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Abstract. The appearance of an object is composed of local structure. This local structure can be described and
characterized by a vector of local features measured by local operators such as Gaussian derivatives or Gabor filters.
This article presents a technique where appearances of objects are represented by the joint statistics of such local
neighborhood operators. As such, this represents a new class of appearance based techniques for computer vision.
Based on joint statistics, the paper develops techniques for the identification of multiple objects at arbitrary positions
and orientations in a cluttered scene. Experiments show that these techniques can identify over 100 objects in the
presence of major occlusions. Most remarkably, the techniques have low complexity and therefore run in real-time.
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1. Introduction

The paper proposes a framework for the statistical rep-
resentation of the appearance of arbitrary 3D objects.
This representation consists of a probability density
function or joint statistics of local appearance as mea-
sured by a vector of robust local shape descriptors.
The object representations are acquired automatically
(learned) from sample images. Multidimensional his-
tograms are introduced as a practical and reliable means
for the approximation of the probability density func-
tion for local appearance. An important result of this
paper is that the representation based on joint statis-
tics of local neighborhood operators provides a reli-
able means for the representation and recognition of
large sets of objects (over 100 objects) at arbitrary 3D
positions and orientations in cluttered scenes.

Three different recognition algorithms are proposed
within this framework and evaluated experimentally.
The first algorithm compares the probability distribu-
tion of local neighborhood operators of a test image

to the distributions of learned objects. Recognition is
achieved by applying statistical divergence measure-
ments which can be seen as a generalization of the color
indexing scheme of Swain and Ballard (Swain and
Ballard, 1991). The second recognition algorithm cal-
culates probabilities for the presence of objects based
on a small number of vectors of local neighborhood op-
erators. The experiments demonstrate that in the typical
case, a small number of vectors is sufficient to obtain
a good object hypothesis from a database of 100 ob-
jects. In particular, experimental results show the ro-
bustness of the approach to partial occlusion. The most
remarkable property of the algorithm is that it relies
on neither the calculation of correspondence nor figure
ground segmentation of the object in the scene.

The second algorithm is extended to recognize mul-
tiple objects in cluttered scenes by usinglocal appear-
ance hashing. The capacity of the algorithm to recog-
nize objects in cluttered scenes without relying on the
calculation of correspondence is demonstrated experi-
mentally. Due to its low complexity this algorithms
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runs on a standard Silicon Graphics O2-machine at
10 Hz using the OpenGL-extension for real-time con-
volution of images.

It has been shown that the segmentation problem has
exponential complexity1 in the size of the image con-
sidering no knowledge about the scene and in particu-
lar assuming no knowledge about which objects might
be in the scene (Tsotsos, 1989). However, the task-
oriented visual search as e.g. in the case of segmenting
objects knowing which objects are in the scene, has
only linear complexity. The probabilistic algorithm of
Section 6 and its extension in Section 8 calculate ob-
ject hypotheses with linear complexity (in the number
of used image measurements and number of objects).
This low complexity is mostly due to the fact that no
correspondence and no segmentation are calculated. In
that sense, this paper proposes algorithms with linear
complexity in order to obtain object hypotheses which
can be used subsequently by a segmentation algorithm
with linear complexity.

The next section briefly discusses closely related ob-
ject recognition work. Since we use Gaussian deriva-
tives throughout this paper we introduce them in Sec-
tion 3. Section 4 derives a generalstatistical object
representation frameworkbased on the statistics of
local neighborhood operators. Section 5 introduces his-
togram matching as the first algorithm for the recog-
nition of objects. Even though histogram matching
enables the discrimination between 100 objects, the
nature of the approach is global. Section 6 therefore
proposes a local recognition algorithm which calcu-
lates probabilities of objects based on a small number
of vectors of neighborhood operators. The compari-
son of experimental results shows that this algorithm
is highly robust to partial occlusion. This enables us
to define in Section 8 an algorithm based onlocal ap-
pearance hashingwhich is particularly suited for the
recognition of multiple objects in cluttered scenes.

2. Related Object Recognition Work

This section briefly discusses closely related object
recognition work (see Object representation, 1996;
Pope, 1995; Grimson and Huttenlocher, 1991, 1992
for more comprehensive reviews).

2.1. Histogram Based Approaches

Swain and Ballard (1991) have proposed to represent an
object by its color histogram (approximating its color

distribution). Objects are identified by matching a color
histogram from an image region with a color histogram
from a sample of the object. Their technique has been
shown to be remarkably robust to changes in the ob-
ject’s orientation, changes of the scale of the object,
partial occlusion or changes of the viewing position.
Even changes in the shape of an object do not neces-
sarily degrade the performance of their method. The
robustness to scale and rotation are mainly provided
by the use of color. The robustness to changes in view-
ing angle and to partial occlusion are due to the use
of histogram matching. However, the major drawback
of their method is its sensitivity to lighting conditions
such as the color and the intensity of the light source.
Also, many object classes cannot be described by color
alone.

In order to reduce the sensitivity to illumination in-
tensity changes several authors have introduced color
invariances. Healey and Slater (1994) for example cal-
culate moment invariants of the entire color histogram
(assuming a constant intensity change over the entire
image). Funt and Finlayson (1995) use derivatives of
the logarithms of the color channels in order to pro-
vide illumination invariant features (assuming a locally
constant illumination). More recently Finlayson et al.
(1998) introduced a color image normalization which
is invariant to light intensity and light color changes.
Another interesting extension (Ennesser and Medioni,
1995) uses local color histograms of the test image in
order to deal with more cluttered scenes.

Since not all objects can be described and rec-
ognized by color alone, color histograms have been
combined with geometric information (e.g. Slater and
Healey, 1995; Matas et al., 1995). In particular, the
SEEMORE-system (Mel, 1997) uses 102 different fea-
ture channels which are each sub-sampled and summed
over a pre-segmented image region. The 102 channels
compromise color, intensity, corner, contour shape and
Gabor-derived texture features. Strikingly good experi-
mental results are given on a database of 100 pre-
segmented objects of various types. Most interestingly,
a certain ability to generalize outside the database has
been observed.

The color histogram approach is an attractive method
for object recognition, because of its simplicity, speed
and robustness. Many image retrieval system use color
histograms among other cues (e.g. Flickner et al., 1995;
Belongie et al., 1998) which is motivated by the fact
that many images contain characteristic colors. Since
many objects cannot be described by color alone this
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paper generalizes the color histogram approach tomul-
tidimensional receptive field histograms. Such recep-
tive fields may capture local structure, shape or any
other local characteristic appropriate to describe the
local appearance of an object.

2.2. Object Recognition Based
on Local Characteristics

Lamdan and Wolfson (1988) introducesgeometric
hashingas a general framework for recognizing over-
lapping and partially occluded objects. Object models
consist of sets of interest points. The representation of
the sets is made invariant to an affine transformation by
using three points as an affine basis.2 In order to reduce
the calculation time and the complexity of recognition
all possible triplets of interest points are used as basis
and the coordinates of the remaining interest points are
stored in a hashtable. During recognition sets of inter-
est points are extracted from the scene and used for in-
dexing into the hashtable and voting for object models.
Recognition therefore becomes a point matching task.
Grimson et al. (1994) provide a theoretical analysis of
the sensitivity of geometric hashing. The main result is
that the probability of false positives (during voting) in-
creases considerably in the presence of moderate noise
in the data points. An improved probabilistic voting
scheme addresses this issue (Rigoutsos and Hummel,
1993).

