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Abstract. Kleene’s theorem on recognizable languages in free monoids
is considered to be of eminent importance in theoretical computer sci-
ence. It has been generalized into various directions, including trace and
rational monoids. Here, we investigate divisibility monoids which are
defined by and capture algebraic properties sufficient to obtain a charac-
terization of the recognizable languages by certain rational expressions
as known from trace theory. The proofs rely on Ramsey’s theorem, dis-
tributive lattice theory and on Hashigushi’s rank function generalized to
our divisibility monoids. We obtain Ochmański’s theorem on recogniz-
able languages in free partially commutative monoids as a consequence.

1 Introduction

In the literature, Kleene’s theorem on recognizable languages of finite words has
been generalized in several directions, e.g. to formal power series by Schützenber-
ger [17], to infinite words by Büchi [5], and to rational monoids by Sakarovitch
[16]. In all these cases, the notions of recognizability and of rationality where
shown to coincide. In concurrency theory, several authors investigated recog-
nizable languages in trace monoids (free partially commutative monoids) which
generalize free monoids. It is known that here the recognizable languages only
form a proper subclass of the rational languages, but a precise description of
them using c-rational expressions could be given by Ochmański [13]. A further
generalization of Kleene’s and Ochmański’s results to concurrency monoids was
given in [8]. It is the goal of this paper to derive such a result for even more
general monoids. At the same time, we obtain that well known combinatorial
methods crucial in trace theory (like Levi’s Lemma) are intimately related with
algebraic properties (like distributivity) from classical lattice theory [3] or the
theory of event structures [19].

Trace theory provides an important mathematical model for the sequential
behavior of a parallel system in which the order of two independent actions is
regarded as irrelevant. One considers pairs (T, I) where T is the set of actions,
and I is a symmetric and irreflexive binary relation on T describing the indepen-
dence of two actions. The trace monoid or free partially commutative monoid
M(T, I) is then defined as the quotient T ⋆/∼ where ∼ is the congruence on the
free monoid T ⋆ generated by all pairs (ab, ba) with (a, b) ∈ I. For surveys on the
many results obtained for trace monoids, we refer the reader to the collection [7].



An algebraic characterization of trace monoids was given by Duboc [10]. Here
we use a lattice theoretically easy generalization of these algebraic conditions for
the definition of divisibility monoids.

As for trace monoids, a divisibility monoid has a finite system of irreducible
generators. They could be viewed as atomic transitions in a concurrent system.
However, in comparison with trace monoids we allow much more general com-
mutation possibilities for these generators. In our monoids it is possible, e.g.,
that ab = cd or ab = cc where a, b, c, d are four pairwise different irreducible
generators. This would mean that the different sequential transformations ab
and cd (cc, resp.) give rise to the same effect. It is clear that this is a much
more general situation than in trace theory where ab = cd implies {a, b} = {c, d}
(a, b, c, d generators as above) and even than in the situation of the automata
with dynamic (situation dependent) independence of actions investigated in [8].
However, as for traces, we assume that any two sequential representations (i.e.,
products) by irreducible generators of a given monoid element have the same
length. This is ensured by requiring that the divisibility monoid is cancellative
and that the prefix (= left divisibility) relation satisfies natural distributivity
laws well known from lattice theory (Birkhoff [3]). These classical distributivity
laws suffice to deduce our results. Also, they enable us to develop and use a
calculus of residuals similar to the one used e.g. in lambda calculus [2], term
rewriting [4] and the models for concurrency considered in [14, 18].

In these divisibility monoids, we investigate closure properties of the class of
recognizable languages under rational operations, analogously as in trace theory.
To achieve this, we develop an extension of the notion of the rank of a language,
which was already shown to be very useful in trace theory by Hashigushi [11],
cf. [7, 6]. Under the assumption of a finiteness condition on the commutation
behavior of the monoid elements, we can prove that the product of recognizable
languages is again recognizable.

To deal with the iteration, analogously as in trace theory, we define when a
monoid element is connected (intuitively, it cannot be split into disjoint compo-
nents) using classical lattice-theoretic concepts. In trace theory, the iteration of
a recognizable language consisting only of connected elements is again recogniz-
able. We show (cf. Example 1) that, somewhat surprisingly, this fails in general in
divisibility monoids. However, using the residuum operation mentioned above,
we can define when a language is residually closed. Then we can show, using
also Ramsey’s Theorem, that the iteration of a recognizable residually closed
language consisting only of connected elements is again recognizable. We call a
language c-rational if it can be constructed from finite languages using the oper-
ations union, product and this restricted version of iteration. Thus, the closure
properties indicated so far ensure that any c-rational language is recognizable.

