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AbstractÐMost automatic expression analysis systems attempt to recognize a small set of prototypic expressions, such as

happiness, anger, surprise, and fear. Such prototypic expressions, however, occur rather infrequently. Human emotions and intentions

are more often communicated by changes in one or a few discrete facial features. In this paper, we develop an Automatic Face

Analysis (AFA) system to analyze facial expressions based on both permanent facial features (brows, eyes, mouth) and transient facial

features (deepening of facial furrows) in a nearly frontal-view face image sequence. The AFA system recognizes fine-grained changes

in facial expression into action units (AUs) of the Facial Action Coding System (FACS), instead of a few prototypic expressions.

Multistate face and facial component models are proposed for tracking and modeling the various facial features, including lips, eyes,

brows, cheeks, and furrows. During tracking, detailed parametric descriptions of the facial features are extracted. With these

parameters as the inputs, a group of action units (neutral expression, six upper face AUs and 10 lower face AUs) are recognized

whether they occur alone or in combinations. The system has achieved average recognition rates of 96.4 percent (95.4 percent if

neutral expressions are excluded) for upper face AUs and 96.7 percent (95.6 percent with neutral expressions excluded) for lower face

AUs. The generalizability of the system has been tested by using independent image databases collected and FACS-coded for

ground-truth by different research teams.

Index TermsÐComputer vision, multistate face and facial component models, facial expression analysis, facial action coding system,

action units, AU combinations, neural network.
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1 INTRODUCTION

FACIAL expression is one of themost powerful, natural, and
immediatemeans for humanbeings to communicate their

emotions and intentions. The face canexpress emotion sooner
thanpeople verbalize or even realize their feelings. In thepast
decade, much progress has been made to build computer
systems to understand and use this natural form of human
communication [4], [3], [8], [10], [16], [18], [24], [26], [28], [32],
[37], [38], [36], [40]. Most such systems attempt to recognize a
small set of prototypic emotional expressions, i.e., joy,
surprise, anger, sadness, fear, and disgust. This practice may
follow from thework ofDarwin [9] andmore recently Ekman
and Friesen [13], Friesen [12], and Izard et al. [19] who
proposed that basic emotions have corresponding prototypic
facial expressions. In everyday life, however, such prototypic
expressions occur relatively infrequently. Instead, emotion
more often is communicatedby subtle changes in one or a few
discrete facial features, suchasa tighteningof the lips in anger
or obliquely lowering the lip corners in sadness [7]. Change in
isolated features, especially in the area of the eyebrows
or eyelids, is typical of paralinguistic displays; for
instance, raising the brows signals greeting [11]. To capture
such subtlety of human emotion and paralinguistic
communication, automated recognition of fine-grained
changes in facial expression is needed.

1.1 Facial Action Coding System

Ekman and Friesen [14] developed the Facial Action Coding
System (FACS) for describing facial expressions by action
units (AUs). Of 44 FACS AUs that they defined, 30 AUs are
anatomically related to the contractions of specific facial
muscles: 12 are for upper face, and 18 are for lower face. AUs
can occur either singly or in combination.WhenAUs occur in
combination they may be additive, in which the combination
does not change the appearance of the constituent AUs, or
nonadditive, inwhich theappearanceof the constituentsdoes
change. Although the number of atomic action units is
relatively small, more than 7,000 different AU combinations
have been observed [30]. FACS provides the descriptive
power necessary to describe the details of facial expression.

Commonly occurring AUs and some of the additive and
nonadditive AU combinations are shown in Tables 1 and 2.
As an example of a nonadditive effect, AU 4 appears
differently depending on whether it occurs alone or in
combination with AU 1 (as in AU 1� 4). When AU 4 occurs
alone, the brows are drawn together and lowered. In
AU 1� 4, the brows are drawn together but are raised due
to the action of AU 1. AU 1� 2 is another example of
nonadditive combinations. When AU 2 occurs alone, it not
only raises the outer brow, but also often pulls up the inner
brow which results in a very similar appearance to
AU 1� 2. These effects of the nonadditive AU combinations
increase the difficulties of AU recognition.

