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Abstract .  In this paper we propose a method for 3-D object recogni- 

tion based on linear Support Vector Machines (SVMs). Intuitively, given 

a set of points which belong to either of two classes, a linear SVM finds 

the hyperplane leaving the largest possible fraction of points of the same 
class on the same side, while maximizing the distance of either class from 
the hyperplane. The hyperplane is determined by a subset of the points of 

the two classes, named support vectors, and has a number of interesting 

theoretical properties. The proposed method does not require feature ex- 
traction and performs recognition on images regarded as points of a space 

of high dimension. We illustrate the potential of the recognition system 
on a database of 7200 images of 100 different objects. The remarkable 

recognition rates achieved in all the performed experiments indicate that 
SVMs are well-suited for aspect-based recognition, even in the presence 
of small amount of occlusions. 

1 I n t r o d u c t i o n  

Support Vector Machines (SVMs) have recently been proposed as a very effective 

method for general purpose pattern recognition [12, 3]. Intuitively, given a set of 

points which belong to either of two classes, a SVM finds the hyperplane leaving 

the largest possible fraction of points of the same class on the same side, while 

maximizing the distance of either class from the hyperplane. According to [12], 

given fixed but unknown probability distributions, this hyperplane - called the 

Optimal Separating Hyperplane (OSH) - minimizes the risk of misclassifying the 

yet-to-be-seen examples of the test set. 

In this paper an aspect-based method for the recognition of 3-D objects which 

makes use of SVMs is described. In the last few years, aspect-based recognition 

strategies have received increasing attention from both the psychophysical [10, 4] 

and computer vision [7, 2, 5] communities. Although not naturally tolerant to 

occlusions, aspect-based recognition strategies appear to be well-suited for the 

solution of recognition problems in which geometric models of the viewed ob- 

jects can be difficult, if not impossible, to obtain. Unlike other aspect-based 

methods, recognition with SVMs (a) does not require feature extraction or data 

reduction, and (b) can be performed directly on images regarded as points of an 

N-dimensional object space, without estimating pose. The high dimensionality 

of the object space makes OSHs very effective decision surfaces, while the recog- 
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nition stage is reduced to deciding on which side of an OSH lies a given point in 

object space. 

The proposed method has been tested on the COIL database 3 consisting of 

7200 images of 100 objects. Half of the images were used as training examples, 

the remaining half as test images. We discarded color information and tested 

the method on the remaining images corrupted by synthetically generated noise, 

bias, and small amount of occlusions. The remarkable recognition rates achieved 

in all the performed experiments indicate that SVMs are well-suited for aspect- 

based recognition. Comparisons with other pattern recognition methods, like per- 

ceptrons, show that the proposed method is far more robust in the presence of 

noise. 

The paper is organized as follows. In Section 2 we review the basic facts of 

the theory of SVMs. Section 3 discusses the implementation of SVMs adopted 

throughout this paper and describes the main features of the proposed recognition 

system. The obtained experimental results are illustrated in Section 4. Finally, 

Section 5 summarizes the conclusions that can be drawn from the presented 

research. 

2 T h e o r e t i c a l  o v e r v i e w  

We recall here the basic notions of the theory of SVMs [12, 3]. We start with 

the simple case of linearly separable sets. Then we define the concept of support 

vectors and deal with the more general nonseparable case. Finally, we list the 

main properties of SVMs. Since we have only used linear SVMs we do not cover 

the generalization of the theory to the case of nonlinear separating surfaces. 

2.1 O p t i m a l  s e p a r a t i n g  h y p e r p l a n e  

In what follows we assume we are given a set S of points xi E ll~ n with i = 

1, 2 , . . . ,  N. Each point xl belongs to either of two classes and thus is given a label 

Yi E { -1 ,  1}. The goal is to establish the equation of a hyperplane that divides 

S leaving all the points of the same class on the same side while maximizing the 

distance between the two classes and the hyperplane. To this purpose we need 

some preliminary definitions. 

Definition 1. The set S is linearly separable if there exist w E lB. n and b E IR 

such that 

U~(w .x~ + b) > 1, (1) 

for i=  1 , 2 , . . . , N .  