Recall that an equation ab = cd with irreducible generators a, b, c, d of M
states that the different sequential executions ab and cd give rise to the same
effect. If now a 6= c, the effect of a in the execution cd has to be resumed by that
of d. Therefore, we consider the least equivalence on the irreducible generators of
M identifying a and d that occur in an equation ab = cd with a 6= c. Requiring
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that a and c are not equivalent whenever ab = cd and a 6= c, we can prove the
converse of the above result, i.e., we can show that any recognizable language is
c-rational. With this requirement, our divisibility monoids are more similar to,
but still more general than trace monoids. Our results can be summarized as
follows (see the subsequent sections for the precise definitions)

Theorem 1. Let (M, ·, 1) be a labeled divisibility monoid with finite commuta-
tion behavior and L ⊆ M . Then L is recognizable iff L is c-rational.

From these results, we obtain Ochmański’s theorem for recognizable trace
languages as an immediate consequence. Furthermore, a strengthening of the
results from [8] for recognizable languages in concurrency monoids follows from
our results (see the full paper [9]).

As the above examples and many others show, the class of divisibility monoids
is much larger than the class of all concurrency monoids investigated in [8] which
in turn is larger than the class of trace monoids.

The present divisibility monoids can hence be viewed as a general model for
concurrent behaviors where it is still possible to describe recognizable sets of
behaviors by certain rational expressions.

The complete proofs are contained in the full paper [9].

2 Preliminaries

Let (M, ·, 1) be a monoid and L ⊆ M . A monoid morphism η : M → S into a
finite monoid (S, ·, 1) recognizes L if η−1η(L) = L. The language L is recognizable
if there exists a monoid morphism that recognizes L. For x ∈ M let x−1L :=
{y ∈ M | x · y ∈ L}, the left quotient of L with respect to x. Then a classical
result states that L is recognizable iff the set {x−1L | x ∈ M} is finite iff there
is a finite M -automaton recognizing L.

Let L, K ⊆ M . Then L ·K := {l ·k | l ∈ L, k ∈ K} is the product of L and K.
By 〈L〉 we denote the submonoid of M generated by L, i.e., 〈L〉 = {l1 · l2 · . . . ln |
n ∈ N, li ∈ L}. For a set T , T ⋆ denotes the free monoid generated by T . Now let
M be a free monoid and L ⊆ M . Then 〈L〉 is a subset of M while L⋆ is a set of
words whose letters are elements of M . Classical formal language theory usually
identifies the set L⋆ of words over L and the submonoid 〈L〉 of M generated by
L. In this paper, we have to distinguish between them.

A language L ⊆ M is rational if it can be constructed from the finite subsets
of M by union, multiplication and iteration.

Now let T be a finite set and L ⊆ M := T ⋆. By Kleene’s Theorem, L is recog-
nizable iff it is rational. In any monoid, the set of recognizable languages is closed
under the usual set-theoretic operations, like complementation, intersection and
difference.

For x ∈ T ⋆, let α(x) denote the alphabet of x comprising all letters of T
occurring in x. Then LB := 〈B〉 ∩ L \ (

⋃
A⊂B 〈A〉) with B ⊆ T is the set of

elements x of L with α(x) = B. If L is rational, the language LB is rational,
too. The language L is monoalphabetic if L = LB for some B ⊆ T . A language

3



L ⊆ M is monoalphabetic-rational if it can be constructed from the finite subsets
of M by union, multiplication and iteration where the iteration is applied to
monoalphabetic languages, only. One can easily show that in a finitely generated
free monoid any rational language is monoalphabetic-rational.

Let (P,≤) be a partially ordered set and x ∈ P . Then ↓x comprises all
elements dominated by x, i.e., ↓x := {y ∈ P | y ≤ x}. If A ⊆ P , we write A ≤ x
to denote that A ⊆ ↓x, i.e., that a ≤ x for all a ∈ A. The partially ordered set
(P,≤) is a lattice if for any x, y ∈ P the least upper bound sup(x, y) = x∨ y and
the largest lower bound inf(x, y) = x ∧ y exist. The lattice (P,≤) is distributive
if x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for any x, y, z ∈ P . This is equivalent to
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for any x, y, z ∈ P . For properties of finite
distributive lattices, we refer the reader to [3].