1.2 Automated Facial Expression Analysis

Most approaches to automated facial expression analysis so
far attempt to recognize a small set of prototypic emotional
expressions. Suwa et al. [31] presented an early attempt to
analyze facial expressions by tracking the motion of
20 identified spots on an image sequence. Essa and
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Pentland [16] developed a dynamic parametric model based
on a 3D geometric mesh face model to recognize five
prototypic expressions. Mase [26] manually selected facial
regions that corresponded to facial muscles and computed
motion within these regions using optical flow. The work
by Yacoob and Davis [37] used optical flow like Mase's
work, but tracked the motion of the surface regions of facial
features (brows, eyes, nose, and mouth) instead of that of
the underlying muscle groups. Zhang [40] investigated the
use of two types of facial features: the geometric positions of
34 fiducial points on a face and a set of multiscale,
multiorientation Gabor wavelet coefficients at these points
for facial expression recognition.

Automatic recognition of FACS action units (AU) is a
difficult problem, and relatively little work has been
reported. AUs have no quantitative definitions and, as noted,
can appear in complex combinations.Mase [26] and Essa [16]
described patterns of optical flow that corresponded to
several AUs, but did not attempt to recognize them. Bartlett
et al. [2] and Donato et al. [10] reported some of the most
extensive experimental results of upper and lower face AU
recognition. They both used image sequences that were free
of head motion, manually aligned faces using three coordi-
nates, rotated the images so that the eyes were in horizontal,
scaled the images and, finally, cropped a window of
60� 90 pixels. Their system was trained and tested using
the leave-one-out cross-validation procedure, and the mean
classification accuracy was calculated across all of the test
cases. Bartlett et al. [2] recognized six single upper face AUs
(AU 1, AU 2, AU 4, AU 5, AU 6, and AU 7) but no AUs
occurring in combinations. They achieved 90.9 percent
accuracy by combining holistic spatial analysis and optical
flow with local feature analysis in a hybrid system. Donato
et al. [10] compared several techniques for recognizing action

units. These techniques included optical flow, principal
component analysis, independent component analysis, local
feature analysis, and Gabor wavelet representation. The best
performances were obtained by using Gabor wavelet
representation and independent component analysis with
which a 95.5 percent average recognition rate was reported
for six single upper face AUs (AU 1, AU 2, AU 4, AU 5, AU 6,
and AU 7) and two lower face AUs and four AU combina-
tions (AU 17, AU 18, AU 9� 25, AU 10� 25, AU 16� 25,
AU 20� 25). For analysis purpose, they treated each
combination as if it were a separate new AU.

The authors' group has developed a few versions of the
facial expression analysis system. Cohn et al. [8] and
Lien et al. [24] used dense-flow, feature-point tracking,
and edge extraction to recognize four upper face AUs and
two combinations (AU 4, AU 5, AU 6, AU 7, AU 1� 2,
and AU 1� 4) and four lower face AUs and five
combinations (AU 12, AU 25, AU 26, AU 27, AU 12� 25,
AU 20� 25� 16, AU 15� 17, AU 17� 23� 24, and
AU 9� 17� 25). Again, each AU combination was
regarded as a separate new AU. The average recognition
rate ranged from 80 percent to 92 percent depending on
the method used and AUs recognized.

These previous versions have several limitations:

1. They require manual marking of 38 to 52 feature
points around face landmarks in the initial input
frame. A more automated system is desirable.

2. The initial input image is aligned with a standard
face image by affine transformation, which assumes
that any rigid head motion is in-plane.

3. The extraction of dense flow is relatively slow, which
limits its usefulness for large databases and real-time
applications.
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4. Lip and eye feature tracking is not reliable because
of the aperture problem and when features undergo
a large amount of change in appearance, such as
open to tightly closed mouth or eyes.

5. While they used three separate feature extraction
modules, they were not integrated for the purpose of
AU recognition. By integrating their outputs, it is
likely that even higher accuracy could be achieved.

6. A separate hidden Markov model is necessary for
each single AU and each AU combination. Because
FACS consists of 44 AUs and potential combinations
numbering in the thousands, a more efficient
approach will be needed.

The current AFA system addresses many of these

limitations:

1. Degree of manual preprocessing is reduced by using

automatic face detection [29]. Templates of face
components are quickly adjusted in the first frame

and then tracked automatically.

2. No image alignment is necessary, and in-plane and

limited out-of-plane head motion can be handled.

3. To decrease processing time, the system uses a more

efficient facial feature tracker instead of a computa-

tionally intensive dense-flow extractor. Processing

now requires less than 1 second per frame pair.

4. To increase the robustness and accuracy of the

feature extraction, multistate face-component mod-

els are devised. Facial feature tracking can cope with

a large change of appearance and limited out-of-

plane head motion.
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TABLE 2
Lower Face Action Units and Some Combinations

Single AU 23 and AU 24 are not included in this table because our database happens to contain only occurences of their combination, but not
individual ones.