The pair (w, b) defines a hyperplane of equation w �9 x + b = 0 named the 

separating hyperplane (see Figure l(a)).  If we denote by w the norm of w, the 

3 The images of the COIL database (Columbia Object Image Library) can be down- 

loaded through anonymous ftp from www.cs.columbia.edu. 
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signed distance di of a point xi from the separating hyperplane (w, b) is given 

by 
w ' x i + b  

d i  - , ( 2 )  
W 

with w the norm of w. Combining inequality (1) and equation (2), for all x~ E S 

we have 
1 

yidi >_ --. (3) 
W 

Therefore, 1/w is the lower bound on the distance between the points xi and the 

separating hyperplane (w, b). 
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Fig. 1. Separating hyperplane (a) and OSH (b). The dashed lines in (b) identify the 
margin. 

We now need to establish a one-to-one correspondence between separating 

hyperplanes and their parametric representation. 

Definition 2. Given a separating hyperplane (w, b) for the linearly separable set S, 

the canonical representation of the separating hyperplane is obtained by rescaling 

the pair (w, b) into the pair (w', b') in such a way that the distance of the closest 

point, say xj ,  equals 1/wq 

Through this definition we have 

minx,es {yi(w' "xi + b')} = 1. 

Consequently, for a separating hyperplane in the canonical representation, the 

bound in inequality (3) is tight. In what follows we will assume that a separating 

hyperplane is always given in the canonical representation and thus write (w, b) 

instead of (w', bt). We are now in a position to define the notion of OSH. 

Definition 3. Given a linearly separable set S, the optimal separating hyperplane 
is the separating hyperplane for which the distance of the closest point of S is 

maximum. 
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Since the distance of the closest point equals l /w,  the OSH can be regarded 

as the solution of the problem of minimizing 1/w subject to the constraint (1), 

o r  

Problem P1  
1 Minimize ~w �9 w 

subject to y i ( w . x , + b ) > l , i = l , 2 , . . . , N  

Note that the parameter  b enters in the constraints but not in the function 

to be minimized. The quantity 2/w, the lower bound of the minimum distance 

between points of different classes, is named the margin. Hence, the OSH can 

also be seen as the separating hyperplane which maximizes the margin (see Fig- 

ure l(b)). We now study the properties of the solution of Problem P1 .  

2.2 S u p p o r t  v e c t o r s  

Problem P 1  is usually solved by means of the classical method of Lagrange 

multipliers. In order to understand the concept of SVs it is necessary to go briefly 

through this method. For more details and a thorough review of the method see 

[1]. 

If  we denote with a = ((3r O ~ 2 ,  . . . , C g N )  the N nonnegative Lagrange multipli- 

ers associated with the constraints (1), the solution to Problem P 1  is equivalent 

to determining the saddle point of the function 

N 

L = ~-w.w - ~ 4, {~,(w.  x, + b ) -  1}. (4) 

with L = L(w, b, a ) .  At the saddle point, L has a min imum for w -- @ and 

b = b and a max imum for a -- &, and thus we can write 

N 

oL ~ y , , ,  o, (5) 
Ob 

OL__ N 
- -  - ~_~ Ow -- w cqyixi = 0 (6) 

i = 1  

OL OL OL OL 

- ( ~ - '  ~ - - : - ' "  0wN u.wl uw~ ) ~w 

with 

Substituting equations (5) and (6) into the right hand side of (4), we see that 

Problem P 1  reduces to the maximization of the function 

N 24 

1 
~(~) = ~ 4, - ~ ~ ~, ,~y,~jx, .xj ,  (7) 

subject to the constraint (5) with a > 0 4. This new problem is called the dual 

problem and can be formulated as 

4 In what follows c~ >_ 0 means al > 0 for every component al of any vector a .  
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Problem P2  

Maximize - � 8 9  D a  + ~ a i  

subject to ~ yial = 0 

a_>O, 

where both sums are for i = 1, 2 , . . . ,  N, and D is an N • N matrix such that 

Di j  = y iY jXi  . x j .  (8) 

As for the pair (~r b), from equation (6) it follows that 

N 

,v =  ,u xi, (9) 

i = l  

while/~ can be determined from &, solution of the dual problem, and from the 

K/ihn-Tucker conditions 

6~i ( Y i ( W ' X i  + b) - 1) = 0, i =  1 , 2 , . . . , N .  (10) 

Note that the only ~i that can be nonzero in equation (10) are those for which 

the constraints (1) are satisfied with the equality sign. This has an important 

consequence. Since most of the ~i are usually null, the vector w is a linear 

combination of a relatively small percentage of the points xi. These points are 

termed suppor t  vec tors  (SVs) because they are the closest points from the OSH 

and the only points of S needed to determine the OSH (see Figure l(b)). Given 

a support vector x j ,  the parameter /~ can be obtained from the corresponding 

Kiihn-Tucker condition as b = y j  - s �9 x j .  

