Uraken. 

A simpler approach to extracting features without calculating their statistical characteristics is proposed. To 

solve the classification problem, various architectures of convolutional neural networks are used: multilayer 

perceptron, 1- and 2-dimension Convolution Networks. Since the recognition of punches was carried out in 

the conditions of a shadow fight, in addition to the recognition of punches, another output parameter was 

introduced – movement without punches. Studies have shown a high level of punch recognition based on the 

developed models. The multi-class accuracy value is 0.96, and the average F1 value is 0.97 for five different 

punch classes. Thus, the proposed approach is more suitable for practical implementation in automatic 

learning systems. 

INDEX TERMS punch; sensors; classification; recognition; neural networks; kinematic analysis. 

I. INTRODUCTION 

Karate is a traditional Japanese martial art. However, this 

Japanese martial art has gained popularity all over the world. 

Sports competitions of national and world level are held in 

karate. The popularity of karate as a sport is growing, and in 

this regard, the methods of training karate athletes are 

increasingly becoming scientific in nature. To develop 

effective training techniques, coaches need to understand the 

kinematics and dynamics of karate punches [1-6]. Therefore, 

our research was aimed to analyze the velocity fields of 

punches in karate, as well as to develop and analyze various 

models of artificial neural networks for recognizing punches.  

Sports in the modern world is a socially significant element, 

and therefore the technical and technological aspects of social 

process research are important, including in the study of 

machine learning technologies. Some features of the use of 

neural networks in socially oriented processes and algorithms 

for optimizing the search for a sufficient and optimal solution 

to the problem posed are given in [7-11]. 

To solve the problems of the study, inertial measurement 

units (IMUs) were used, which included an accelerometer and 

a gyroscope. IMUs were attached to the wrists of karate 

athletes. The use of IMUs was due to the fact that in sports and 

martial arts, they proved to be an effective tool for analyzing 

the kinematics and biomechanics of human movements [12].  
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A.  REVIEW OF CURRENT RESEARCH 

In [13], studies of the acceleration and speed of punches were 

carried out using IMUS that were installed on the wrists of 

boxers. The accelerometers in this study had a large range – 

200g (g is the acceleration of gravity = 9.8 m / s2), but the 

acceleration graphs show that the maximum acceleration was 

about 25g. In addition, this acceleration corresponded to the 

final phase of the punch, when the athlete's fist stopped 

abruptly and this led to a large negative acceleration. This 

allows us to conclude that for studies of the kinematics of 

punches in martial arts, it is possible to limit the measurement 

range to 16-25g. In [13], it was found that the speed of punches 

in male athletes was 8.1±1.4 m/s for jab-out punches, and 7.7 

± 1.5 m/s for cross-out punches. The women had the following 

results: 6.6 = 1.6 m / s (job-out), 5.7 = 1.5 m / s (cross-out).   

The authors of the work [14] investigated the difference 

between the biomechanics of punches of elite and novice 

boxers based on IMUs, which in the amount of 17 pieces were 

installed on the body of boxers. IMUs had an accelerometer 

measurement limit of 18g, they included an accelerometer, 

gyroscope, magnetometer. Since the IMUs were installed on 

each body segment, the contribution of the body segments to 

the punching technique of boxers was determined. In both 

groups (elite and novice athletes), the elbow contributed the 

most to the cross-out technique, and the shoulder contributed 

the most to the hook and uppercut.   

In [15], the analysis of the kinematics of boxers ' punches 

using accelerometers was carried out in conjunction with 

videography. The authors searched for the correlation of 

postures and fields of acceleration of blows with the fatigue of 

athletes. The graphs of punch accelerations given in [15] show 

that the maximum values are in the range of 20-40 m / s2, 

which also allows us to choose an IMU for experiments with 

a measurement limit of up to 16g. In [15], it is stated that a 

large number of degrees of freedom of human hands do not 

allow us to draw unambiguous conclusions about the 

kinematics of blows, so videography was additionally 

required. It can be noted that in this work, the magnetometer 

and gyroscope, which are usually included in the IMU, were 

not used, perhaps their use could lead to the fact that 

videography would not be needed.   