5. Extracted features are represented and normalized
based on an explicit face model that is invariant to
image scale and in-plane head motion.

6. More AUs are recognized and they are recognized
whether they occur alone or in combinations. Instead
of one HMM for each AU or AU combination, the
current system employs two Artificial Neural Net-
works (one for the upper face and one for the
lower face) for AU recognition. It recognizes 16 of the
30 AUs that have a specific anatomic basis and
occur frequently in emotion and paralinguistic
communication.

2 MULTISTATE FEATURE-BASED AU RECOGNITION

An automated facial expression analysis system must solve

two problems: facial feature extraction and facial expression

classification. In this paper, we describe our multistate

feature-based AU recognition system, which explicitly

analyzes appearance changes in localized facial features in

a nearly frontal image sequence. Since each AU is

associated with a specific set of facial muscles, we believe

that accurate geometrical modeling and tracking of facial

features will lead to better recognition results. Furthermore,

the knowledge of exact facial feature positions could be

useful for the area-based [37], holistic analysis [2], and

optical-flow-based [24] classifiers.
Fig. 1 depicts the overall structure of the AFA system.

Given an image sequence, the region of the face and

approximate location of individual face features are

detected automatically in the initial frame [29]. The

contours of the face features and components then are

adjusted manually in the initial frame. Both permanent

(e.g., brows, eyes, lips) and transient (lines and furrows)

face feature changes are automatically detected and tracked

in the image sequence. Informed by FACS AUs, we group

the facial features into separate collections of feature

parameters because the facial actions in the upper and

lower face are relatively independent for AU recognition

[14]. In the upper face, 15 parameters describe shape,

motion, eye state, motion of brow and cheek, and furrows.

In the lower face, nine parameters describe shape, motion,

lip state, and furrows. These parameters are geometrically

normalized to compensate for image scale and in-plane
head motion.

The facial feature parameters are fed to two neural-
network-based classifiers. One recognizes six upper face
AUs (AU 1, AU 2, AU 4, AU 5, AU 6, AU 7) and
NEUTRAL, and the other recognizes 10 lower face AUs
(AU 9, AU 10, AU 12, AU 15, AU 17, AU 20, AU 25, AU 26,
AU 27, AU 23� 24) and NEUTRAL. These classifiers are
trained to respond to the designated AUs whether they
occur singly or in combination. When AUs occur in
combination, multiple output nodes could be excited. For
the upper face, we have achieved an average recognition
rate of 96.4 percent for 50 sample sequences of 14 subjects
performing seven AUs (including NEUTRAL) singly or in
combination. For the lower face, our system has achieved an
average recognition rate of 96.7 percent for 63 sample
sequences of 32 subjects performing 11 AUs (including
NEUTRAL) singly or in combination. The generalizability
of AFA has been tested further on an independent database
recorded under different conditions and ground-truth
coded by an independent laboratory. A 93.3 percent
average recognition rate has been achieved for 122 sample
sequences of 21 subjects for neutral expression and 16 AUs
whether they occurred individually or in combinations.

3 FACIAL FEATURE EXTRACTION

Contraction of the facial muscles produces changes in the
direction and magnitude of the motion on the skin surface
and in the appearance of permanent and transient facial
features. Examples of permanent features are the lips, eyes,
and any furrows that have become permanent with age.
Transient features include facial lines and furrows that are
not present at rest but appear with facial expressions. Even
in a frontal face, the appearance and location of the facial
features can change dramatically. For example, the eyes
look qualitatively different when open and closed. Different
components require different extraction and detection
methods. Multistate models of facial components have
been introduced to detect and track both transient and
permanent features in an image sequence.

3.1 Multistate Face Component Models

To detect and track changes of facial components in near
frontal images, we develop multistate facial component
models. The models are illustrated in Table 3, which
includes both permanent (i.e., lips, eyes, brows, and cheeks)
and transient components (i.e., furrows). A three-state lip
model describes lip state: open, closed, and tightly closed. A
two-state model (open or closed) is used for each of the
eyes. Each brow and cheek has a one-state model. Transient
facial features, such as nasolabial furrows, have two states:
present and absent.