The robustness and the repeatability of the interest
point detector in the presence of affine transformations
is crucial (Schmid et al., 1998). By using only point
features the algorithm may result in a large number of
false positives. Therefore, Lamdan et al. (1988) and
Wolfson (1990) use not only interest points but also
other features. However, the feature choice is limited
since they require invariance to affine transformations.

Ballard and Wixson (1993) and Rao and Ballard
(1995) propose to represent objects (or object patches)
by a high–dimensional “iconic” feature vector. Such
high-dimensional object representations have the fa-
vorable property that they can be subjected to consid-
erable noise before they are confused with the vectorial
representation of other objects. More specifically, the
feature vector includes 45 responses of nine oriented
Gaussian filters at five different scales (9× 5 = 45).
Using the steerability of Gaussian derivatives (Freeman
and Adelson, 1991), the feature vector is made rota-
tional invariant. During training and object recogni-
tion a figure ground segmentation is performed and the

vectors are stored in a generalized version of Karneva’s
sparse distributed memory.

One drawback of the proposed feature vector is its
relatively large support (about 128×128 pixels)3 which
makes the approach sensitive to occlusion. Reducing
the support of the feature vector would compromise
on the uniqueness of the filter response. Ballard and
Rao (1994) introduce a separate algorithm which can
account for partial occlusions. The basic idea is to re-
construct an image patch approximately by a pseudo
inverse transformation from a single feature vector. By
masking the occluded parts the reconstructed image can
be compared with the observation in the image.

Rao and Ballard (1997) propose a predictive Kalman
filter hierarchy which combines input-driven bottom-
up signals with the expectation-driven top-down sig-
nals. This architecture can be seen as a hierarchy of lo-
cal representations which are learned simultaneously.
It is used to implement a dynamic recognition algo-
rithm using pattern completion during occlusions. The
hierarchy is used to explain neural responses of a mon-
key freely viewing a natural scene.

A reliable object recognition algorithm has been
proposed in Schmid and Mohr (1997). Each interest
point in an image is described by a nine-dimensional
rotational invariant vector of local characteristics
based on Gaussian derivatives, originally proposed in
Koenderink and Doorn (1987). Finally, the vector re-
sponses of all interest points of an image are stored in a
hash table indexed by the nine-dimensional vector. In
this sense the approach is a synthesis of the two pre-
vious ones: local representation by a hash table and
rich description of local structure by a vector of local
characteristics.

The principal application of the approach is the cor-
respondence problem between a test image and the
stored images in the hash table. In addition, the ap-
proach is suitable for object (or image) recognition
which can seen as a correspondence problem. By ap-
plying the interest point detector to a test image and by
calculating the vector responses for the interest points
the algorithm votes for different images (or objects).
The voting technique is made more selective by com-
bining the vector responses with geometrical invariants
between different interest points. Another possibility
for improvement is the use of a probabilistic voting
scheme (Mohr et al., 1997).

Impressive experimental results have been presented
on a database of several hundred objects. Neverthe-
less, arguably the weakest point of the approach is
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the application of an interest point detector (Schmid
et al., 1998). The success of the approach relies on the
repeatability of the interest point detector over diffe-
rent images and viewing conditions which is difficult
to achieve, particularly in unconstrained environments.

2.3. Eigenvector Approaches

Recently many researchers (Sirovich and Kirby, 1987;
Turk and Pentland, 1991; Murase and Nayar, 1995;
Moghaddam and Pentland, 1995; Ohba and Ikeuchi,
1996) have used the Karhunen-Loeve transformation
(Fukunaga, 1990) for the calculation ofeigenpictures
in the context of object recognition. The main advan-
tage of this approach is the representation of each im-
age by a small number of coefficients, which can be
stored and searched efficiently. Even though very suc-
cessful, the approach has two major drawbacks: the
first drawback is due to the fact that any change of
individual pixel values, caused for example by trans-
lation, by scale change, by image plane rotation or by
illumination changes, will change the eigenvector rep-
resentation of an image.

Two principal possibilities exist in order to deal with
this difficulty: either each image is normalized prior
to projection onto the eigenspace or the eigenspace is
calculated under consideration of all possible changes.
Even though a powerful normalization function can be
implemented in the special case of face recognition it is
difficult to assume such a function in the general case of
3D-object recognition. In the general case of 3D-object
recognition a pre-segmentation step is assumed prior to
the projection onto the eigenspace (Murase and Nayar,
1995). The second major drawback of the approach is
that the modeling of each image is global, which makes
the approach sensitive to partial occlusion.

3. Vector of Local Neighborhood Operators

Measurements of local object appearance can be ob-
tained by a multi-dimensional vector of local neighbor-
hood operators. The neighborhood operators which we
employ below are not restricted to a particular family
of objects nor does the approach rely on the use of a
particular set of features. Nevertheless, it is necessary
to formulate minimal requirements. The first require-
ment is thelocality of the features. As we have shortly
mentioned in Section 2, global features are sensitive to
partial occlusion as well as local image disturbances

such as specular reflections. The second requirement
concerns thesensitivityof the features. We can list
three categories concerning the sensitivity of features:

invariance: invariant features are considered constant
with respect to certain transformations (such as
affine and projective transformations),

equivariance: the values of equivariant features are a
function of a certain transformation,

robustness: the values of robust features change slowly
in the presence of certain transformations. Such fea-
tures are often called quasi-invariant.

The invariance of features is the most powerful pro-
perty yet the most difficult to obtain in reality. When-
ever possible we should use invariant features. Unfortu-
nately invariant features typically impose unacceptable
restrictions on the set of object classes which can be
recognized. Furthermore, most invariant local features
are based on the calculation of higher order deriva-
tives and thus create practical problems related to in-
stability, as well as locality problems. Either of these
constraints would limit the generality of our approach.
Consequently, we find it necessary to relax the require-
ment of invariance.

Equivariant features vary as a function of a certain
transformation. An example is the equivariant property
of Gaussian derivatives with respect to image plane ro-
tations and scale changes. Unfortunately, equivariance
is restricted to certain classes of image structure, and
can not be obtained in a general manner.

In general, robustness or quasi-invariance can be at-
tained more easily. Robust features will change slowly
and in a predictable manner with respect to changes
of the object’s appearance. Many local features exist
which are robust to appearance changes such as view-
ing position, illumination and scale. In our experi-
ments, we only employ features which can be calcu-
lated locally and which are robust with respect to image
noise, blur, image plane rotation and scale.

Section 3.1 introduces Gaussian derivatives, their
steerability with respect to image plane rotation and
the equivariance property to scale change. Gaussian
derivatives are widely used in computer vision. Their
popularity is due to their generality (eigenpictures of
large numbers of image patches resemble derivatives of
Gaussians (Rao and Ballard, 1995)), their capacity to
model the response of neural cells (Young, 1986) and
the existence of a recursive implementation (Deriche,
1987). Furthermore, Gaussian derivatives (as well as
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Gabor filters) are robust to scale changes of approxi-
mately±20% (Schmid and Mohr, 1997).

