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The intent of this note is to show that several types of lattice-ordered groups and
convex /-subgroups are impossible to recognize from the lattice structure of the
lattice of convex /-subgroups of a lattice-ordered group. In particular we show that
one cannot recognize if a lattice-ordered group belongs to any nontrivial proper
variety, if it is archimedean, or if it is completely distributive, and also that one cannot
tell if a given convex /-subgroup is closed. It is already known that no nontrivial
proper variety other than 4 (the variety of normal-valued /-groups) is recognizable,
but our proof that 4" is not recognizable yields the fact for all nontrivial proper
varieties at once. Our method is to consider two specific /-groups which we label G
and G'. We show that the lattices 4(G) and €(G’) of convex /-subgroups are iso-
morphic as lattices, and then consider the recognizability questions.

Let A(R) represent the lattice-ordered group of order-preserving permutations of
the real numbers with pointwise meet and join as lattice operations, and composition
for the group operation. Let C(R) be the £-group of continuous functions f : B — R,
with pointwise meet, join and addition. We define a continuous function f: # — R
to be finitely piecewise linear if there is a finite set of real numbers a; < a, < ...

. < a, such that for each interval I of R which has no a, in its interior, there are
real numbers m and b such that f(x) = mx + b for each x e I. We will say that such
a function f has finitely many pieces over any interval J & R, where a piece of f
over J is defined to be f restricted to a subinterval J' of J that is maximal with
respect to the property that there are real numbers m and b with f(x) = mx + b
for all x in J'. We also define the O-support of a function f: R — R to be {x e
€ R|f(x) % 0} and the I-support of f = {xe R|f(x) + x}. We will use supp (f)
to represent both the 0-support of a function in C(R) and the 1-support of a function
in A(R), since it will be clear from the context just which is intended.

We let G = {fe C(R) | f is finitely piecewise linear and supp (f) is bounded} and
let G' = {fe A(R)|f is finitely piecewise linear and supp (f) is bounded}. Since G
is an /-subgroup of C(R) and G’ is an /-subgroup of 4(R), we know that G and G’
are /-groups. Ball invented the group G’ to show that an /-group can have the DCC
on regular subgroups and still fail to be normal-valued. In fact, G’ has no nontrivial

411



proper normal subgroups at all. A variation of this example due to Conrad can be
used to show that a locally flat /-group need not be archimedean (take G'=Gn
n A(0); neither G’ nor G” is archimedean).

Now we show that the lattices 4(G) and 4(G’) are isomorphic. We begin by iden-
tifying all of the prime subgroups of G. For each r € R, let

G, ={feG|f(r)=0}
G,+ = {fe G |for some ¢ > 0 and for all x in [r, r + £], f(x) = 0}
G, ={feG l for some ¢ > 0 and for all x in [r — ¢, ], f(x) = 0}.

Il

It is easily seen that these are prime subgroups, using the finiteness in the cases of G, ..
and G,_. The next three lemmas together show that these are the only prime subgroups
of G.

1. Lemma. Every proper convex £-subgroup of G is contained in some G,. Hence
each prime subgroup lies in a unique G,.

Proof. Let Ce %(G) and suppose that for all re R, C ¢ G,. Let 0 < g € G, and
let K = supp (g). K is compact, and so g(K) is bounded. Let M = sup {g(x) | x e R}.
For each reK, C & G,, so we can find 0 < f,e C\G,. Since f,(r) > 0, we have
1£(r) > 0. Let U, = {xe R| f,(x) > 1 /,(r)}. Since each f, is continuous, each U,
is an open neighbourhood of r, and so {U,| reK} is an open cover of K. Let
{U,,|1 £ i £ n} be a finite subcover, and let m = min {%f,,.(r;)l 1<i<n} We

have m > 0, so there must be a positive integer N with mN > M. Let f = V Nf,..
i=1

Since 0 < g < fe C, we have g € C, so C = G, and every proper convex /-subgroup
lies in some G,. Now, since G, and G, are incomparable if r + s, and since for any
prime subgroup the set of convex /-subgroups containing it is totally ordered, each
prime subgroup lies in a unique G,. [J