3 Divisibility monoids

In this section, we introduce divisibility monoids and investigate their basic
properties.

Let M = (M, ·, 1) be a monoid where 1 ∈ M is the unit element. We call M
cancellative if x · y · z = x · y′ · z implies y = y′ for any x, y, y′, z ∈ M . This in
particular ensures that M does not contain a zero element and will be a very
natural assumption (trivially satisfied in free monoids). For x, y ∈ M , x is a left
divisor of y (denoted x ≤ y) if there is z ∈ M such that x · z = y. In general, the
relation ≤ is not antisymmetric, but we require this for a divisibility monoid.

Let T := (M \ {1}) \ (M \ {1})2. The set T consists of those nonidentity ele-
ments of M that do not have a proper divisor, its elements are called irreducible.
Note that T has to be contained in any set generating M .

Definition 1. A monoid (M, ·, 1) is called a (left) divisibility monoid provided
the following hold

1. M is cancellative and its irreducible elements form a finite set of generators
of M ,

2. (M,≤) is a partial order such that any two elements x, y ∈ M with an upper
bound have a supremum, and

3. (↓m,≤) is a distributive lattice for any m ∈ M .

Since by condition 1 above a divisibility monoid (M, ·, 1) is generated by the
set T of its irreducible elements, there is a natural epimorphism from the free
monoid T ⋆ onto M . This epimorphism will be denoted by [.].

Condition 2 is well known from domain theory and often regarded as “con-
sistent completeness”. It means that whenever two computations x and y from
M allow a joint extension, there is a least such extension of them. In fact, the
partial order (M,≤) can be seen as the compact elements of a Scott-domain.
But (M,≤) is not necessarily a lattice since it may contain unbounded pairs of
elements.

Using basic properties of distributive lattices, from conditions 1 and 3 one
can infer that ↓x is finite for any x ∈ M . It follows that any finite subset A
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of M has an infimum in (M,≤), and if A has an upper bound, it also has a
supremum. This supremum of A can be viewed as the least common multiple
of A, whereas the infimum of A is the greatest common (left-)divisor of A.
Observe that the distributivity required is a direct generalization of the triviality
that in the multiplicative monoid (N, ·, 1) least common multiple and greatest
common divisor distribute (i.e., gcd(x, lcm(y, z)) = lcm(gcd(x, y), gcd(x, z)) for
any x, y, z). In our general setting, the finiteness of ↓x ensures that (M,≤) is
even the set of compacts of a dI-domain. For the theory of dI-domains and their
connection with lambda calculus we refer the reader to [1]. In particular we have
(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) whenever the left hand side is defined.

Note that in left divisibility monoids the partial order is the prefix relation.
Ordered monoids where the order relation is the intersection of the prefix and the
suffix relation were investigated e.g. in [3] under the name “divisibility monoid”.
Since such monoids will not appear in this paper any more, we will simply speak
of “divisibility monoids” as an abbreviation for “left divisibility monoid”.

Next we show that for elements of a divisibility monoid a length can be de-
fined in a natural way making the correspondence to computations even clearer:
Let x = x1x2 . . . xn ∈ M with xi ∈ T . Then {1, x1, x1x2, . . . , x} is a maximal
chain in the finite distributive lattice ↓x. Since maximal chains in finite distribu-
tive lattices have the same size, any word u over T with [u] = x has length n.
Hence we can define the length of x to be |x| = n.

Divisibility monoids are defined algebraically, using classical notions from
lattice theory. They can also be described combinatorially (and more similar to
the original definition of trace monoids) using commutation conditions for their
irreducible generators. A first step towards such a representation is provided by
the following proposition.

Proposition 1. Let M be a divisibility monoid and T the set of its irreducible
elements. Let ∼ denote the least congruence on the free monoid T ⋆ containing
{(ab, cd) | a, b, c, d ∈ T and a · b = c · d}. Then ∼ is the kernel of the natural
epimorphism [.] : T ⋆ → M . In particular, M ∼= T ⋆/∼.

On the other hand, there are sets of equations of the form ab = cd such that
T ⋆/∼ is not a divisibility monoid. In [12], those sets of equations are described
that give rise to divisibility monoids.