Gabor filters (Gabor, 1946; Westelius, 1992;
Daugman, 1993) satisfy the same constraints as
Gaussian filters (robustness, steerability to image plane
rotation, equivariance to scale changes). During ear-
lier experiments (not reported below) Gabor filters ob-
tained almost identical results as Gaussian derivatives.
Even though color has not been used in our experi-
ments, invariant color descriptors (Nagao, 1995; Funt
and Finlayson, 1995) provide a natural extension of
the proposed statistical object representation technique
described below. One can also consider the use of tex-
ture features (Haralick, 1979; Mao and Jain, 1992) or
low–level geometric features and perceptual significant
groups thereof (Pope and Lowe, 1996).

3.1. Gaussian Derivatives

Gaussian derivatives are widely used in the literature
and well understood (Freeman and Adelson, 1991; Rao
and Ballard, 1995). By using Gaussian derivatives we
can explicitly select the scale. Additionally, we can
“steer” the derivative to arbitrary orientations: it is pos-
sible to calculate thenth order Gaussian derivative of
the orientationφ based on a linear combination of a
finite number ofnth order derivatives. This section de-
scribes Gaussian derivatives in general, develops the
equivariance property to scale and finally summarizes
the “steerability” to image plane rotation.

Given the Gaussian distributionGσ (x, y):

Gσ (x, y) = e−(x
2+y2)/2σ 2

(1)

Thenth order Gaussian derivative in directionEv =
(cosφ sinφ)T is defined by:

Gσ
n,φ(x, y) = ∂n

∂ Evn
Gσ (x, y) (2)

In this article we use Gaussian derivatives up to the
second order. Therefore, we will introduce a particular
notation for the derivatives used. We define thex-axis
parallel to the vectorEv = (1 0)T , which corresponds
to φ = 0◦. The y-axis is defined byφ = 90◦ and is
therefore parallel toEv = (0 1)T . The derivatives inx-
andy-direction are given by:

Gσ
x (x, y) = Gσ

1,0◦(x, y) = − x

σ 2
Gσ (x, y) (3)

Gσ
y (x, y) = Gσ

1,90◦(x, y) = − y

σ 2
Gσ (x, y) (4)

Based on these first order derivatives we can de-
fine the magnitude Mag(x, y) of the first Gaussian
derivative:

Mag(x, y) =
√(

Gσ
x (x, y)

)2+ (Gσ
y (x, y)

)2
(5)

Based on two second order derivativesGσ
xx(x, y)and

Gσ
yy(x, y) the well known Laplace operator Lap(x, y)

can be defined:

Gσ
xx(x, y) =

(
x2

σ 4
− 1

σ 2

)
Gσ (x, y) (6)

Gσ
yy(x, y) =

(
y2

σ 4
− 1

σ 2

)
Gσ (x, y) (7)

Lap(x, y) = Gσ
xx(x, y)+ Gσ

yy(x, y) (8)

3.2. Equivariance of Gaussian Derivatives to Scale

As mentioned above local neighborhood operators
should be calculated at a particular scale. Given a two–
dimensional functionp(x, y) and its scaled version
f (x, y) = p(sx, sy) analysis tells us:

f (x, y) = p(sx, sy) (9)

∂

∂x
f (x, y) = s

∂

∂x
p(sx, sy) (10)

...

∂n

∂xn
f (x, y) = sn ∂

n

∂xn
p(sx, sy) (11)

Following the above equations, thenth order deriva-
tive of the functionf can be calculated on the basis of
thenth order derivative ofp(sx, sy). This calculation
assumes exact knowledge of the functionp. In com-
puter vision the exact knowledge ofp cannot in general
be assumed. By using Gaussian derivatives thenth or-
der derivative ofp(sx, sy) can be calculated based on
p(x, y). In the following we show this property for the
first order derivative. We define the first order deriva-
tive of f as:

∂

∂x
f (x, y) = Gσ

x (x, y) ? f (x, y) (12)

whereGσ
x (x, y) is the Gaussian derivative (see Eq. (3))

and? is the convolution operator. Therefore we obtain
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(together with Eq. (10)):

∂

∂x
f (x, y) = s

∂

∂x
p(sx, sy) (13)

= sGσx (x, y) ? p(sx, sy) (14)

= sGσs
x (x, y) ? p(x, y) (15)

The equation shows that we can calculate the first
order derivative of f on the basis of the first order
derivative ofp(x, y), which we call theadaptation of
the Gaussian derivative to scale. In a similar way we
obtain an equation for the adaptation of thenth order
derivative to scale:

∂n

∂xn
f (x, y) = snGσs

xn (x, y) ? p(x, y) (16)

Following this equation, we can calculate thenth
order derivative of a functionf (x, y) directly based
on functionp(x, y) (when f is a scaled version ofp:
f (x, y) = p(sx, sy)). In order to employ this property
the scale factors must be known, which cannot in gen-
eral be assumed. Usually we calculate the derivative
for different values ofs. Additionally, the support for
the calculation of thenth order derivative ofp has to
be adapted. This is expressed by the adaptation of the
standard deviationσs of the Gaussian filter.

We call the adaptation of the Gaussian derivatives to
scale changes by the factors theequivarianceproperty
of the Gaussian derivatives to scale. As expected, the
equivariance to scaleis not only true for neighborhood
operators based on Gaussian derivatives. The same
property holds, for example, for Gabor filters due to
their Gaussian envelope.

3.3. Steerability of Gaussian Derivatives
to Image Plane Rotation

In order to calculate the filter response (for example
for a Gaussian filter) at an arbitrary orientationφ the
corresponding version of the filter can be calculated.
If the orientation is not known beforehand or if a par-
ticular filter response has to be calculated for many
different orientations, it is desirable to define a finite
set of basis filters and an interpolation rule, which al-
lows the calculation of the filter response based only
on the response of the basis set. Freeman and Adelson
(1991) show that the minimal number of interpolation
functions for thenth order Gaussian derivative isn+1.
This corresponds e.g. to the well known interpolation

rule for the first order Gaussian derivative:

Gσ
1,φ = cosφGσ

x + sinφGσ
y (17)

4. Statistical Object Representation

The appearance of an object is composed of local struc-
ture. This local structure can be described and charac-
terized by a vector of local neighborhood operators. We
propose to represent 3D objects by the joint statistics of
local structure, which can be calculated reliably from
sample images of the objects. The probability function
of an object and therefore the object’s model is learned
automatically.

Let’s assume we have chosen a fixed measurement
setM = ∪kmk composed of vectorsmk of local neigh-
borhood operators. The probability density function
over the measurement setM for a certain objecton

varies with the changes of the appearance of the object
which should be modeled within the probability den-
sity function. Five categories of possible changes can
be listed (see Fig. 1):

Similarity transformation: three translational degrees
of freedom (tx, ty andtz) and one rotational degree
of freedom (rz) can be identified (see Fig. 1).

3D transformation of the object:two rotational de-
grees of freedom (rx andr y) exist in addition to the
similarity transformation (see Fig. 1).

Scene changes: this includes partial occlusion and
background change.

Figure 1. Different components of rotation and translation of a 3D
object.
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Light conditions: this includes changes in the intensity,
color and direction of the light source.

Imaging conditions: different types of signal distur-
bance as signal noise, quantization error and blur.