Also, various techniques of artificial neural networks 

(ANN) are used to analyze the kinematics of punches in 

martial arts, which can also help in conditions of lack of data. 

The advantages of ANN have led to the fact that they are 

actively used in sports and martial arts [2]. For example, the 

authors [13] concluded that according to the accelerometer 

data, it is difficult to find the time when the boxer's hand 

begins to return after a punch. It can be assumed that the use 

of ANN methods can cope with this problem.   

In [16], the ANN in the form of a multilayer perceptron was 

developed for the purpose of automating the data collection of 

boxers ' punches. The input data for ANN was the IMU data 

that was attached to the boxers ' wrist. The accuracy of punch 

recognition ranged from 87.2 ± 5.4 \% to 95.33 ± 2.51\%.   

In [17], six different deep machine learning models for 

recognizing boxers ' punches were investigated. The IMUs 

were installed in two versions: (1 – the IMUs was attached to 

both wrists; 2 – the IMUs was attached to both wrists and the 

third thoracic vertebra). The accuracy of the impact prediction 

was: for version 1 – 0.90 ± 0.12, for version 2-0.87 ± 0.09. For 
version 1, the support vector machine (SVM) model worked 

best (accuracy = 0.96), version 2 – the multi-layer perceptron 

neural network (MLP-NN) model (accuracy = 0.98). 

Not much work is devoted to the analysis of punches in 

karate based on IMUs and ANN. And so far, no research has 

been conducted on a specific karate punch, which is called 

uraken in Japanese (a punch is made from the inside out). 

B.  CURRENT CHALLENGES AND SUGGESTED 

APPROACHES 

Punches in karate are distinguished by a complex kinematic 

pattern of punches. It is impossible to search for the most 

effective training methods without knowledge of the 

biomechanical features of punching movements. Therefore, 

it is required to study the kinematic parameters of the punch 

- speed, acceleration. 

The next problem in the field of martial arts is the 

development of a punch model. The effectiveness of motor 

actions fulfillment is determined by the degree of their 

kinematic and dynamic structure closeness to the most 

effective punch model. 

However, the development of a model of punches in karate 

requires the inclusion of a large number of factors into this 

model (kinematics and dynamics of punch; body position; 

time phases of the punch; features of the athlete's physique, 

etc.), which are still difficult to combine into a unified model. 

Therefore, at present, the development of punch models 

based on deep learning technologies is actively developing 

[2, 2, 12, 13, 16, 17, 18, 19, 20]. 

C.  PAPER STRUCTURE PARAGRAPH 

The paper structure includes the following paragraphs: 

abstract, keywords, introduction, materials and methods, 

results, discussion, conclusion, complementary materials, 

references, information about the authors. 
 
II.  MATERIALS AND METHODS 

A.  PARTICIPANTS 

The study involved sixteen healthy participants (n=16), 12 

men, 4 women, aged 22±3 years, weighing = 70±14 kg, height 
= 165±21 cm with 3-7 years of experience in karate. Ethical 

approval was granted by the Human Research 76 Ethics 

Committee at Financial University under the Government of 

the Russian Federation. 
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B.  MATERIALS 

The design of the experiment can be seen in Figure 1. 

 

FIGURE 1.  Design of the experiment. 

 

On the wrists of the athletes were fixed devices, which 

included a microcontroller, IMUs, and Bluetooth modules. 

Athletes punched in shadow fight mode. The IMUs 

(accelerometer and gyroscope) data was initially transmitted 

via the Bluetooth channel to the android device. On the 

android device, the data was saved as files for each type of 

punch. This data was then processed on the computer. In order 

to label and identify each punch for develop models of the 

artificial network, video recordings of the experiments were 

made.  

The data acquisition device (Figure 2) was a 50x20x10 mm 

box containing three modules – the microcontroller stm32f103 

[21], IMU MPU6050, and Bluetooth module HC-05 with a 

BC417143 [22]. 

 

 

FIGURE 2.  Data acquisition device. 

 

Figure 3 shows that the IMU device was attached to the 

athlete's wrist with boxing bandages. Figure 3 also shows the 

directions of the acceleration axes and the angular velocity 

of the gyroscope. 