Let M be a divisibility monoid. Two elements x and y are independent (de-
noted by x ‖ y) if x∧ y = 1 and {x, y} is bounded above. Intuitively, this means
that the computations x and y have no nontrivial joint past and are consistent.
In this case the supremum x ∨ y exists in M . Since M is cancellative, there is a
unique element z such that y · z = x ∨ y. This element z is called the residuum
of x after y and denoted by x↑y. Intuitively, x↑y denotes the computation that
has to be performed after y in order to obtain the least common extension of x
and y. Note that the residuum is defined for independent elements x and y only.
Clearly, x↑y is defined iff y↑x is defined and in this case x(y↑x) = y(x↑y) = x∨y.

Now assume M to be a trace monoid. Then two traces x = [u] and y = [v] in
M are independent iff each letter occurring in u is independent from each letter
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occurring in v. This coincides with the usual definition of independence in trace
theory. If x and y are independent, then it is known that y · x = x · y = x ∨ y
and hence x↑y = x and similarly y↑x = y.

Again, let M be an arbitrary divisibility monoid. Fixing x ∈ M , we define a
unary partial function cx from M to M with domain dom(cx) := {y ∈ M | x ‖ y}
by letting cx(y) := y↑x. The function cx will be called the commutation behavior
of x. In this paper, as usual, an equation cx(y) = cz(y

′) means “cx(y) is defined iff
cz(y

′) is defined and in this case they are equal”. In other words, y is independent
from x iff y′ is independent from z and in this case y↑x = y′↑z.

Let CM denote the set of all commutation behaviors of elements of M , i.e.,
CM = {cx | x ∈ M}. Note that CM is a set of partial functions from M to M
that might be infinite. If CM is actually finite, we say that M is a divisibility
monoid with finite commutation behavior.

Let M again be a trace monoid. Recall that y↑x = y whenever y↑x is de-
fined. Hence the commutation behavior cx is the identity on its domain. This in
particular implies that two traces have the same commutation behavior iff they
have the same alphabet. Thus, if M is finitely generated, as a divisibility monoid
it has finite commutation behavior.

The following lemma lists some properties of the commutation behaviors our
proofs rely on.

Lemma 1. Let (M, ·, 1) be a divisibility monoid and x, x′, y, z ∈ M .

1. The commutation behavior cx is injective and length-preserving on its do-
main.

2. x ‖ yz iff x ‖ y and cy(x) ‖ z.
3. cyz(x) = cz(cy(x)); in other words x↑(yz) = (x↑y)↑z.
4. cx(yz) = cx(y) · ccy(x)(z); equivalently yz↑x = (y↑x) · (z↑(x↑y)).
5. If cx = cx′ and y ‖ x then ccy(x) = ccy(x′).

Note that the third statement of the lemma above in particular implies
cz ◦ cy = cyz where ◦ is the usual concatenation of partial functions. Hence
(CM , ◦, c1) is a monoid, the monoid of commutation behaviors of M . The func-
tion c : M → CM : x 7→ cx is a monoid antihomomorphism. Thus, if M has
finite commutation behavior, for any commutation behavior c ∈ CM , the set
{x ∈ M | cx = c} of all elements of M with commutation behavior c is recog-
nizable. This will be crucial for some proofs of our results. Unfortunately, we do
not know whether actually each divisibility monoid has finite commutation be-
havior. This seems to be a difficult problem combining monoid theoretic, lattice
theoretic and combinatorial concepts.

We will also need a lifting of the commutation behavior from a divisibility
monoid M to the free monoid T ⋆ which can be defined as follows. We define
functions du : T ⋆ → T ⋆ for u ∈ T ⋆ in such a way that equations like those
from Lemma 1 hold: Recall that for t ∈ T and u ∈ T ⋆ with [u] ‖ t we have
|t| = |c[u](t)| by Lemma 1 and therefore c[u](t) ∈ T . Hence du(t) := c[u](t) (if
t ‖ [u]) is a partial function mapping T to T . We extend it to a partial function
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from T ⋆ to T ⋆ by du(tv) := du(t)ddt(u)(v). Then one gets properties similar to
those listed in Lemma 1. In particular du = dv iff c[u] = c[v] for any u, v ∈ T ⋆.