2. Lemma. If P is a prime subgroup of G with P & G,, then either P = G,
or P < G,_.

Proof. Suppose P is a prime subgroup of G with P & G,, and P & G,_, but
Pc G, Let 0<h;eP\G,: and 0<h,eP\G,-. Let 0 < geG,. As in the proof of
Lemma 1,let M = sup {g(x)| xe R}. Since 0< h; eP< G, and h, ¢G,, , there must exist
& > 0and m; > 0 with h,(x) = my(x — r)for all x in [r, r + ¢,]. Similarly, there
exist &, > 0 and m, < 0 with hy(x) = m,(x — r) for all x in [r — &, r]. Since g
consists of finitely many pieces over [r, r + ¢, ], we let m, = max {slopes of pieces
of g over [r,r + ¢]}. Similarly, we set m_ = min {slopes of pieces of g over
[r — &,,7]}. We let N be a positive integer such that m;N = m, and m,N < m_.
Then for all x in [r — &, r + & | we have 0 < g(x) < [N(h; v h,)](x), with
N(hy v hy)e P. Now let K, = supp (g)\(r — &, r + &). K, is compact, and
r¢ K. Since P is prime, we know from Lemma 1 that if s € K, then P & G,. As in
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the proof of Lemma 1, we find f € P with f > 0 and f(x) 2 g(x) for all x € K,. Then
0<g=fvN(hyv hy), with f v N(hy v h,)eP, so geP, and P = G,. [

3. Lemma. If P is a prime subgroup of G with P = G,,,then P = G,,. If P is
a prime subgroup of G with P < G,_ then P = G,_. Thus {Ce %(G)lfor some reR,
C = G, or G,, or G,_} is a complete list of the prime subgroups of G.

Proof. Let Pe%(G), with P £ G,,. Let 0 < geG,, \P. Then there exists
¢ > 0 with g(x) = 0 for all x in [r, r + ¢]. Define f by:

X —-r, if xe[r,r-{-%g]
f(x): r+e—x, if xe[r+1%e r+¢]
0, if x¢[rr+e]

Now, f¢G,,, so f¢P, and g¢ P, but f A g =0, so P is not prime. A similar
example shows that if P € 4(G) and P & G,-, then P is not prime. []

In G, we let G, = {fe G| f(r) = r}, G, = fe G| for some & > 0 and for all
xe[r,r+¢],f(x)=x},and G,_ = {fe G'|forsomee > Oand forallx e [r — ¢ r],
f(x) = x}. Then, as part of Ball's example, it is known that {C’ e %(G)I for some
reR, C' =G, or G,, or G,_} is a complete list of the prime subgroups of G'. (The
three lemmas we have just proved can be modified slightly to obtain this result.)

Now, recall (Bigard, et al, [1], 2.5.5) that a convex /-subgroup is the intersection
of the prime subgroups containing it. We use this to set up a lattice isomorphism
between %(G) and 4(G’) via a lattice that describes the collections of prime sub-
groups above elements of 4(G) and (G’). This isomorphism will send G, to G,
G,, to G,,, and G,_ to G;,_, as one would expect.

Let¥ = {(S,S.,S-) ] S, uS_ c S < R,Sisclosed in R, and for each sequence

o0

{su}s2, in S with lim s, = s, we have that if {s,}"., is strictly increasing, thense S_,

while if {s,},*, is strictly decreasing, then s € S, }. Order & by setting (S, S,,S_) <
<(T\T,,T-)if and only if S 2 Tand S, 2 T, and S_ = T_. This is a lattice
order on &, with (S,S,,S_) v (I, T,,T-)=(SnT, Sy nT,, S_nT_) and
(5.8,.S)A(T,T,, T.)=(SUT, S, UT,,S_ U T.).

4. Proposition. There is a lattice isomorphism between ¢(G) and .

Proof. Let Ce %(G), and set Sc = {reR| C = G,}, Sc. = {reR| C = G,.},
and Sc_ = {re Rl C < G,_}. We want (S¢, Scy, Sc-)€ &. Obviously, S¢c = R,
and since G,; < G, and G,_ < G, for each re R, S¢, U Sc_ < Sc. Let {s,}7-, be
a sequence in S¢, with lims, = se R. Let fe C. Then f(s,) = 0 for all positive

integers n, and by continuity, f(s) = 0, so fe€ G, and C < G,. Then s € S, and S
is closed. If, in addition, {s,}7, is strictly increasing, then because f € G, there must
be ¢ > 0 such that f(x) = mx + b on [s — ¢, s]. Since lims, = s, there must be