2.3 L i n e a r l y  n o n s e p a r a b l e  case 

If the set S is not linearly separable or one simply ignores whether or not the set 

S is linearly separable, the problem of searching for an OSH is meaningless (there 

may be no separating hyperplane to start with). Fortunately, the previous analysis 

can be generalized by introducing N nonnegative variables ~ --- ((1,~2,. . . ,~N) 

such that 

y i ( w . x i + b ) > _ l - ~ i ,  i =  1 , 2 , . . . , N .  (11) 

The purpose of the variables ~i is to allow for a small number of misclassified 

points. If the point xi satisfies inequality (1), then ~i is null and (11) reduces 

to (1). Instead, if the point x~ does not satisfy inequality (1), the extraterm - ( i  

is added to the right hand side of (1) to obtain inequality (11). The generalized 

OSH is then regarded as the solution to 

Problem P3  

Minimize ~wl - w +  C ~ i  

subject to y i ( w  �9 x i  + b) >_ 1 - ~i i = 1, 2 , . . . ,  N 

5>0. 
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The purpose of the extraterm C ) - ~ i ,  where the sum is for i = 1 , 2 , . . . , N ,  

is to keep under control the number of misclassified points. The parameter C 

can be regarded as a regularization parameter. The OSH tends to maximize the 

minimum distance 1/w for small C, and minimize the number of misclassified 

points for large C. For intermediate values of C the solution of problem P 3  trades 

errors for a larger margin. The behavior of the OSH as a function of C is studied 

in detail in [8]. 

In analogy with what was done for the separable case, Problem P 3  can be 

transformed into the dual 

Problem P 4  

Maximize 

subject to 

-�89 
~ y i a i  = 0  

0 < c~i _< C, i -  1 , 2 , . . . , N  

Note that the dimension of P 4  is given by the size of the training set, while 

the dimension of the input space gives the rank of D. From the constraints 

of Problem P 4  it follows that if C is sufficiently large and the set S linearly 

separable, Problem P 4  reduces to P2 .  The vector w is still given by equation 9, 

while b can again be determined from fit, solution of the dual problem P4 ,  and 

from the new Kuhn-Tucker conditions 

~, ( y i ( ~ . x ,  + b) - 1 + ~ , )  = 0 (12) 

(C - &i)~i -- 0 (13) 

where the ~i are the values of the ~i at the saddle point. Similarly to the separable 

case, the SVs are the points xi for which 61 > 0. The main difference is that here 

we have to distinguish between the SVs for which 6i < C and those for which 

6i = C. In the first case, from condition (13) it follows that ~i -- 0, and hence, 

from condition (12), that the SVs lie at a distance i /~  from the OSH. These SVs 

are termed margin vectors. The SVs for which (}i = C, are instead: misclassified 

points if ~{ > i, points correctly classified but closer than i /~  from the OSH if 

0 < ~ _< 1, or margin vectors if ~i - 0. Neglecting this last rare (and degenerate) 

Occurrence, we refer to all the SVs for which c~i = C as errors. All the points 

that are not SVs are correctly classified and lie outside the margin strip. 

We conclude this section by listing the main properties of SVMs. 

2.4 M a t h e m a t i c a l  p r o p e r t i e s  

The first property distinguishes SVMs from previous nonparametric techniques, 

like nearest-neighbors or neural networks. Typical pattern recognition methods 

are based on the minimization of the empirical risk, that is on the at tempt to 

minimize the misclassification errors on the training set. Instead, SVMs min- 

imize the structural risk, that is the probability of misclassifying a previously 

unseen data point drawn randomly from a fixed but unknown probability dis- 

tribution. In particular, it follows that, if the VC-dimension [11] of the family of 

decision surfaces is known, then the theory of SVMs provides an upper bound 
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for the probability of misclassification of the test set for any possible probability 

distributions of the data points [12]. 

Secondly, SVMs condense all the information contained in the training set 

relevant to classification in the support vectors. This (a) reduces the size of the 

training set identifying the most important points, and (b) makes it possible to 

perform classification efficiently. 

Thirdly, SVMs can be used to perform classification in high dimensional 

spaces, even in the presence of a relatively small number of data points. This is 

because, unlike other techniques, SVMs look for the optimal separating hyper- 

plane. From the quantitative viewpoint, the margin can be used as a measure of 

the difficulty of the problem (the larger the margin the lower the probability of 

misclassifying a yet-to-be-seen point). 