Let DM = {du | u ∈ T ⋆} be the set of all commutation behaviors of words
over T . Then (DM , ◦, dε) is a monoid and d : T ⋆ → DM : u 7→ du is a monoid
antihomomorphism. Also, du 7→ c[u] is a monoid isomorphism from (DM , ◦, dε)
to (CM , ◦, c1).

It is immediate that if [u] ‖ [v] then [v] = [w] implies [du(v)] = c[u]([v]) =
c[u]([w]) = [du(w)]. The following lemma shows that not only the other implica-
tion holds as well but that even {du(w) | [v] = [w]} = {w′ | [w′] = [du(v)]}. The
proof relies on the fact that (↓x,≤) is a distributive lattice and that projective
intervals in distributive lattices are isomorphic.

Lemma 2. Let x ∈ M , u ∈ T ⋆ and ti ∈ T for i = 1, 2, . . . , n such that c[u](x) =
[t1t2 . . . tn]. Then there exist si ∈ T for i = 1, 2, . . . , n such that du(s1s2 . . . sn) =
t1t2 . . . tn. These elements si of T are unique.

4 Commutation grids and the rank

In trace theory, the generalized Levi Lemma (cf. [6]) plays an important role.
Here, we introduce a generalization to divisibility monoids using commutation
grids. This enables us to obtain a concept of “rank” of a language in these
monoids, similar to the one given by Hashigushi [11] for trace monoids. Let M
be a divisibility monoid and x, y ∈ M . Recall that cx(y) = y↑x. Similarly, we
define v↑u := du(v) whenever the latter is defined for u, v ∈ T ⋆.

Definition 2. For 0 ≤ i ≤ j ≤ n let xi
j , y

j
i ∈ T ⋆. The tuple (xi

j , y
j
i )0≤i≤j≤n is

a commutation grid provided xi
j ‖ yj−1

i , xi
j↑y

j−1
i = xi+1

j , and yj−1
i ↑xi

j = yj
i for

any 0 ≤ i < j ≤ n (see Fig. 1).

Lemma 3. Let z0, z1, . . . , zn, x, y ∈ T ⋆ with [xy] = [z0z1 . . . zn]. Then there
exists a commutation grid (xi

j , y
j
i )0≤i≤j≤n such that [x] = [x0

0x
0
1 . . . x0

n], [y] =

[yn
0 yn

1 . . . yn
n ], and [zi] = [xi

iy
i
i] for i = 0, 1, . . . , n.

Now we can introduce the notion of rank in the present context. Intuitively,
it measures the amount of commutations of irreducible generators necessary to
transform a product of two words into an equivalent word belonging to a given
word language over T .

Definition 3. Let u, v ∈ T ⋆ and X ⊆ T ⋆ such that [uv] ∈ [X ] := {[w] | w ∈ X}.
Let rk(u, v, X) denote the minimal integer n such that there exists a commuta-
tion grid (ui

j , v
j
i )0≤i≤j≤n in T ⋆ with [u] = [u0

0u
0
1 . . . u0

n], [v] = [vn
0 vn

1 . . . vn
n ], and

u0
0v

0
0u

1
1v

1
1 . . . un

nvn
n ∈ X.

For u, v ∈ T ⋆ and X ⊆ T ⋆ with [uv] ∈ [X ] := {[w] | w ∈ X}, one gets
rk(u, v, X) ≤ |uv|. We define the rank rk(X) of X by

rk(X) := sup{rk(u, v, X) | u, v ∈ T ⋆, [uv] ∈ [X ]} ∈ N ∪ {∞}.
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This picture depicts a com-
mutation grid. Edges denote el-

ements from T ⋆ and an angle de-
notes that the two edges correspond

to independent elements. Note that in
any of the small squares, the lower left

corner is marked by an angle. This indicates
that [xi

jy
j

i ] = [yj−1

i xi+1

j ] because of [xi
jy

j

i ] =

[xi
j(y

j−1

i ↑xi
j)] = [xi

j ] ∨ [yj−1

i ] = [yj−1

i (xi
j↑y

j−1

i )] =

[yj−1

i x
i+1

j ]. By Lemma 1, for any rectangle in the grid

(xi
j , y

j

i )0≤i≤j≤n the bottom and the left side are inde-
pendent and their residuum is the top (the right) side, re-

spectively. By induction, it is easy to show that [x0
1x

0
2 . . . x0

n] ·
[yn

0 yn
1 . . . yn

n ] = [x0
0y

0
0 ][x

1
1y

1
1 ][x2

2y
2
2 ] . . . [x

n
nyn

n ]. The right hand side
of this equation is the diagonal border of the grid.