n—+ow

a positive integer N such thatif n = N, then ls,, - sl < ¢&. Therefore, ifn;, > n, =2 N
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S, €[s —¢&s] and s5,,€[s — e s] with s, #s5,,. Hence f(s,) = f(s,,) =0, so
f(x)=0on [s —e¢5], and se Sc_. Similarly if {s,};_, is strictly decreasing. then
s€Scy, and 50 (S¢, Scy. Sc-)e & for each Ce%(G). We let 0:%(G) > & by
setting 0(C) = (S¢, Sc+, Cc-). If C, D e 4(G) with C = D, then the sets of primes
exceeding C is not equal to the set of primes containing D, and so 6(C) % #(D).
Thus 6 is one-to-one. Let (S,S,,5_)e %, and set C = (NG, n(NG,.)N
A ( n Gs—)' seS seS+

seS -

Obviously Ce%(G). and 6(C) < (S, S,,S_). If s¢ S, then since S is closad,
there is ¢ > 0 such that if x e (s — 2¢, s + 2¢), then x ¢ S. Define f € G by

’ x—s+¢e, if s—e<x=<s
fx)=2—-x+s+¢e, if sSx=<s+e
1 0, if x¢[s—e s+¢].

IfxeS,thenx¢[s —es+¢],s0f(x) =0.1fxeS, uS_,thenxe Sandf(x) = 0,
and in addition, for each y with Iy — x| <& we have y¢[s — & s + ¢, since
x¢[s— 2, s+ 2¢]. Thus f(y) =0,s0 feG, for all re S, feG,, forall reS,,
and fe G, for all re S_; hence fe C. But f(s) =¢ >0, so f¢G,, and C £ G,.
Thus S¢ = S. Suppose s ¢ S... By definition there is ¢ > O such thatif x € (s, s + 2¢),
then x ¢ S. Define g € G by

e

2x — 25, f xels, s+ e
g(x)=4q—2x + 25+ 2, if xe[s+ 3¢ s+ ¢
0, if x¢[s,s+e].

If xeS, then x¢(s.s +¢), so g(x) =0. If xeS_, then x ¢(s,s + 2¢), so that
for each y in [x — &, x], y¢(s,s + ¢) and g(y) = 0. If xe S,, then x # s and
x¢(s,s+¢)soif x = s+ ¢ then for all yin [x,x + ¢], y 2 s + e and g(y) = 0,
while if x < s, then set 6 = ¥(s — x). We have 6 > 0, and for each y in [x, x + &],
y <s,s0g(y)=0. Thus g e C, but g ¢ G, since there is no o« > 0 with g(x) = 0
for all x in [s, s + «]. Hence S, = Sc,. A similar argument shows that S_ = S._,
so that 6(C) = (S, S,, S-), and 8 is onto. If C, D € 4(G), then since G, is a prime
subgroup of G for each r € R, we have that if C A D = G,,then C = G,or D < G,.
Thus reS¢c,p<=CADSG<=C<cG, or DG, <reScuSp 50 Scrap =
= Scu Sp. Similarly, Scaps = Scy U Spy and S¢.p- = ScuU Sp_, so that
6(C A D) = 6(C) A 6(D). Also, reSc,p<>Cv DS G «C<SG, and D =
< G,<reScn Sp, so that S¢c,p = S¢c N Sp. Similarly, S¢,py = Scy N Sp. and
Scup- = Sc- N Sp_, so that 6(C v D) = 6(C) v 0(D), and 0 is a lattice iso-
morphism of €(G) onto &. [

—

Essentially the same proof shows that if 0’ : ¢(G’) » &. By the rule 0'(C") =
= (S¢'» Sc'+» Sc-), where S¢. = {re R| C' < G}, S¢.. = {reR|C' < G,,}, and
Sc.w = {reR| C’' = G,_}. then 0’ is a lattice isomorphism of %(G') onto . Thus,
the function (6)”' 0 is a lattice isomorphism of %(G) onto %(G’), and it is easily
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checked that this map sends G, to G,, G,, to G,,, and G, to G,_ for each re R.