3 T h e  r e c o g n i t i o n  s y s t e m  

We now describe the recognition system we devised to assess the potential of the 

theory. We first review the implementation developed for determining the SVs 

and the associated OSH. 

3.1 Implemen ta t ion  

In Section 2 we have seen that the problem of determining the OSH reduces to 

Problem P4, a typical problem of quadratic programming. The vast literature of 

nonlinear programming covers a multitude of problems of quadratic programming 

and provides a plethora of methods for their solution. Our implementation makes 

use of the equivalence between quadratic programming problems and Linear 
Complementary Problems (LCPs) and is based on the Complementary Pivoting 
Algorithm (CPA), a classical algorithm able to solve LCPs [1]. 

Since CPA spatial complexity goes with the square of the number of examples, 

the algorithm cannot deal efficiently with much more than a few hundreds of 

examples. This has not been a fundamental issue for the research described in 

this paper, but for problems of larger size one definitely has to resort to more 

sophisticated techniques [6]. 

3.2 Recogni t ion  stages 

We have developed a recognition system based on three stages: 

1. Preprocessing 

2. Training set formation 

3. System testing 

We now describe these three stages in some detail. 
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Preprocess ing  The COIL database consists of 72 images of 100 objects (for 

a total of 7200 images), objects positioned in the center of a turntable and ob- 

served from a fixed viewpoint. For each object, the turntable is rotated by 5 ~ 

per image. Figures 2 shows a selection of the objects in the database. Figures 3 

shows one every three views of one particular object. As explained in detail by 

Murase and Nayar[5], the object region is re-sampled so that the larger of the 

two dimensions fits tlle image size. Consequently, the apparent size of an object 

may change considerably fl'om image to image, especially for the objects which 

are not symmetric with respect to the turntable axis. 

Fig. 2. Images of 32 objects of the COIL database. 

Fig. 3. Twentyfour of the 72 images of a COIL object. 

The original images were color images (24 bits for each of the RGB channels) 
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of 128 • 128 pixels. In the preprocessing stage each image was transformed into 

an 8-bit grey-level image rescaling the obtained range between 0 and 255. Fi- 

nally, the image spatial resolution was reduced to 32 • 32 by averaging the grey 

values over 4 • 4 pixel patches. The aim of these transformations was to reduce 

the dimensionality of the representation given the relatively small number of im- 

ages available. The effectiveness of this considerable data reduction is explained 

elsewhere [9]. 

F o r m i n g  the  t r a i n i n g  set  The training set consists of 36 images (one every 

10 ~ for each object. After the preprocessing stage, each image can be regarded 

as a vector x of 32 • 32 --= 1024 components. 

Depending on the classification task, a certain subset of the 100 objects (from 

2 to 32) has been considered. Then, the OSHs associated to each pair of objects 

i and j in the subset were computed, the SVs identified, and the obtained para- 

meters, w(i, j)  and b(i, j), stored in a file. We have never come across errors in 

the classification of the training sets. The reason is essentially given by the high 

dimensionality of the object space compared to the small number of examples. 

The images corresponding to some of the SVs for a specific pair of objects are 

shown in Figure 4. 

Fig. 4. Eight of the SVs for a specific object pair. 

Typically, we have found a number of SVs ranging from 1/3 to 2/3 of the 72 

training images for each object pair. This large fraction of SVs can be explained 

by the high dimensionality of the object space combined with the small number 

of examples. 

S y s t e m  testing Given a certain subset a of the 100 objects and the associated 

training set of 36 images for each object in ~r, the test set consists of the remaining 
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36 images per object in a. Recognition was performed following the rules of a 

tennis tournament.  Each object is regarded as a player, and in each match tile 

system temporarily classifies an image of the test set according to the OSH 

relative to the pair of players involved in the match. If in a certain match the 

players are objects i and j ,  the system classifies the viewed object of image x as 

object i or j depending on the sign of 

w ( i , j ) - x +  b(i,j).  

If, for simplicity, we assume there are 2 K players, the first round 2 K-1 matches 

are played and the 2 K-  1 losing players are out. The 2 K-  1 match winners advance 

to the second round. The (K - 1)-th round is the final between the only 2 players 

that won all the previous matches. This procedure requires 2 K - 1 classifications. 

Note that the system recognizes object identity without estimating pose. 

We are now ready to present the experimentM results. 