We don't use gyroscope and magnetometer measurements 

and don't calculate the angles and position of the sensor. We 

use only linear acceleration sensors measurements. 

 

FIGURE 3.  Measuring module attached to the arm with a boxing hand 

wrap. 

 

To record the session, we use Xiaomi Redmi 7 camera with 

1980x1080 resolution 30 fps. Video analysis was used to 

labeling ground truth punches. To record data, we use 

Bluetooth Serial Terminal Android application. 

The data collection session consists of the participant 

performing 1912 punches in shadow fight mode. Classes of 

punches are: 

1. Yun Tsuki (YT); 

2. Mawashi Tsuki (MT); 

3. Age Tsuki (AT); 

4. Uraken (U); 

5. No Punch (NP). 

In Figure 4-7, the red arrow shows the approximate 

trajectories of the punches. 

The design of the data acquisition device was developed as 

a result of a review of work in the field of obtaining and 

processing data from sensors installed on a person and 

showing the movement of body parts in space [23-40].  

Also, for the development of the device, the works in which 

the data was processed using convolutional neural networks 

were analyzed [41-55]. 
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FIGURE 4.  Approximate trajectories of the punches Yun Tsuki. 

 
FIGURE 5.  Approximate trajectories of the punches Mawashi Tsuki. 

 
FIGURE 6.  Approximate trajectories of the punches Age Tsuki. 

FIGURE 7. Approximate trajectories of the punches Uraken. 

 

Measured data was packed to dataset X: every sample has 

3 columns (x, y, z acceleration). Train/validation random 

splitting was made with 10:1 proportional for each class. 

Histogram of classes samples distribution in Figure 8. 

 

FIGURE 8.  Train and test samples. 

 

Data preprocessing was conducted with python 3.7 

packages: numpy, sklearn. Visualization was made with 

matplotlib, Neural Net models build with tensorflow.keras 

2.2. Raw data for different punch classes visualized in 

Figure 9. 

 

 

FIGURE 9.  Measurement of raw data for different punch classes. 

 

In experiments takes part 4 models: 

• Multilayer perceptron; 

• 1-dimension convolution network; 

• 2-dimension convolution network; 

• 2-dimension convolution network with additional layers. 
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Multiclass Accuracy used as classification metric for all 

classes: 

 

       ACC = N_T / N,   (1) 

 

N_T - number of true classified punch, N - total number of 

punches. 

Precision (P), recall (R), and F1-score were used as 

classification metrics for single classes: 

 

 P = N_TP / (N_TP + N_FP),  (2) 

 

R = N_TP / (N_TP + N_FN),   (3) 

 

   F1 = 2 P R / (P + R),   (4) 

 

N_TP - number of true positive classified punch, N_FP - 

number of false positive classified punches. 

 

Models was trained using PC with Ubuntu 18.04 LTS, 

Intel(E) Core (TM) i7-6950x CPU, 64 GB RAM, GTX 1080ti 

8 GB GPU. 

The hyperparameters of the developed neural network 

models are presented in Table 1. In Table 1: 1 – multilayer 

perceptron, 2 – 1d convolution network, 3 – 2d convolution 

network, 4 - 2d convolution network with additional layers. 

 

TABLE 1 

HYPERPARAMETERS FOR NEURAL NETWORKS 

 

Neural network models were developed using Python 

software, the full program code along with the dataset are 

freely available in the GitHub repository [56]. The pseudocode 

of the program implements generalized approaches for the 

developed models: 

Before executing the program: initialize network weights 

with small random values, training_data, batch_size, 

learning_rate. 

 

 

for each epoch do 

shuffle training_data 

for each batch(batch_size) in training data do  

// forward pass 

predictions = argmax(network(batch))     

compute batch cross_entropy_loss(predictions, 

actuals)  

// backward pass 

compute gradients ΔWi for all layers from output to 

input    

update network weights Wi=Wi - ΔWi⋅learning_rate  

return the network 

 

The architectures of the developed neural networks are 

shown in tables 2-5 and Figures 10-13. 

 

TABLE 2 

MLP ARCHITECTURE 

 

FIGURE 10.  Multilayer perceptron. 