By writing the probability density function of the
objecton, parameterized by variables of these changes,
we obtain:

p(M | on, R, T, S, L , I ) (18)

whereM is the set of local image measurementsmk, on

is the label of an object (or object class),R describes
the three rotational degrees of freedom,T the three
translational degrees of freedom,S the scene changes,
L the light changes andI the imaging conditions.

In general it is difficult to obtain a reliable estimate
of such a high-dimensional probability density func-
tion. The difficulty is due to the fact that the number
of training examples is exponential in the number of
dimensions of the density function (Intrator and Gold,
1993). The most effective way to reduce the number of
free parameters is to choose local image measurements
which are invariant to different parameters. Such invari-
ant properties are used by many researchers (Burkhardt
and Zisserman, 1992; Mundy and Zisserman, 1992;
Mundy et al., 1993) and applied successfully in var-
ious ways. Unfortunately the obtained invariants are
very restrictive to certain types of objects. Robust or
quasi-invariant local image measurements are often an
alternative since they are less restrictive than invariants
and since we can typically identify a reasonable range
of changes where their values are near constant.

One category of changes, theimaging conditions, is
characterized by changes which cannot be controlled
in general. In this case the approach relies on the fact
that local descriptors can be calculated robustly with
respect to such changes. The analysis of the robust-
ness therefore demands special consideration. Schiele
(1997) examines the robustness of local image mea-
surements and different normalization techniques in the
presence of different sources of noise. For the second
category, thelight conditions, exist many normalization
techniques but none of them is satisfactory for the gen-
eral case. Currently, we are using an energy normali-
zation technique of the filter output which has shown to
provide good results in the presence of different light
condition changes.

Scene changes due topartial occlusionand back-
ground changeare difficult to model. One possibility is
to include partial occlusion and background change in

the estimation process of the probability density func-
tion. Hornegger and Niemann (1995) propose to model
partial occlusion as a particular object: the background.
By introducing a probability for the background—
which is directly related to the observed portion of the
object—the probability of the presence of an object
can be calculated. The recognition process therefore
estimates not only the object’s label and its pose but
also the portion of occlusion. Recognition becomes an
iterative optimization process, which is elegant but re-
latively time consuming. In contrast to this approach
we propose in Section 6 a probabilistic object recog-
nition approach which is able to recognize objects by
the observation of a small portion of the object. This
algorithm makes the recognition process not only fast
but also robust to partial occlusion. As a result we do
not have to consider partial occlusion in the model-
ing of the probability density function of an object. In
our context, background changes are considered as a
special case of partial occlusion.

The correspondence problem between the object
model and a test image is in general difficult and time
consuming. In order to avoid this problem we do not
represent the two translational parameterstx andty in
the probability density function. Several advantages
motivate this choice: First of all and as just mentioned
the translational correspondence problem does not ex-
ist. Secondly the estimation of the probability density
functions becomes feasible. The estimation becomes
feasible because of the dimensionality reduction of the
density function and also because of the amount of
training samples which is provided by images of an
object. A typical 512× 512 image of an object pro-
vides about 5002 = 250,000 training samples for the
estimation of the probability density function of the
object.

The third translational parametertz can be treated
directly by the transformation of the image pattern.
Throughout the article we employ the equivariance
property of local descriptors to scale in order to ac-
count for tz. The image plane rotation parameterrz

can be accounted for by using local descriptors, which
are invariant torz. Such invariants have been used for
example by Schmid and Mohr (1997). The main dis-
advantage of these local descriptors is that rotational
information is lost. Another disadvantage is the under-
lying assumption that all rotations are equally proba-
ble, which cannot in general be assumed. In the context
of this work we use both image plane rotation invari-
ant and variant local descriptors. In the case of variant



38 Schiele and Crowley

descriptors, image plane rotation is managed by the
rotational steerability of local descriptors.

The two rotational degrees of freedomrx andr y rep-
resent aviewpoint changeof the observer. Several au-
thors (Burns et al., 1990; Clemens and Jacobs, 1991)
show the non-existence of viewpoint invariant descrip-
tors for the general case. Nevertheless, useful descrip-
tors exist in special cases (Mundy and Zisserman, 1992;
Mundy et al., 1993). As mentioned earlier we do not
want to restrict our approach to such specialized invari-
ants. We model therefore the two parametersrx andr y

in the probability density function.
What remains from the original probability density

function (Eq. (18)) are three components of the rotation
and one component of the translation:

p(M | on, rx, r y, rz, tz) (19)

By considering anL-dimensional vectormk of local
image measurements the statistical representation of an
objecton is given by anL +4-dimensional probability
density function. In the case of image plane rotation
invariant descriptors the representation is given by an
L + 3-dimensional probability density function.

4.1. Representation by Multidimensional
Histograms

Different possibilities exist in order to estimate and
represent the probability density function (Eq. (19))
of an object. Typically, parametric and non-parametric
estimation schemes can be distinguished. Parametric
estimators assume a certain type of distribution as for
example a poison distribution or a Gaussian distribu-
tion. The learning therefore becomes an estimation of
the parameter of the assumed distribution. Hornegger
and Niemann (1995) use parameterized mixtures of
multivariate Gaussian distributions including a feature
transform. Their statistical model considers the statis-
tical behavior of features, feature matching, as well as
the projection from the model into the image space.
The assumption of a mixture of Gaussian distributions
has been shown to be appropriate for point features
but cannot be assumed for more general local image
measurements.

The other principal possibility is a non-parametric
estimator for the probability density function. In the
context of high-dimensional density functions essen-
tially two methods can be applied: histogramming and
kernel function estimates (Popat and Picard, 1994).

The main advantage of histogramming is that the train-
ing samples are well represented. This property is de-
sirable in our context since we aim to show that the
proposed statistical object representation provides a re-
liable and discriminant means for the recognition of a
large number of objects. This implies that the repre-
sentation should preserve all information and in parti-
cular the discriminant information and therefore moti-
vates the choice of histograms. On the other hand kernel
functions typically allow the generalization from train-
ing samples. However, in our case the use of kernel
functions only made a marginal difference with respect
to generalization. This is mainly due to the fact that the
number of training samples is sufficiently large in order
to obtain a reliable estimate of the probability density
function using histograms.

Consequently, we represent the probability density
function of a certain object by several multidimen-
sional histograms over the measurement setM . As an
example Fig. 2 shows two-dimensional histograms of
two different objects each corresponding to a particu-
lar viewpoint, image rotation and scale. The histogram
of a particular viewpoint (rx r y), at a particular image
plane rotationrz and at a certain scaletz is given by:

H(M | on, rx, r y, rz, tz) (20)

In order to obtain these histograms we have to take
several images of the object. The number of training
images can be reduced considerably by using the ste-
erability to image plane rotation and the equivariance
property of local image measurements to scale changes.
The steerability and equivariance property of Gaussian
derivatives is described in Section 3. That implies that
we can take a single image per viewpoint (rx r y) and cal-
culate several histograms which correspond to different
image plane rotationsrz and scalestz of the object.

The histograms of different viewpoints have to be es-
timated from several images of the object correspond-
ing to several viewpoints (represented byrx andr y).
Schiele (1997) examines the number of histograms
which are needed for the representation of a 3D object.
We concluded from experiments that a small number of
histograms are sufficient in order to obtain high recog-
nition rates.