Fig. 1. A commutation grid

A word language X ⊆ T ⋆ is closed if [u] ∈ [X ] implies u ∈ X for any u ∈ T ⋆.
Since rk(u, v, X) = 0 whenever uv ∈ X , the rank of a closed language equals 0.

We just note here that if M is a trace monoid then these notions coincide
with the corresponding ones known from trace theory. Hence the following result
generalizes [6, Thm. 3.2].

Theorem 2. Let (M, ·, 1) be a divisibility monoid with finite commutation be-
havior. Let X ⊆ T ⋆ be recognizable and n := rk(X) be finite. Then [X ] is
recognizable in M .

Proof. Let η be a homomorphism into a finite monoid S recognizing X with
du = dv whenever η(u) = η(v). For x ∈ M let R(x) denote the subset

{(ηd(x0), ηd(x1) . . . ηd(xn))d∈DM
| x0, x1, . . . , xn ∈ T ⋆ and x = [x0x1 . . . xn]}

of (Sn+1)|DM |. Hence there are only finitely many sets R(x). We show R(x) =
R(z) ⇒ x−1[X ] = z−1[X ], which implies that [X ] is recognizable.

So let R(x) = R(z) and let y ∈ x−1[X ]. Since rk(X) = n, there exists a
commutation grid (ui

j , v
j
i )0≤i≤j≤n such that x = [u0

0u
0
1 . . . u0

n], y = [vn
0 vn

1 . . . vn
n ],

and u0
0v

0
0u

1
1v

1
1 . . . un

nvn
n ∈ X . Then (ηd(u0

0), ηd(u0
1) . . . ηd(u0

n))d∈DM
∈ R(x) =

R(z). Hence there exist words w0
j ∈ T ⋆ with ηd(w0

j ) = ηd(u0
j) for each 0 ≤ j ≤ n

and d ∈ DM , and z = [w0
0w

0
1 . . . w0

n]. Then dw0
j

= du0
j

implying the existence of

a commutation grid (wi
j , v

j
i )0≤i≤j≤n. Then one gets zy = [w0

0v
0
0w

1
1v

1
1 . . . wn

nvn
n ] ∈

[X ]. Hence y ∈ z−1[X ] and therefore x−1[X ] = z−1[X ] as claimed above. ⊓⊔
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5 On recognizable and c-rational languages

First, we prove closure properties of the set of recognizable languages in a divis-
ibility monoid.

Lemma 4. The set of recognizable languages in a divisibility monoid with finite
commutation behavior is closed under multiplication.

To prove this lemma, one shows that for any closed languages X, Y ⊆ T ⋆, the
product XY has rank at most 1, i.e., rk(X Y ) ≤ 1. Then the lemma follows from
Kleene’s Theorem and from Thm. 2. We note that the distributivity assumption
on divisibility monoids is crucial for this result to hold, cf. [8, Ex. 4.11].

As in a trace monoid, the set of recognizable languages in a divisibility monoid
is not closed under iteration. Therefore, we need some more notions: An element
x ∈ M of a divisibility monoid (M, ·, 1) is connected if there are no independent
y, z ∈ M \ {1} such that x = y ∨ z = ycy(z). A set X ⊆ M (X ⊆ T ⋆, respec-
tively) is connected if all of its elements are connected ([X ] ⊆ M is connected,
respectively). For trace monoids, this lattice theoretic definition is equivalent
to the usual one via alphabets, and the iteration of a recognizable connected
language is again recognizable. The following example shows that the latter is
not the case for divisibility monoids.