 
 
 
 

  

Model 

number 

Input 

vector 

size 

Learning 

rate 

Maximum 

epochs 

Minibatch 

size 

1 450 1e-3 100 16 

2 450x1 2e-3 100 64 

3 150x3 0.032 100 80 

4 150x3 0.01 100 64 

OPERATION 
DATA 

DIMENSIONS 
WEIGHTS(N) 

Input 450  

Dense ----------------- 202950 

ReLU 450  

Dense ----------------- 461824 

ReLU 1024  

Dense ----------------- 262400 

ReLU 256  

Dense ----------------- 32896 

Sigmoid 128  

Dense ----------------- 645 

Sigmoid 5  
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TABLE 3 

1D CONVNET ARCHITECTURE 

 

 

 

FIGURE 11.  1D Convolution Net. 

 

 

TABLE 4 

2D CONVNET ARCHITECTURE 

 

 

 

FIGURE 12.  2D Convolution Net with 2 layers. 

 

OPERATION 
DATA 

DIMENSIONS 
WEIGHTS(N) 

Input 450x1  

Conv1D ----------------- 256 

 450x64  

BatchNormalization ----------------- 256 

 450x64  

ReLU ----------------- 0 

 450x64  

Conv1D ----------------- 12352 

 450x64  

BatchNormalization ----------------- 256 

 450x64  

ReLU ----------------- 0 

 450x64  

Conv1D ----------------- 12352 

 450x64  

BatchNormalization ----------------- 256 

 450x64  

ReLU ----------------- 0 

 450x64  

GlobalAveragePooling1D ----------------- 0 

 64  

Dense ----------------- 325 

Sigmoid 5  

OPERATION 
DATA 

DIMENSIONS 
WEIGHTS(N) 

Input 3x150x1  

Conv2D ----------------- 7560 

 2x99x72  

BatchNormalization ----------------- 288 

 2x99x72  

ReLU ----------------- 0 

 2x99x72  

Conv2D ----------------- 25432 

 1x98x88  

BatchNormalization ----------------- 352 

 1x98x88  

ReLU ----------------- 0 

 1x98x88  

GlobalAveragePooling2D ----------------- 0 

 88  

Dense ----------------- 445 

Sigmoid 5  
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TABLE 5 

2D CONVNET ARCHITECTURE WITH ADDITIONAL LAYERS 

 

 
FIGURE 13.  2D Convolution Net with 4 layers. 

 

In Tables 2-5, ReLu, Sigmoid are the activation functions 

used on these layers. Batch normalization means applying a 

transformation that maintains the average output value close 

to 0 and the standard deviation of the output close to 

1. GlobalAveragePooling2D applies an average pooling of 

spatial dimensions until each spatial dimension is unified and 

leaves the other dimensions unchanged. 

 

III.  RESULTS 

A.  MULTILAYER PERCEPTRON 

Multilayer perceptron consists of 5 sequential layers with 4 

hidden sizes (450, 450, 1024, 256, 128, 5), batch 

normalization, sigmoid, and ReLu activations. After 100 

epochs of training, we have 0.99 training and 0.87 validation 

accuracy. Classification metrics are in Table 6. 

TABLE 6 

MLP CLASSIFICATION METRICS 

 

The confusion matrix is in Figure 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 14. MLP confusion matrix. 

 

During the training process, we see the difference between 

train and validation accuracy. We propose that the linear 

model is overfitting. To avoid this, we try a more complicated 

model - 1D convolution network for time series classification 

from [57]. 

B.  1D CONVOLUTION NETWORK 

1-dimension Convolution Network consists of 3 separate 

layers for each channel x, y, z with 64 kernels and ReLu 

activations. Optimizer is Adam, learning rate = 2e-3 and batch 

size 64. 

After 100 epochs of training, we have 0.81 training and 0.62 

validation accuracy. Classification metrics are in Table 7. 