It is worth mentioning that using multidimensional
histograms is not the most efficient representation of
a density function. The representation by a parame-
terized distribution for example would be more effi-
cient since only a certain and typically small number
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Figure 2. Two-dimensional histograms of two objects corresponding to a particular viewpoint, image plane rotation and scale. The image
measurement is given by the Magnitude of the first derivative and the Laplace operator. The resolution of each histogram axis is 32.

of parameters needs to be stored. However, there is a
tradeoff between representational efficiency and ability
to discriminate. A basic goal of the article is to show
that the representation of objects by the probability
density function of their local image measurements
contains enough discriminant information for the
recognition of a variety of objects. Therefore we do
not want to compromise on the ability to discriminate
and have chosen multidimensional histograms for the
estimation and representation of the probability func-
tion. Furthermore, multidimensional histograms pro-
vide us with a reliable estimate of the probability den-
sity function without being computational expensive.
They also allow us to define simple and fast algorithms
for recognition as histogram matching (Section 5) and
probabilistic object recognition algorithms (Sections 6
and 8).

5. Histogram Matching for Recognition

Using a probability density function as an object repre-
sentation allows the use of divergence functions from
information theory and statistics (Basseville, 1996) di-
rectly for object recognition. Among these are e.g.
the KL-divergence and theχ2-divergence. We have
experimentally compared such divergences to several

histogram matching functions used in the computer
vision literature (Schiele, 1997).

Let’s assume the histogram of a test image is signi-
fied by Q = ∪iqi . Let V = ∪ivi be a histogram from
the object database.i is theL-dimensional index vector
of a histogram, whereL is the number of dimensions of
a measurement vectormk and therefore the number of
dimensions of the histogram.vi (respectivelyqi) cor-
responds to the value of a particular cell of histogram
V (respectivelyQ).

The intersection-measurement (Swain and Ballard,
1991) has been introduced for the comparison of color
histograms. The intersection of two histogramsV and
Q is defined by:

∩(Q,V) =
∑

i

min(qi, vi) (21)

The intuitive motivation for this measurement is the
calculation of the common part (the intersection) of
two histogramsV andQ. The main advantage of this
measurement is that background pixels are neglected
explicitly, which may occur in the test histogramQ but
do not occur in the database histogramV .

In their original work Swain and Ballard reported the
need for a sparse color distribution in the histogram in
order to distinguish different objects. Our experiments
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have verified this result. A sparse distribution can be
achieved by using high dimensional histograms. In this
case the tradeoff between the ability to discriminate
objects and stability with respect to perturbations be-
comes an important issue (Califano and Mohan, 1993).
A second inconvenience of the intersection is that all
histogram cells are treated equally and should there-
fore be equally probable. This is approximately true
for color histograms but cannot be assumed for the
more general case of multidimensional receptive field
histograms.

Theχ2-divergence is among the most prominent di-
vergences used in statistics (Basseville, 1996) to as-
sess the “dissimilarity” between two probability den-
sity functions. Two different ways of calculation of
the χ2-divergence may be considered (Press et al.,
1992). The first—χ2

v (Q,V)—assumes exact knowl-
edge of the model histogramV :

χ2
v (Q,V) =

∑
i

(qi − vi)
2

vi
(22)

The second calculation—χ2
qv(Q,V)—compares

two observed histograms (neither is theoretically de-
rived). This secondχ2-divergence is more appropriate
in our context, since we do not assume exact knowl-
edge of the model histogramV . χ2

qv(Q,V) is defined
by:

χ2
qv(Q,V) =

∑
i

(qi − vi)
2

qi + vi
(23)

As we concluded from experiments (Schiele, 1997),
these twoχ2-divergence provide better recognition
results for most cases than the intersection mea-
surement with respect to image distortions due to
appearance changes, additive Gaussian noise and
blur. Even though quadratic distances (Hafner et al.,
1995) were typically outperformed byintersectionand
χ2, the Mahalanobis distance—as a special case of
quadratic distances—sometimes obtains comparable
results (Schiele, 1997).

Object recognition by means of histogram matching
has been shown to be robust to appearance changes
such as viewpoint changes, scale changes and image
noise (Schiele, 1997). This robustness is due to the
fact that the proposed representation uses theentireap-
pearance of the object rather than a small number of in-
terest points. The appearance of objects is represented
robustly by means of statistics of local neighborhood

operators. As we will see in experiments (Section 7)
histogram matching also achieves a certain robustness
to partial occlusion. However, histogram matching re-
lies on some sort of pre-segmentation of the object. The
next section proposes a probabilistic object recognition
algorithm which calculates object hypotheses based on
small image regions. This algorithm can be used suc-
cessfully without using any pre-segmentation step.

6. Probabilistic Recognition
Without Correspondence

This section develops a probabilistic recognition tech-
nique which is based on single, arbitrarily chosen mea-
surement vectors in the image. From such single mea-
surement vectors the probability of the presence of each
database object is calculated. The most noteworthy
property of the algorithm is that the technique does not
rely on the calculation of the correspondence between
the test-image and the object database. In the following
section, recognition results are given as a function of
the visible object portion in order to show the robust-
ness of the proposed probabilistic object recognition
algorithm with respect to partial occlusion.

In the context of probabilistic object recognition we
are interested in the calculation of the probability of an
objecton given a local image regionR: p(on | R). In our
context, the most local region consists of a single local
measurement vectormk. This probability p(on | mk)

can be calculated by the Bayes rule:

p(on |mk)= p(mk | on)p(on)

p(mk)
= p(mk | on)p(on)∑

i p(mk | oi )p(oi )

(24)

with

• p(on) thea priori probability of objecton,
• p(mk) thea priori probability of measurement vector

mk (= filter output combination),
• p(mk | on) the probability density function of object

on. This density function can be estimated by the
multidimensional receptive field histogram of an ob-
jecton normalized by its size.

Typically, one single measurement vector will not
be sufficient for the recognition of objects. Using two
local measurement vectorsmk andmj from the same
object on we can calculate the probability of object
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on by:

p(on |mk ∧mj )= p(mk ∧mj | on)p(on)∑
i p(mk ∧mj | oi )p(oi )

(25)

Under the assumption ofindependenceof mk and
mj we obtain:

p(on |mk ∧mj ) = p(mk | on)p(mj | on)p(on)∑
i p(mk | oi )p(mj | oi )p(oi )

(26)

Having K independentlocal measurement vectors
m1,m2, . . . ,mK we can calculate the probability of
each objecton by:

p

(
on

∣∣∣∣ ∧
k

mk

)
= p

(∧
k mk | on

)
p(on)∑

i p
(∧

k mk | oi
)
p(oi )

(27)

=
∏

k p(mk | on)p(on)∑
i

∏
k p(mk | oi )p(oi )

(28)

In our context the local measurement vectorsmk cor-
respond to multidimensional receptive field vectors (for
example two-dimensional vectors of the first Gaussian
derivatives in thex- and y-directions). Therefore,K
local measurement vectorsmk correspond toK recep-
tive field vectors typically chosen from the same region
of the image. It is worth mentioning that Eq. (28) as-
sumes that allK measurement vectors come from the
same object. This corresponds to an inherent consis-
tency test which, as we will discuss later, is very pow-
erful. However, regions with multiple objects may act
as distractors to the algorithm. Experiments will show
that already a small number of measurement vectors
and therefore a small visible portion of an object pro-
vide reliable object hypotheses. More specifically, a
visible object portion of 10%–20% is generally enough
in order to obtain good object hypotheses. That im-
plies that the number of image regions containing a
single object nearly always outnumbers the image re-
gions containing multiple objects. The algorithm of
Section 8 makes use of this fact for the recognition
of multiple objects in cluttered scenes where no pre-
segmentation of the objects is assumed or used.