4 Exper imenta l  results  

We describe here the experimental results of the recognition system on the COIL 

database. We first considered the images exactly as downloaded from the Net 

and afterwords verified what amount of noise the system can tolerate. 

4.1 C O I L  images  

We tested the proposed recognition system on sets of 32 of the 100 COIL objects. 

The training sets consisted of 36 images for each of 32 objects and the test sets 

the remaining 36 images for each object. For all 10 random choices of 32 of the 

100 objects we tried, the system reached perfect score. Therefore, we decided to 

select by hand the 32 objects most di~icult to recognize (i.e. the set of objects 

separated by the smallest margins). By doing so the system finally mistook a 

packet of chewing gum for another very similar packet of chewing gum in one 

case (see Figure 5). 

Fig. 5. The only misclassified image (a) and corresponding erroneously recognized 

object (b). 
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To gain a better understanding of how an SVM perform recognition, it may 

be useful to look at the relative weights of the components of the vector w. A 

grey valued encoded representation of the absolute value of the components of 

the vector w relative to the OSH of the two objects of Figure 4 is displayed in 

Figure 6(a) (the darker a point, the higher the corresponding w component). 

Note that the background is essentially irrelevant, while the larger components 

(in absolute value) can be found in the central portion of the image. Interestingly, 

the image of Figure 6(a) resembles the visual appearance of both the "dog" and 

"cat" of Figure 4. The graph of Figure 6(b) shows the convergence of ~ wixi 

to the dot product w �9 x for one of the "cat" image, with the components wi 

sorted in decreasing order. From the graph it clearly follows that less than half 

of the 1024 components are all that is needed to reach almost perfect conver- 

gence, while a reasonably good approximation is already obtained using only the 

largest 100 components. The graph of Figure 6(b) is typical with a few exceptions 

corresponding to very similar object pairs. 
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Fig. 6. Relative weights of the components of the normal vector w. See text for details. 

In conclusion the proposed method performs recognition with excellent per- 

centages of success even in the presence of very similar objects. It is worthwhile 

noticing that while the recognition time is practically negligible (requiring the 

evaluation of 31 dot products), the training stage (in which all the 32 • 31/2 = 496 

OSHs must be determined) takes about 15 minutes on a SPARC10 workstation. 

4.2 Robus tnes s  

In order to verify the effectiveness and robustness of the proposed recognition 

system, we performed experiments under increasingly difficult conditions: pixel- 

wise random noise, bias in the registration, and small amounts of occlusion. 
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Noise  c o r r u p t e d  images  We added zero mean random noise to the grey value 

of each pixel and rescaled the obtained grey levels between 0 and 255. Restricting 

the analysis to the 32 objects most difficult to recognize, the system performed 

equally well for maximum noise up to • grey levels and degrades gracefully 

for higher percentages of noise (see Table 1). Some of the noise corrupted images 

from which the system was able to identify the viewed object are displayed in 

Figure 7. 

Table 1. Average overall error rates for noise corrupted images. The noise is in grey 
levels. 

Noise fl-25 =h50 +75 =hl00 =t=150 -4-200 =h250 

32 Objects 0.3% 0.8%[!.1% 1.6% 2.7% 6.2% 11.0% 

30 Objects 0.0% 0.1% 3.2% 0.2% 0.7% 1.8% 5.8% 

Fig. 7. Eight images synthetically corrupted by white noise, spatially misregistrated 
and their combination. All these images were correctly classified by the system. 

By inspection of the obtained results, we noted that most of the errors were 

due the three chewing gum packets of Figure 2 which become practically indis- 

tinguishable as the noise increases. The same experiments leaving out two of 

the three packets produced much better performances (see rightmost column of 

Table 1). It must be said that the very good statistics of Table 1 are partly due to 

the "filtering effects" of the reduction of the image size from 128 • 128 to 32 • 32 

pixels obtained by spatial averaging. 

From the obtained experimental results, it can be easily inferred that the 

method achieves very good recognition rates even in the presence of large amount 

of noise. 

S h i f t e d  images  We checked the dependence of the system on the precision with 

which the available images are spatially registered. We thus shifted each image 

of the test set by n pixels in the horizontal direction and repeated the same 

recognition experiments of this section on the set of the 32 most difficult objects. 

As can be appreciated from Table 2, the system performs equMly well for small 

shifts (n = 3, 5) and degrades slowly for larger displacements (n = 7, 10). 

We have obtained very similar results (reported in [9]) when combining noise 

and shifts. It is concluded that the spatial registration of images is important but 
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Table 2. Average overall error rates for shifted images (the shifts are in pixel units). 