  

OPERATION 
DATA 

DIMENSIONS 
WEIGHTS(N) 

Input 3x150x1  

Conv2D ----------------- 2080 

 3x150x32  

BatchNormalization ----------------- 128 

 3x150x32  

ReLU ----------------- 0 

 3x150x32  

Conv2D ----------------- 8256 

 3x150x64  

BatchNormalization ----------------- 256 

 3x150x64  

ReLU ----------------- 0 

 3x150x64  

Conv2D ----------------- 16448 

 3x150x64  

BatchNormalization ----------------- 256 

 3x150x64  

ReLU ----------------- 0 

 3x150x64  

Conv2D ----------------- 24672 

 2x149x96  

BatchNormalization ----------------- 384 

 2x149x96  

ReLU ----------------- 0 

 2x149x96  

GlobalAveragePooling2D ----------------- 0 

 96  

Dense ----------------- 485 

Sigmoid 5  

Punch class Precision Recall F1-score 

YT 0.87 0.93 0.91 

MT 0.97 0.90 0.93 

AT 0.83 0.90 0.87 

U 0.92 0.96 0.94 

NP 0.88 0.79 0.83 
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TABLE 7 

1D CNN CLASSIFICATION METRICS 

Punch class Precision Recall F1-score 

YT 0.64 0.85 0.73 

    

MT 0.91 0.63 0.75 

AT 0.86 0.75 0.81 

U 0.85 0.98 0.91 

NP 0.86 0.79 0.82 

 

The confusion matrix is in Figure 15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 15.  1D CNN confusion matrix. 

 

During the training process, we observe small train 

accuracy, unstable validation accuracy, and big loss. We 

suppose that 1D convolution model is unsuitable for punch 

classification. So, we try to use feature combination and model 

with 2D convolution layers. 

C.  2D CONVOLUTION NETWORK 

2-dimension Convolution Network consists of 2 layers, that 

inputs are both x,y and y,z axis. Layers have 72 and 88 kernels, 

size (2, 52), batch normalization, and ReLu activations. 

Optimizer is Adam, learning rate = 2e-3 and batch size 64. 

After 100 epochs of training, we have 0.97 training and 0.93 

validation accuracy. Classification metrics are in Table 8. 

 

TABLE 8 

2D CNN CLASSIFICATION METRICS 

Punch class Precision Recall F1-score 

YT 0.81 1.00 0.89 

MT 1.00 0.94 0.97 

AT 0.90 0.85 0.88 

U 0.96 0.98 0.97 

NP 1.00 0.81 0.90 

The confusion matrix is in Figure 16. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 16.  1D CNN confusion matrix. 

 

During the training process we see a much better train and 

validation accuracy, so we try a deeper model with 3 2D 

convolution layers. 

D.  2D CONVOLUTION NETWORK WITH 3 LAYERS 

2-dimension Convolution Network consists of 3 layers, that 

inputs are both x, y and y, z axis. The first layer has 32 kernels 

with size (2, 32), other layers have 64, 64, and 96 (2, 2) size 

kernels. Batch normalization and ReLu activations were also 

used. Optimizer is Adam, learning rate = 2e-3 and batch size 

64. 

After 100 epochs of training, we have 0.98 training and 0.96 

validation accuracy. Classification metrics are in Table 9. 

 

TABLE 9 

2D CNN classification metrics with additional layers 

Punch class Precision Recall F1-score 

YT 0.94 1.00 0.97 

MT 1.00 0.98 0.99 

AT 0.97 0.94 0.95 

U 0.96 1.00 0.98 

NP 1.00 0.92 0.96 
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The confusion matrix is in Figure 17. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 17.  2D 3 layer CNN confusion matrix. 

 

During the training process, we see better train and 

validation accuracy, a small loss. We try more layers, but this 

does not significantly improve classification metrics. 

IV. DISCUSSION 

Having the field of accelerations for different types of a blow, 

it is possible to set the task of the analysis of the technology of 

performance of each of punches. For more independent 

analysis of the value of accelerations, we will divide into free-

fall acceleration of g = 9.8 m/c2, the data thereby obtained will 

become dimensionless. To improve the quality of the analysis 

we will integrate the calculated values of accelerations. We 

approximate acceleration on the interval [(n-2)T, n T] using 

the parabola on three values a(n-2), a(n-1), a(n). The 

difference equation has the appearance: V (n) = V (n-1) + T 

[5/12a (n) +8/12a (n-1)-1/12a (n-2)]. Thus, we will receive 

dependence of the speed of blow on dimensionless time. In 

works [13, 14, 15] several sensors for the analysis of 

movements were used. In our research for the analysis of the 

technology of performance of blows one three-axis 

accelerometer which allows drawing qualitative conclusions 

on the equipment of each type of punch is used. 