Example 1. Let T = {a, b, c, d} and let ∼ denote the least congruence on T ⋆

with ab ∼ cd and ba ∼ dc. Now we consider the monoid M := T ⋆/∼. Using
the characterization from [12], one can show that M is a divisibility monoid.
Moreover, it has finite commutation behavior. Since any irreducible element is
trivially connected, {a, b} is a recognizable connected language in M . Let L
denote the iteration of this language in M , i.e., L := 〈{a, b}〉 ⊆ M . To show that
L is not recognizable, it suffices to prove that X := {w ∈ T ⋆ | [w] ∈ L} is not
recognizable in the free monoid T ⋆. Note that X consists of those words that are
equivalent to some word containing a’s and b’s, only. Clearly any such word has
to contain the same number of c’s and of d’s. If X was recognizable, the language
Y = X ∩ (ad)⋆(cb)⋆ would be recognizable. We will derive a contradiction by
showing Y = {(ad)i(cb)i | i ∈ N}: By the observation above, Y ⊆ {(ad)i(cb)i |
i ∈ N}. Starting with (ab)c ∼ cdc ∼ cba, we obtain (ab)nc ∼ c(ba)n for any n.
Thus ad(ab)ncb ∼ adc(ba)nb ∼ aba(ba)nb = (ab)n+2. Applying this equation to
a word of the form (ad)i(cb)i several times, one gets (ad)i(cb)i ∼ (ab)2i ∈ X and
therefore Y = {(ad)i(cb)i | i ∈ N}. ⊓⊔

An analysis of this example leads to the following additional requirement on
recognizable languages that we want to iterate: A language X ⊆ T ⋆ is residually
closed if it is closed under the application of du and d−1

u for elements u of X
(Note that in the example above d−1

a (b) = c 6∈ {a, b}, i.e., this language is not
residually closed.) A language L ⊆ M is residually closed iff {w ∈ T ⋆ | [w] ∈ L}
is residually closed. Recall that in a trace monoid the commutation behaviors
du are contained in the identity function on T ⋆. Hence any trace language is
residually closed.

9



Theorem 3. Let (M, ·, 1) be a divisibility monoid with finite commutation be-
havior. Let X ⊆ T ⋆ be closed, connected, and residually closed. Then the rank
rk(〈X〉) of the iteration of X is finite.

Proof. Let u, v ∈ T ⋆ and x0, x1, . . . , xn ∈ X such that [uv] = [x0x1 . . . xn]. One
can show that there exists a commutation grid (ui

j , v
j
i )0≤i≤j≤n in T ⋆ such that

[u] = [u0
0u

0
1 . . . u0

n], [v] = [vn
0 vn

1 . . . vn
n ] and [xi] = [ui

iv
i
i ] ∈ [X ].

Constructing a subgrid one shows that it is sufficient to consider the case
ui

i 6= ε 6= vi
i for all 0 ≤ i ≤ n.

Now one can prove that there are no 1 ≤ α ≤ β ≤ γ ≤ n with

du0
αu0

α+1
...u0

β−1
= du0

β
u0

β+1
...u0

γ−1
= du0

αu0
α+1

...u0
γ−1

since otherwise [uα
αvα

α] would not be connected. Since DM is finite, Ramsey’s
Theorem [15] bounds n and therefore the rank of 〈X〉. ⊓⊔

Using Kleene’s Theorem and Thm. 2 one gets that the iteration of a con-
nected, recognizable and residually closed language is recognizable.

A language L ⊆ M is c-rational if it can be constructed from the finite subsets
of M by union, multiplication and iteration where the iteration is applied to
connected and residually closed languages, only. Since any element x ∈ M has
only finitely many prefixes, finite languages are recognizable. By Lemma 4 and
Thm. 3, we get

Theorem 4. Let (M, ·, 1) be a divisibility monoid with finite commutation be-
havior. Let L ⊆ M be c-rational. Then L is recognizable.

Next we want to show the inverse implication of the theorem above. Let
(M, ·, 1) be a divisibility monoid, E a finite set and ℓ : T → E a function. Then
ℓ is a labeling function and (M, ℓ) is a labeled divisibility monoid if ℓ(s) = ℓ(s↑t)
and ℓ(s) 6= ℓ(t) for any s, t ∈ T with s ‖ t. We note that the monoid M from
Example 1 becomes a labeled divisibility monoid by putting ℓ(a) = ℓ(d) = 0 and
ℓ(b) = ℓ(c) = 1. Thus, our main Thm. 5 holds for this monoid which is not a
trace monoid.