Shift 3 5 7 10 

32 Objects 0.6% 2.0% 6.7% 18.6% 

36 Objects 0.1% D.8% 4.8% 12.5% 

that spatial redundancy makes it possible to achieve very good performances even 

in the presence of a combination of additive noise and shift. Here again it must 

be noted that the quality of the results is partly due to the "filtering effects" of 

the preprocessing step. 

O c c l u s i o n s  In order to verify the robustness of the system against occlusions 

we performed two more series of experiments. In the first series we randomly 

selected a subwindow in the rescaled test images (32 x 32) and assigned a random 

value between 0 and 255 to the pixels inside the subwindow. The obtained error 

rates are summarized in Table 3. In the second experiment we randomly selected 

n columns and m rows in the rescaled images and assigned a random value to 

the corresponding pixels. The obtained error rates are summarized in Table 4. 

Some of the images from which the system was able to identify partially occluded 

objects are displayed in Figure 8. Comparing the results in Tables 3 and 4 it is 

evident that the occlusion concentrated in a subwindow of the image poses more 

problems. In both cases, however, we conclude that the system tolerates small 

amounts of occlusion. 

Fig. 8. Eight images with small occlusions correctly classified by the system, 

Table 3. Average overall error rates for images occluded by squared window of k pixel 
per edge. 

k 4 6 81012.7% 
32 Objects 0.7% 2.0% 5.7% 

30 Objects 0.4% 1.2% 4.3% 10.8% 
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Table 4. Average overall error rates for images occluded by n columns and m rows. 

n m 32 objects 30 objects 

1 1 2.1% 1.3% 

1 2 3.2% 1.9% 

2 2 6.1% 3.2% 

4.3 C o m p a r i s o n  w i th  p e r c e p t r o n s  

In order to gain a better understanding of the relevance of the obtained results 

we run a few experiments using perceptrons instead of SVMs. We considered 

two objects (the first two toy cars in Figure 2) and run the same experiments 

described in this section. The results are summarized in table 5. The perceptron 

column gives the average of the results obtained with ten different perceptrons 

(corresponding to 10 different random choices of the initial weights). The poor 

performance of perceptrons can be easily explained in terms of the margin as- 

sociated with the separating hyperplane of each perceptron as opposed to the 

SVM margin. In this example, the perceptron margin is between 2 and 10 times 

smaller than the SVM margin. This means that both SVMs and perceptrons sep- 

arate exactly the training set, but that the perceptron margin makes it difficult 

to classify correctly novel images in the presence of noise. Intuitively, this fact 

can be explained by thinking of noise perturbation as a motion in object space: 

if the margin is too small, even a slight perturbation can bring a point across the 

separating hyperplane (see Figure 1). 

Table 5. Comparison between SVMs and perceptrons in the presence of noise. 

Noise 4-50 +100 5=150 5=200 5=250 5=300 

SVM 0.0% 0.0% 0.0% 0.0% 0.1% 4.1% 

Mean Perc. 2.6% 7.1% 15.5% 23.5% 30.2% 34.7% 

5 D i s c u s s i o n  

In this final section we compare our results with the work of [5] and summarize 

the obtained results. 

The images of the COIL database were originally used by Murase and Na- 

yar as a benchmark for testing their appearance-based recognition system. Our 

results seem to compare favorably with respect to the results reported in [5] es- 

pecially in terms of computational cost. This is not surprising because thanks to 
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the design of SVMs, we make use of all the available information with no need 

of data reduction. Note that SVMs allow for the construction of training sets 

of much smaller size than the training sets of [5]. Unlike Murase and Nayar 's 

method, however, our method does not identify object's pose. 

It would be interesting to compare our method with the classification strategy 

suggested in [5] on the same data points. After the construction of parametric 

eigenspaces, Murase and Nayar classify an object by computing the minimum of 

the distance between the point representative of the object and the manifold of 

each object in the database. A possibility could be the use of SVMs for this last 

stage. 

In conclusion, in this paper we have assessed the potential of linear SVMs 

in the problem of recognizing 3-D objects from a single view. As shown by the 

comparison with other techniques, it appears that SVMs can be effectively trained 

even if the number of examples is much lower than the dimensionality of the object 

space. This agrees with the theoretical expectation that can be derived by means 

of VC-dimension considerations [12]. The remarkably good results which we have 

reported indicate that SVMs are likely to be very useful for direct 3-D object 

recognition, even in the presence of small amounts of occlusion. 
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