Having constructed schedules of dependence of speeds, it 

was noted that they for the same punches significantly differ 

depending on the hand on which measurements were made. At 

the same time for the same hand of dependence of speeds for 

identical types of blow are similar, but don't coincide. As 

dependences of speeds for a particular hand and particular 

punch don't coincide but are close, average dependences of 

speeds on the number of measurements for each type of punch, 

for the left-hand and right hand were found. Measurements 

were performed using the accelerometer fixed on a hand. In 

Figure 3 the illustration for the left-hand hand with the 

indication of the directions of a coordinate is presented. When 

fixing an accelerometer on the first hand the abscissa axis was 

directed along a forearm towards the athlete. 

Let's consider concrete types of blows. 

 

A.  KINEMATIC ANALYSIS OF YUN TSUKI 

In Figures 18, 19 dependences of a projection of speed of a 

hand to an abscissa axis (at the left) and an axis of ordinates 

(on the right) from measurement time are presented. Let's 

consider the schedule on the left. For the right hand, the 

schedule has a minimum between two maxima, for the left-

hand hand, a maximum is located between two minima. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 18.  Change of projections of speed at the punch of Yun Tsuki. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 19.  Change of projections of speed at the punch of Yun Tsuki. 
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From presented in the left-hand part schedules it is visible, 

the punch consists of several phases, namely, a swing phase 

(inverse to the main driving) before the first crossing of an 

abscissa axis on graphics, phases of increase in speed of a hand 

for punch with the subsequent delay (the second extremum on 

graphics), transition to a phase of back motion (the second 

crossing of an abscissa axis) with the subsequent delay (the 

third extremum) and transition to "residual" driving in the 

direction of the main punch (the third crossing of an abscissa 

axis). From schedules of the speed of a hand for this athlete, it 

is visible that the maximum speed of swing by the right hand 

on axis X is less than the same size for the left-hand hand and 

swing by the right hand shorter, than swing by the left-hand 

hand. However, the maximum speed in the fissile phase of a 

blow for the left-hand hand is more, than for the right, but it is 

reached a little later, than the moment of achievement of the 

maximum speed in the corresponding phase by the right hand. 

Thus more intensive swing by the left-hand hand gives high 

maximum speed in a projection to axis X in the main phase of 

the blow.  

It is possible to note that the time of the beginning of back 

motion for the right and left-hand hand practically coincide, as 

well as the time of the beginning of residual driving in the 

direction of the blow, but the delay of back motion by the left-

hand hand sharper and occurs slightly earlier (the third 

extremum on schedules). Analyzing the change of a projection 

of speed to axis Y, it is possible to note that there is no smell 

on an axis of ordinates, but the speed maximum modulo for 

the right hand is less, than for the left-hand and is reached by 

the right hand earlier, than left-hand. Further, the phase of 

delay of movement of a hand down with the subsequent 

insignificant increase in speed on axis Y follows. 

B.  KINEMATIC ANALYSIS OF MAWASHI TSUKI 

In Figures 20, 21, dependences of projections of speed to 

axes X (at the left) and Y (on the right) from measurement 

time are presented. 

From the analysis of the left-hand schedule, it is visible 

what the pith punch of swing to axis X isn't present. On-axis 

X speed at first grows and then decreases almost to zero. 

Change of a projection of speed to axis Y in a right member of 

Figure 11 shows that along this axis the swing for both hands, 

and approximately identical takes place. The maximum 

projection of speed to axis Y for the right hand is more than 

for the left hand. After achievement of the maximum 

projection of speed to an axis of ordinates delay of driving in 

this direction (in fact down) with reaching some constant value 

begins. It is possible to note, the final projection of speed to 

axis Y in the right hand is more than a similar size for the left-

hand hand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 20.  Change of projections of speed at the punch of Mawashi 
Tsuki. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 21.  Change of projections of speed at the punch of Mawashi 
Tsuki. 
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C.  KINEMATIC ANALYSIS OF AGE TSUKI 

In Figures 22, 23, dependences of projections of speed to 

axes X (at the left) and Y (on the right) from measurement 

time for this type of blow are presented. From the left-hand 

drawing, it is visible that in an initial phase there is a swing 

on axes X (back motion), both the left-hand, and right hand, 

but swing by the left-hand hand is more intensive and more 

long-lived. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 22.  Change of projections of speed at the punch of Age Tsuki. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 23.  Change of projections of speed at the punch of Age Tsuki. 