The a priori probabilitiesp(on) of occurrence for
each objecton cannot be determined from the multi-
dimensional receptive field histograms. These a priori
probabilities depend upon the context and the given
environment. Typically, they are constant for a certain

context and/or environment. In the experiment of Sec-
tion 7 we assume that all objects are equally probable
and do have a priori probabilitiesp(on) = 1/N, with N
the number of objects. Under this assumption Eq. (28)
simplifies to:

p

(
on

∣∣∣∣ ∧
k

mk

)
=

∏
k p(mk | on)∑

i

∏
k p(mk | oi )

(29)

As mentioned above, the probability density func-
tion p(mk | on) for an objecton is directly given by
its normalized multidimensional receptive field his-
togram. Therefore Eq. (29) shows a calculation of the
probability for each objecton entirely based on the mul-
tidimensional receptive field histograms ofN objects.

It is important to note that the locations of the mea-
surement vectors can be chosen arbitrarily. This is due
to the fact that the position (tx andty) of the measure-
ment vectors are not represented in the object model
(see Section 4). Consequently the technique is fast
(only a certain number of local receptive field vectors
has to be calculated) and robust to partial occlusion
(the approach is strictly local). Furthermore, the tech-
nique workswithoutcalculation of the correspondence
between the object database and the test image.

7. Experimental Results

The section describes an experiment using a database
of 2130 images of 103 different objects. Figure 3 shows
some of the database objects. We have taken 690 dif-
ferent images of 83 objects where each of the images
correspond to a different scale and different rotation
of the object in front of the camera. See Fig. 4 for ex-
amples of different scales. The remaining 1440 images
come from the Columbia image database which con-
tains 72 viewpoints of 20 different objects (Murase and
Nayar, 1995).

In this experiment we use six-dimensional his-
tograms of the filter combinationDx-Dy(first Gaussian
derivative inx andy directions) at three different scales
withσ1 = σ ,σ2 = 2σ andσ3 = 4σ . The resolution per
histogram axis is 24 (see for details of the estimation
Section 7.1).

The training set for the 83 objects contains one image
for each object. For each of these images we calculate a
set of histograms corresponding to different scales and
image plane rotations of the object. By making use of
the steerability of the Gaussian derivatives we calculate
histograms which correspond to different image plane
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Figure 3. 25 of the 103 database objects used in the experiments.

Figure 4. Six different scale-images for 2 objects which are part of the test-set.
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rotations from a single image per object. Similarly we
use the equivariance property of the Gaussian deriva-
tives to scale changes to obtain histograms which cor-
respond to different scales of an object. We calculate
histograms of 6 different scales covering the approxi-
mate scale factor of 2.2 for the test images. For each of
these scales we also calculate histograms for 18 differ-
ent image rotations covering 360◦ degrees image plane
rotation.4 The overall number of histograms for the 83
objects is therefore 83× 18× 6 = 8964 histograms.
These histograms are stored in the histogram database.

The Columbia image database has been created
by Murase and Nayar (1995) and used by several
researchers including Rao and Ballard (1995) and
Schmid and Mohr (1997). As mentioned above, the
database contains 72 viewpoints for each of the 20
objects. The viewpoints are 5◦ apart. Typically, every
other viewpoint is taken as training image and the re-
maining images are taken as test set. The training set as
well as the test set contain 720 images. For each train-
ing image we calculate one histogram corresponding
to the particular rotation and scale of the object. This
adds 720 histograms to the histogram database. The
total number of histograms in the database is therefore
8964+ 720= 9684.

The test set contains the remaining images of the 83
objects which is 690− 83 = 607 and 720 images of
the Columbia image database. The total number of test
images is therefore 1327. The entire test set is indepen-
dent of the training images.

In order to recognize the objects in the test images we
calculate one six-dimensional histogram withσ = 2.0
per test image. The support of these histograms is varied
(from about 20% to 100% visibility of the objects) in
order to test the robustness of the approach to partial
occlusion. Since the objects are centered in the image
we have calculated the histograms of a centered support
region. This corresponds to the ideal case that the object
position is approximately known. Figure 5 shows the
recognition results obtained by two different histogram
comparison measurements:χ2

qv and∩ (see Section 5).
The recognition result is shown as a function of the
visible portion of the objects.

Figure 5 shows a 100% recognition provided by both
comparison measurements using the entire object as
support for the histogram calculation. By using only
62% of the object the intersection measurement still
provides 100% recognition. In this caseχ2

qv obtains
99.3% recognition. In the case of 33% visibility of the

Figure 5. Experimental results for 1327 test images of 103 objects.
Comparison of probabilistic object recognition and recognition by
histogram matching:χ2

qv (chstwo) and∩ (inter).

object,∩ provides a recognition of 94% andχ2
qv ob-

tains 84% recognition. The experiment emphasizes in
particular the expected robustness of the intersection
measurement∩ with respect to partial occlusion.

This initial experiment shows the applicability of his-
togram matching for object identification in the pres-
ence of scale changes, image plane rotation, viewpoint
changes and partial occlusion. In particular, these re-
sults emphasize that multidimensional histograms rep-
resent the appearances of objects reliably enough in
order to discriminate 100 objects.

In order to apply the probabilistic object recogni-
tion algorithm (Eq. (29)),K independent measurement
vectorsmk have to be chosen from a test image. As
mentioned above, two assumptions underlying Eq. (29)
have to be considered: firstly, all measurement vec-
tors are assumed to correspond to the same object and
secondly, theK measurement vectorsmk are assumed
to be independent. The second assumption, the inde-
pendence of the measurement vectors, is fulfilled by
using a fixed distance of 4 pixels between each mea-
surement vector corresponding to 2σ1, which is suffi-
cient to assume independence from a signal processing
point of view. The first assumption is satisfied here
by using test images containing only one object and
choosing the measurement vectors from a central re-
gion of the test images. The reported results therefore
correspond to the ideal case that allK measurements
come from the same object. In general there is no trivial
way in which to satisfy the first assumption. Neverthe-
less, the experimental results reported below indicate
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Table 1. Experimental results for 1327 test images of 103 objects.

Radius (σ1) 1 5 10 15 20 25 30 35 40

Object portion (%) 2.2 6.8 13.5 22.5 33.6 47.0 62.5 80.1 100.0

Number of image measurements 1 25 100 225 400 625 900 1225 1600

Recognition (%) 13.3 76.2 90.8 96.2 99.3 99.9 100 100 100

Errors for the 83 objects 577 274 122 51 10 1 0 0 0

Errors for Columbia database 573 42 0 0 0 0 0 0 0

that a small object portion is sufficient for a good ob-
ject hypothesis. This property of the algorithm is used
in Section 8 in order to extend the algorithm for the
recognition of multiple objects in cluttered scenes and
without segmentation.