Now, we consider the questions of recognizability. First, G is a member of the
variety of abelian lattice-ordered groups, which is a subvariety of all nontrivial
varieties, while G’ lies outside the variety of normal-valued /-groups, since each G.
is a regular subgroup of G’ but is not normal (however, G,, < G, and G,_ < G, for
each r € R). But 4" contains all proper varieties, so G’ cannot lie in any proper variety,
while G is in all nontrivial varieties, and it is impossible to tell if a lattice-ordered group
belongs to any nontrivial proper variety by considering only its lattice of convex
/-subgroups.

Next, G is archimedean, while G’ is not, and so it is impossible to recognize from
the lattice of convex /-subgroups if a given /-group is archimedean.

Martinez [6] introduced the idea of a torsion class, which generalizes the notion
of a variety. The class of archimedean /-groups is not a torsion class, but if we take
only those archimedean /-groups with the additional property that every £-homo-
morphic image is archimedean, then we get the torsion class of hyperarchimedean
/-groups. Several characterizations of hyperarchimedean /-groups are known (for
a history, see Conrad [3]), including the fact that an /-group is hyperarchimedean if
and only if each prime subgroup is a minimal prime subgroup, and so each prime
subgroup is a maximal. Since a convex /-subgroup P is prime if and only if the set
of convex /-subgroups containing P is totally ordered, we can recognize primes,
and certainly maximals are recognizable, so it is possible to recognize if an /-group
is hyperarchimedean. Hence some torsion classes are recognizable, while varieties
are not. Conrad [4] has considered several other important torsion classes, and de-
termined which are recognizable by looking at torsion radicals. He has shown that
the torsion class of divisible abelian /-groups is not recognizable, while the following
torsion classes are recognizable:

= all hyperarchimedean /-groups

all /-groups such that each bounded disjoint subset is finite
» = all finite-valued /-groups

all /-groups with DCC on the set of regular subgroups

= all cardinal sums of o-groups

I

= all cardinal sums of archimedean o-groups
= all /-groups such that each prime exceeds a unique minimal prime.

LIV Y Y R
Il

Recall that in an /-group A4, a convex /-subgroup C is closed if for each family

{.\'i I iel} with e < x; € C such that V x; = x exists in A, then x € C. In Bigard,
iel

et al. [1] (11.1.10), it is shown that in an archimedean /-group, closed convex
/-subgroups are polars, so that in G, no G,, G,,, or G,_ can be closed, since they are
not polars (for Gy, = G;~ = {0}). On the other hand, for each r e R, G, is closed
in G". This is a result of McCleary [7], which generalized the work of Lloyd [5].
Hence it is impossible to recognize closed convex /-subgroups in the lattice of con-
vex /-subgroups of a lattice-ordered group.
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Finally, Byrd and Lloyd [2] define the distributive radical of an /-group, and show
that it is the intersection of all closed prime subgroups. They also show that an /-
group is completely distributive if and only if it has a trivial distributive radical. In
our examples, no prime subgroups of G are closed, so that G is its own radical, while
all of the G, are closed in G’, so that the distributive radical of G’ is {1}. Hence it is
impossible to recognize the distributive radical, and one cannot tell if an /-group is
completely distributive, from the lattice of convex £-subgroups.

Bibliography

[1] Bigard, A., Keimel, K., and Wolfenstein, S.: Groupes et Anneaux Réticulés, Springer-Verlag,
Berlin (1977).

[2] Byrd, R. D., and Lloyd, J. T.: Closed subgroups and complete distributivity in lattice-ordered
groups, Math. Zeit., 101 (1967), 123—130.

[3] Conrad, P.: Epi-archimedean groups, Czech. Math. J., 24 (1974), 192—218.

[4] Conrad, P.: Torsion radicals of lattice-ordered groups, Inst. Naz. di Alta Mate., Symposium
Mathematica, XXI (1977), 479—513.

[5] Lloyd, J. T.: Complete distributivity in certain infinite permutation groups, Mich. Math. J.,
14 (1967) 393—400.

[6] Martinez, J.: Torsion theory for lattice-ordered groups, Czech. Math. J. 25 (1975), 284—299.

[7] McCleary, S. H.: Closed subgroups of lattice-ordered permutation groups, Trans. Amer.
Math. Soc., 173 (1972), 303 —314.

Author’s address: Department of Mathematics, The University of Kansas, Lawrence, Kansas
66045, U.S.A.

416