Now let (M, ℓ) be a labeled divisibility monoid. The label sequence of a word
u0u1 . . . un ∈ T ⋆ is the word ℓ(u0)ℓ(u1) . . . ℓ(un) ∈ E⋆. We extend the mapping ℓ
to words over T by ℓ(tw) = {ℓ(t)}∪ ℓ(w) and to elements of M by ℓ([u]) := ℓ(u)
for u ∈ T ⋆. This latter is well defined by Prop. 1. Note that ℓ : M → 2E is
a monoid homomorphism into the finite monoid (2E ,∪, ∅). One can show that
ℓ(x) ∩ ℓ(y) = ∅, ℓ(y) = ℓ(y↑x), and ℓ(x) ∪ ℓ(y) = ℓ(x ∨ y) for any x, y ∈ M with
x ‖ y.

A language L ⊆ M is monoalphabetic if ℓ(x) = ℓ(y) for any x, y ∈ L. It is
an mc-rational language if it can be constructed from the finite subsets of M by
union, multiplication and iteration where the iteration is applied to connected
and monoalphabetic languages, only. Since, as we mentioned above, independent
elements of M have disjoint label sets, any monoalphabetic language is residually
closed. Hence mc-rational languages are c-rational.

10



Now let � be a linear order on the set E and let x ∈ M . The word u ∈ T ⋆ with
x = [u] is the lexicographic normal form of x (denoted u = lexNF(x)) if its label
sequence is the least among all label sequences of words v ∈ T ⋆ with x = [v].
This lexicographic normal form is unique since two word u, v ∈ T ⋆ having the
same label sequence with [u] = [v] are equal. Let LNF = {lexNF(x) | x ∈ M}
denote the set of all words in T ⋆ that are in lexicographic normal form. One can
characterize the words from LNF similarly to trace theory. This characterization
implies that LNF is recognizable in the free monoid T ⋆.

The crucial point in Ochmański’s proof of the c-rationality of recognizable
languages in trace monoids is that whenever a square of a word is in lexicographic
normal form, it is actually connected. This does not hold any more for labeled
divisibility monoids. But whenever a product of |E| + 2 words having the same
set of labels is in lexicographic normal form, this product is connected.

We need another notation: For a set A ⊆ E and u ∈ T ⋆ let nA(u) denote the
number of occurrences of maximal factors w of u with ℓ(w) ⊆ A or ℓ(w)∩A = ∅.
The number nA(u) is the number of blocks of elements of A and of E \A in the
label sequence of u. Furthermore, we put nA(x) := nA(lexNF(x)) for x ∈ M .

Lemma 5. Let (M, ·, 1, ℓ) be a labeled divisibility monoid, x, y ∈ M and x ‖ y.
Then nℓ(x)(x ∨ y) ≤ |E| + 1.

Lemma 6. Let X ⊆ T ⋆ be a monoalphabetic language. Let w ∈ X |E|+2 ∩ LNF.
Then [w] is connected.

Proof. Let n = |E|+1 and xi ∈ [X ] with [w] = x0x1 . . . xn. Furthermore assume
A = ℓ(xi) which is well defined since X is monoalphabetic. Now let x, y ∈ M
with x ‖ y and x ∨ y = [w]. Then ℓ(x) ∩ ℓ(y) = ∅. If A contained an element
from ℓ(x) and another one from ℓ(y), we would obtain nℓ(x)([w]) > n > |E|+ 1,
contradicting Lemma 5. Hence A ⊆ ℓ(x) or A ⊆ ℓ(y). Now ℓ(x)∪ℓ(y) = ℓ(x∨y) =
ℓ(x0x1 . . . xn) = A ⊆ ℓ(x) implies y = 1. ⊓⊔

Now one can show that in a labeled divisibility monoid (with possibly infinite
commutation behavior) any recognizable set is mc-rational. This proof follows
the lines of the corresponding proof by Ochmański for traces using Lemma 6.
Summarizing, we get the following theorem which in particular implies Thm. 1.

Theorem 5. Let (M, ·, 1) be a labeled divisibility monoid with finite commuta-
tion behavior and L ⊆ M . Then L is recognizable iff L is c-rational iff L is
mc-rational.

6 Open problems

Sakarovitch’s and Ochmański’s results are important generalizations of Kleene’s
Theorem to rational and to trace monoids, respectively; thus into “orthogo-
nal” directions since any rational trace monoid is free. Our further extension
of Ochmański’s result is not “orthogonal” to Sakarovitch’s approach any more
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(for instance {a, b, c, d}⋆/ 〈ab = cd〉 is both, a rational monoid and a divisibility
monoid, but no free monoid). Hence our approach can be seen as a step towards
a common generalization of Sakarovitch’s and Ochmański’s results.
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