Figure 5 and Table 1 summarize the recognition re-
sults of the probabilistic object recognition algorithm.
A visible object portion of approximately 62% is suf-
ficient for the recognition of all 1327 test images (the
same result as for histogram matching). With 33.6%
visibility the recognition rate is above 99% (10 errors
in total). Using 13.5% of the object the recognition rate
is still above 90%. The recognition rate is 76% with
only 6.8% visibility of the object. This can be explained
by the fact that each single vector contains discriminant
information. This is stressed also by a recognition of
approximately 13% with only a single measurement
vector.

Since we use the same six-dimensional feature vec-
tors for the recognition by histogram matching as for
the probabilistic recognition algorithm, we can directly
compare the results of both algorithms in Fig. 5. As
we can see the robustness to partial occlusion is signif-
icantly increased by applying the probabilistic object
recognition scheme.

We can conclude that the proposed probabilistic ob-
ject recognition approach is capable of discriminating
103 objects in the presence of significant scale changes,
image plane rotation and viewpoint changes. Further-
more, the approach is robust with respect to partial
occlusion since a small portion of the object is suffi-
cient in order to obtain a good object hypothesis. As
mentioned earlier, the recognition results have been
obtained without any correspondence calculation be-
tween the test images and the database.

7.1. Implementation Details

For the experiments described in this section the res-
olution of each histogram axis has been 24. Therefore

the theoretical number of cells for a six-dimensional
histogram is in the order of 108 cells. Due to the de-
pendencies between the different dimensions of the his-
togram axes and due to the fact that not all theoretical
possible pixel-values are observed in real images, the
number of non-zero histogram cells (for all 9684 his-
tograms) is in the order of 106. This number is still
too large to be estimated from a typical 512× 512 im-
age which contains about 2× 105 pixels. However, by
using an appropriate bias for the histograms (in our
case a uniform prior) we can effectively decrease the
number of cells to be estimated below the order of
105. This prior is important to ensure a reliable esti-
mate of the multidimensional histograms. In reality,
however, the exact amount of the prior only has a sec-
ondary effect (Schiele, 1997) on the performance of
the algorithm.

The test-set contains also images of different scales
(see Fig. 4 for two examples). In order to calculate his-
tograms of filter responses at arbitrary scales we apply
two principles: firstly we use the equivariance property
of Gaussian derivatives to scale and secondly we adapt
the radius of the support region of a histogram as a func-
tion of scale. The equivariance property is described in
Section 3.2. In order to calculate the histogram of vec-
tors of Gaussian derivatives of a set of image positions,
we need to adapt the image positions of the vectors.
This can be done for example by the adaptation of
the distances between image positions, which would
include interpolation between pixels. Due to the com-
putational cost of interpolation, we prefer to leave the
pixel distances constant and to adapt the support region
for the calculation of the histogram. The radius of the
support region needs to be multiplied by the scale. This
adaptation of the support region is computationally in-
expensive but compromises the precision in particular
for small scales. Therefore histograms corresponding
to different scales of an image are calculated on differ-
ent support regions and contain different numbers of
entries. In order to make such histograms comparable
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the overall sum of the histogram entries needs to be
normalized.

For histograms steered to different rotations, the sup-
port region should be circular. In contrast to a circular
support region, a square region—using the same radius
as half side-length of the square—contains about 20%
more measurement vectors which is advantageous for
the small radii used here (see above). Fortunately, im-
precision due to square support regions are introduced
only for the borders of the objects. In this experiment
we use square, small and centered support regions. The
size of the support regions is limited by the image sizes.
Since we calculate histograms at different scales of ob-
jects the maximal possible radius of the support region
is 40σ1. This radius corresponds to a radius of 59 pixels
(for σ1 = 1.48) and 120 pixels (forσ1 = 3.0). There-
fore the support region of the histograms differs up to
a factor of 4≈ 1202

592 . The centering of the support re-
gion can be seen as a figure-ground segmentation for
learning an object model.

8. Multiple Object Recognition
in Cluttered Scenes

In the previous section we applied the probabilistic
algorithm for the recognition ofsingleobjects in the
presence of partial occlusion. As mentioned earlier
hashtable based recognition systems are suited for the
recognition of multiple objects in cluttered scenes.
Motivated by the results of the preceding section we
can define an algorithm for the recognition of multi-
ple objects which employs local image regions or local

q mi
-q mj
-

vote(on|mi )

vote(on|mj )
...

 vote(on|Image) =∑i vote(on|mi )

q mi
-q mj
-

p(on|mi )

p(on|mj )
...

 p(on|Image) =
∏

i p(on|mi )p(on)∑
j

∏
i p(oj |mi )p(oj )

Figure 6. Comparison of (above) hashtable based recognition and (below) the probabilistic recognition of Section 6.

appearances of objects for probabilistic voting for ob-
jects. Since this resembles to use local appearance as
index of a hashtable we will call this algorithmlocal
appearance hashing.

The upper part of Fig. 6 shows the standard hash-
table approach: for each feature vectormi the ap-
proach votes for a certain subset of objects denoted by
vote(on |mi ): this vote is one if objecton could corre-
spond to the feature vectormi and zero otherwise. The
votes for an object are summed over the entire image:
vote(on | Image) =∑i vote(on |mi ).

This hashtable algorithm typically produces a high
number of false positives. In order to overcome this
problem we can use pairs or triplets of feature vectors
and their geometric arrangement to increase the dis-
criminant power of the approach (Schmid and Mohr,
1997). Another possibility is to increase the dimen-
sionality of the feature vector (Rao and Ballard, 1997)
resulting in an enlarged support region for the fea-
ture vector. These approaches pursue interesting direc-
tions by coding additional geometrical or consistency
constraints. Eventually, we will integrate these ideas
into our framework. However, the main disadvantage
of these approaches is that the additional constraints
have to be coded into the hashtable prior to recognition.
Therefore, motivated by the results of the previous sec-
tion, we will make use of the discriminant power of the
statistical distribution of the feature vectors.

The probabilistic algorithm defined in Section 6 is
structurally similar to a hashtable based algorithm (see
lower part of Fig. 6). In the probabilistic algorithm, we
calculate for each feature vectormi the probabilities
p(on |mi ). The evidence for an object in the image
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Rk
q mi

-q mj
-

Rl
q mi

-q mj
-

p(on|mki )

p(on|mkj )
...

 p(on|Rk)

p(on|mli )

p(on|ml j )
...

 p(on|Rl )


vote(on|Image) =∑k p(on|Rk)

Figure 7. Local appearance hashing: combining the probabilistic recognition algorithm of Section 6 with a hashtable in order to recognize
multiple objects in cluttered scenes.

p(on | Image) = p(on |
∧

i mi ) is accumulated using
Eq. (28) or (29) respectively. In any case, since all fea-
ture vectorsmi are assumed to come from the same
object this is equivalent to an inherent consistency test
using the distribution of the feature vectors. As the re-
sults of the previous section show this is a powerful
consistency constraint. However, this algorithm is not
suited to recognize multiple objects in cluttered scenes.