In the following phase a set of the maximum speed on an 

abscissa axis on the right hand occurs quicker, than left-hand, 

the maximum value of a projection of speed to axis X 

approximately identical to both hands. Further, the braking 

phase before crossing the zero line which comes to an end 

earlier at a blow with the right hand follows. The short phase 

of back motion comes to an end with a transition 

approximately at the same time for both hands (most left-hand 

crossing the zero line) in the last phase of the punch. The final 

projection of speed to axis X for the left-hand hand is more 

than the same size for the right hand. Analyzing schedules for 

a speed projection to an axis of ordinates we will note swing 

existence (upstroke) as right, so the left-hand hand. Swing on 

this axis the right hand more intensively lasts longer than 

swing by the left-hand hand. In the following phase of a set of 

the maximum speed down the maximum speed, the left-hand 

hand is more, than the maximum speed of the right hand 

(minima in the neighborhood of the 50th measurement), but it 

is reached a little later. Further the phase of decrease of vertical 

speed, and right follows, having slowed down driving down, 

even begins to move up (the second crossing of the zero line 

top the schedule), but then moves down, finishing with a small 

vertical speed. The repeated swing was made the right hand. 

The left-hand hand, having slowed down vertical driving, 

subsequently accelerated, having finished with a good vertical 

speed. Summarizing this type of punch by the athlete, we will 

note that the left-hand hand this punch turns out more 

intensive, than the right hand.  

 

D.  KINEMATIC ANALYSIS OF URAKEN 

In Figures 24, 25, dependences of projections of speed to axes 

X (at the left) and Z (on the right) from measurement time for 

this type of punch are presented. Let's consider dependences 

of a projection of speed to axis X. It is possible to note that on 

this axis there is no swing, advance is made in the beginning 

and after the achievement of the maximum speed there is a 

delay, and further short the driving site back after crossing the 

zero line. The maximum speed along this axis is more at a 

blow by the right hand. Analyzing the change of a projection 

of speed to axis Z, it is easy to notice that in an initial phase 

the swing which is more intensive for the left-hand hand 

becomes. Then the driving counteracting the attack of the 

opponent a hand of the same name becomes, and the 

maximum speed for the left-hand hand is more than for right, 

after delaying along this axis the whipping driving in inverse, 

from within outside, the direction is made. And the whipping 

driving of right is insignificant. Further, the hand begins 

driving inside and to itself.  

Summing up the result of the analysis of the considered 

punches made by the athlete we will note that in the presence 

of swing in an initial phase the maximum speed of blow of 

subjects is more than the swing is more. 
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In work [13] the dependence of the speed of blow on the 

experience of the athlete is established, but the speed 

difference for different hands isn't established. In our work, 

thanks to the separate analysis of the kinematics of each hand 

the difference in speeds for different hands is established. This 

difference is caused by the difference in technology of 

realization of blow-by each hand. In work [14] differences 

were found in the technology of realization of blows by 

athletes with different experiences. In our research, the 

dependence between different phases of realization of blow is 

established. It can be useful for trainers to improve the 

technology of realization of punches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 24.  Change of projections of speed at the punch of Uraken. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 25.  Change of projections of speed at the punch of Uraken. 

E.  PUNCH RECOGNITION 

 

The results of the experiments are in good agreement with the 

works of other authors who have performed similar studies. 

Other authors who conducted research on the recognition and 

classification of punches did not use such a class as 

"movement without punches".  

The multilayer perceptron, despite its simplicity, showed good 

results. The best F1 score is 0.95 for U-punch, worst is 0.86 

for N-punch. In [16], studies were conducted on the 

recognition of punches of boxers using the MLP. The authors 

[16] obtained a recognition level of 92.93 ± 4.33% for highly 
qualified boxers. 