The results of the previous section indicate that a
relatively small region is sufficient in order to obtain a
good object hypothesis. By making use of this property
of the algorithm and combining it with a hashtable we
obtain a hybrid algorithm which combines the advan-
tages of both. Figure 7 shows this hybrid algorithm. In-
stead of accumulating the evidence of each object over
the entire image we apply the probabilistic algorithm
only a local image regionsRk and calculate the cor-
responding probabilitiesp(on | Rk) = p(on |

∧
ki

mki )

(where themki correspond to the feature vectors inside
regionRk). Calculating these probabilities for a set of
image regionsRk we can accumulate the evidence for
each objecton by vote(on | Image) = ∑

k p(on | Rk).
This last step corresponds to using image regionsRk

as “feature vectors” in a hashtable. Since these lo-
cal image regions correspond to local appearances of
the objects we call this approachlocal appearance
hashing.

We like to point out an interesting property of the
proposedlocal appearance hashingapproach. Since
the regionsRk can be chosen arbitrarily and dynami-
cally during runtime, the algorithm is extremely flexi-
ble. In particular, the size and form of the local image
regionsRk can be changed dynamically without recal-
culating the representation of the objects. Since these
image regions correspond to the “feature vectors” we
can actually change these feature vectors dynamically,

depending e.g. what we know about the scene. For any
chosen image regionRk the algorithm implicitly uses
the consistency constraint imposed by the distribution
over the feature vectors for each object.

8.1. Recognition Experiment

In order to illustrate the proposed local appearance
hashing approach we describe an experiment on a
database of 50 objects. For each of the 50 objects
we compute six-dimensional histogramsMag-Lap-24
(Magnitude of first derivative and Laplacian operator,
resolution of 24 cells per histogram axes) at three differ-
ent scales, namelyσ1 = 2.0, σ2 = 4.0 andσ3 = 8.0.5

For illustration purposes, the image regionsRk have
been fixed to a squared region of 642 pixels. We have
chosen 6×6= 36 such regions overlapping the neigh-
boring regions by 50%. For each of the 36 regions
we apply the probabilistic object recognition algorithm
and add the computed probabilities into an accumula-
tor array of the objects. Objects, which cover several
image regionsRk therefore accumulate probabilities
of several image regions. The more image regions are
covered by an object the higher the score becomes.
Ultimately, the objects with the highest “scores” in the
accumulator are listed in decreasing order (see Fig. 8).

We have taken a set of 50 test images each containing
3 of the 50 objects in order to test the performance of the
algorithm. The left column of Fig. 8 shows 4 of these
test images. For each of these test images the objects
with the highest “scores” are displayed. The first three
matches for each of the first three test images contain all
three objects which are contained in the image. For the
fourth test image the first two and the fourth match are
correct. However, even though the third match is not
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Figure 8. Four of the 50 test images containing multiple objects.

Table 2. Recognition results for 50 test images containing 3
objects.

# of matches 1 2 3 4 5 6. . .14

1 object correct 47 50 50 50 50 50. . .50

2 objects correct 40 49 50 50 50. . .50

3 objects correct 27 45 48 49. . .50

Overall 126 145 148 149. . .150

contained in the test image it corresponds to a similar
object as the first match. This illustrates the property
of the algorithm that it tents to match visually similar
objects. Table 2 summarizes the results for the 50 test
images. As we can see many of the objects (126 of
150) are contained within the first three matches. By
including four matches 145 of the possible 150 objects
are recognized. Since the results have been obtained
only for a small set of test images it is unreasonable to

generalize them. However, the results clearly indicate
the possibility to recognize multiple objects in cluttered
scenes using the proposed local appearance hashing
approach.

The first row of Fig. 9 shows another set of interest-
ing test images. Each of these test images contains one
of the 50 objects of the database. The rest of the images
is covered by objects which arenotpart of the database
and therefore are not represented. These types of im-
ages are considered difficult in particular for probabilis-
tic object recognition algorithms since they typically
rely on the assumption that they have a complete model
of the world. Even though this assumption is shared by
our probabilistic algorithm the local appearance hash-
ing approach recognizes the correct object three times
as best match (test images A, B and D) and once as
third best match (test image C). This ability to recog-
nize objects in the presence of not represented objects
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Figure 9. Four test images with objects of the database and objects which arenot represented in the database.

is mainly due to the consistency constraint which is
implicitly imposed by the use of the distribution of the
feature vectors.

9. Conclusions

For nearly forty years, the field of computer vision has
struggled with the techniques for recognizing complex
objects by searching correspondences between object
models, and local structure in images. Recognition us-
ing correspondence between models and images has
proved both computationally expensive and sensitive to
image noise. In almost every case, model based recog-
nition techniques required a small pre-selected list of
candidate objects in order to be tractable. The general
assumption has been that the candidates would be pro-
vided by context.

Recognition using joint statistics of local properties
provides an alternative to standard recognition algo-
rithm. This approach provides a framework in which
it is possible to design techniques to determine the ob-
jects in a scene independent of viewing position. These
techniques have computational complexities which are
linear with the number of pixels and the number of ob-
jects, and thus can be implemented to operate in real
time. Indeed, we have implemented an example of such
a system which operates at 10 Hz on a standard work-
station with a data base of 103 objects.

This framework can be used with a large variety of
local properties. However, linear filters based on the
Gaussian function are particularly well suited as they
permit the definition of local property measurements
which are robust to changes in scale and orientation.
In particular, our experiments have shown excellent

results with local properties measured using Gaussian
derivatives at different scales and Gabor filters at differ-
ent scales. The steerability property of such operators
is especially useful in providing an efficient means to
obtain image plane rotation invariant recognition.

Histograms of local property vectors provide a ro-
bust and simple means to answer the question: What is
the probability that the pixels in a region of an image
contain a projection from an object? A probabilistic
approach has proven particularly reliable for this pro-
cess. Probabilistic recognition from joint statistics of
local properties is robust to occlusions and cluttered
scenes.

These results demonstrate that the appearance of an
object is the composition of the appearance of its parts.
Thus object appearance is best captured as a composi-
tion of local appearances, as measured by a vector of
local operators such as Gabor filters or Gaussian deriva-
tives. The joint statistics of local appearance measures
provide a powerful basis for object indexing and recog-
nition. This approach is complementary to a structural
description of local appearance.
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Notes

1. More specifically the bottom-up visual search task as defined in
Tsotsos (1989) is NP-complete in the size of the image
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2. In the case of a projective transformation a four point basis is
used. For similarity transformations only two points are needed
(Lamdan and Wolfson, 1988).

3. The responses of the 45-dimensional feature vector are calculated
with a 8× 8 kernel at five different levels of an image pyramid.
Since each level of the image pyramid is reduced by a factor of 2,
the overall support of a single vector is in the order of 128× 128
pixels. The vector therefore cannot be called local, since it already
covers a 1

16 of a typical 512× 512 image.
4. More specifically for each of the 83 images of 83 objects we

calculate histograms which correspond to 18 different rotations
namely for the angles ofα = 0◦, 20◦, 40◦, . . . ,340◦. For each
of these rotations we calculate histograms which correspond to
6 different scales namelyσ = 1.48, 1.7, 2.0, 2.26, 2.62 and 3.0.
This range of theσ ’s is motivated by the maximum scale factor
of 2.2 which we used.

5. The remarks made in Section 7.1 about the estimation of the
multidimensional histograms also applied here.
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