The difference between train and validation accuracy is the 

result of model overfitting. An increasing the number of 

training samples will solve this problem. 1D convolution 

model from [57] works very badly and is not suitable for 

punch recognition. Train accuracy is about 0.8, but validation 

accuracy is only 0.65 and very unstable. Worst F1 score is 0.11 

for MT-punch, best F1 is 0.81 for No-punch class. Loss after 

100 epochs training is only about 0.3.  As we proposed, 2D 

convolution model with 2 conv layers works better. Metrics 

are like on MLP: best F1 is 0.93 for YT-punch and worst is 

0.90 for U-punch class. A little gap between training and 

validation accuracy curves is told about some overfitting, so 

we tested deeper conv model with 4 layers.   

In [18], the movements of fencers were studied. In this 

work, models were developed that combine the input data 

received from the IMU and Kinect. Then, the input data was 

preprocessed based on Dynamic Time Warping (DTW) and 

Support Vector Machine (SVM). After preprocessing, the data 

was processed in MLP. The accuracy of the obtained 

recognition models varied for different types of movements 

from 87% to 99%. 

2D convolution model with 3 conv layer shows best result: 

0.97 validation accuracy. Best F1-score 0.99 for YT-punch 

class, worst 0.90 for AT-punch class.  Comparing with MLP, 

we achieved better classification metrics and shift invariant 

model, based on 2D convolution. 

One of the best results in the classification of punches in 

boxing were shown by the machine learning algorithms Linear 

Regression and Support Vector Machines [12]. With it was 

possible to achieve a multiclass accuracy of 0.96 and an 

average F1 of about 0.95. In our study, we used convolutional 

neural networks to classify karate strikes. The best result was 

shown by a 2D convolutional architecture with three layers, 

which allowed achieving similar results: 0.96 accuracy and 

0.97 average F1. In the work [17], the data obtained using 

IMU were used. In these studies, IMUs were attached to the 

wrists of boxers. Various deep learning methods, including 

MLP, were used to recognize impacts. For the experiment 

configuration, when IMUs were attached to the boxer’s wrists, 
the accuracy was 0.98. 
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Unlike [12], we used a larger dataset - 1700 samples for 

training and 212 for testing. We used only the results of 

measuring linear acceleration along the x, y, z axes, did not 

use measurements of angular acceleration and magnetic field 

and did not calculate the angles of the sensor position. We used 

raw data without statistical processing - we did not calculate 

the mean, standard deviation, min max, etc. 

V.  CONCLUSION 

The research tasks included the study of kinematics and the 

development of various neural network models of such karate 

punches as Yun Tsuki, Mawashi Tsuki, Age Tsuki, Uraken. 

The kinematics of the Uraken has still been little studied, since 

this punch is not used in all martial arts. Also, a type of 

classification was introduced – "movement without punches", 

which is also not found in studies, although this approach will 

help in the future to distinguish punches from feints and 

movements. 

We believe that our proposed approach is more suitable for 

practical implementation and implementation in the final 

product. The results of studies of the kinematics of punches 

will help to deepen the understanding of the biomechanics of 

karate punches, which will allow scientists to develop the 

theory of punch, and coaches and athletes to learn the correct 

technique more effectively. The work of trainers is connected 

with the constant measurement of the parameters of punches, 

the recognition of punches allows these routine operations to 

be automated.  

Karate punches have complex kinematics and dynamics, so 

the developed model was limited to the study of single 

punches, that is, the model did not include combinations of 

punches, feints, and movements of athletes. Also, the model 

did not include gyroscope and magnetometer data, which 

probably limits its applicability and accuracy due to complex 

impact trajectories. All these limitations are areas of future 

research. The subject of these studies, which should answer a 

lot of topical questions:  

- development of an optimal, unified punch model (the 

study should also answer the question: is it possible to create 

such a model, or can we only create limited models for certain 

conditions); 

- development of models for recognising punches in 

combinations; 

- recognition of punch in real sparring, when two athletes 

interact; 

- inclusion of input parameters such as gyroscope and 

magnetometer data into the model; 

- creating punch models in the joint study of punch video 

capture and kinematic data received from the IMUs. 
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