3.2 Permanent Features

Lips: A three-state lip model represents open, closed, and
tightly closed lips. A different lip contour template is
prepared for each lip state. The open and closed lip
contours are modeled by two parabolic arcs, which are
described by six parameters: the lip center position (xc, yc),
the lip shape (h1, h2, and w), and the lip orientation (�). For
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Fig. 1. Feature-based automatic facial action analysis (AFA) system.



tightly closed lips, the dark mouth line connecting the lip

corners represents the position, orientation, and shape.
Tracking of lip features uses color, shape, and motion. In

the first frame, the approximate position of the lip template

is detected automatically. Then, it is adjusted manually by

moving four key points. A Gaussian mixture model

represents the color distribution of the pixels inside of the

lip template [27]. The details of our lip tracking algorithm

have been presented in [33].
Eyes: Most eye trackers developed so far are for open

eyes and simply track the eye locations [23], [39]. To

recognize facial AUs, however, we need to detect whether

the eyes are open or closed, the degree of eye opening, and

the location and radius of the iris. For an open eye, the eye

template (Table 3), is composed of a circle with three

parameters �x0; y0; r� to model the iris and two parabolic

arcs with six parameters �xc; yc; h1; h2; w; �� to model the

boundaries of the eye. This template is the same as Yuille's

[39] except for the two points located at the center of the

whites of the eyes. For a closed eye, the template is reduced

to four parameters: two for the position of each of the eye

corners.
The open-eye template is adjusted manually in the first

frame by moving six points for each eye. We found that the

outer corners are more difficult to track than the inner

corners; for this reason, the inner corners of the eyes are

tracked first. The outer corners then are located on the line

that connects the inner corners at a distance of the eye width

as estimated in the first frame.
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The iris provides important information about the eye
state. Part of the iris is normally visible if the eye is open.
Intensity and edge information are used to detect the iris.
We have observed that the eyelid edge is noisy even in a
good quality image. However, the lower part of the iris is
almost always visible and its edge is relatively clear if the
eye is open. Thus, we use a half circle mask to filter the iris
edge (Fig. 2). The radius of the iris circle template r0 is
determined in the first frame, since it is stable except for
large out-of-plane head motion. The radius of the circle is
increased or decreased slightly (�r) from r0 so that it can
vary between minimum radius �r0 ÿ �r� and maximum
radius �r0 � �r�. The system determines that the iris is
found when the following two conditions are satisfied: One
is that the edges in the mask are at their maximum. The
other is that the change in the average intensity is less than a
threshold. Once the iris is located, the eye is determined to
be open and the iris center is the iris mask center �x0; y0�.
The eyelid contours then are tracked. For a closed eye, a line
connecting the inner and outer corners of the eye is used as
the eye boundary. The details of our eye-tracking algorithm
have been presented in [34].

Brow and cheek: Features in the brow and cheek areas
are also important for expression analysis. Each left or right
brow has one modelÐa triangular template with six
parameters �x1; y1�, �x2; y2�, and �x3; y3�. Also, each cheek
has a similar six parameter downward triangular template
model. Both brow and cheek templates are tracked using
the Lucas-Kanade algorithm [25].

3.3 Transient Features

In addition to permanent features that move and change
their shape and positions, facial motion also produces
transient features that provide crucial information for
recognition of certain AUs. Wrinkles and furrows appear
perpendicular to the direction of the motion of the activated
muscles. Contraction of the corrugator muscle, for instance,
produces vertical furrows between the brows, which is
coded in FACS as AU 4, while contraction of the medial
portion of the frontalis muscle (AU 1) causes horizontal
wrinkling in the center of the forehead.

Some of these transient features may become permanent
with age. Permanent crow's-feet wrinkles around the
outside corners of the eyes, which are characteristic of
AU 6, are common in adults but not in children. When
wrinkles and furrows become permanent, contraction of the
corresponding muscles produces only changes in their
appearance, such as deepening or lengthening. The pre-
sence or absence of the furrows in a face image can be
determined by edge feature analysis [22], [24], or by eigen-
image analysis [21], [35]. Terzopoulos and Waters [32]

detected the nasolabial furrows for driving a face animator,
but with artificial markers. Kwon and Lobo [22] detected
furrows using snakes to classify pictures of people into
different age groups. Our previous system [24] detected
horizontal, vertical, and diagonal edges using a complex
face template.

In our current system, we detect wrinkles in the
nasolabial region, the nasal root, and the areas lateral to
the outer corners of the eyes (Fig. 3). These areas are located
using the tracked locations of the corresponding permanent
features. We classify each of the wrinkles into one of two
states: present and absent. Compared with the neutral
frame, the wrinkle state is classified as present if wrinkles
appear, deepen, or lengthen. Otherwise, it is absent.

We use a Canny edge detector to quantify the amount
and orientation of furrows [6]. For nasal root wrinkles and
crow's-feet wrinkles, we compare the number of edge pixels
E in the wrinkle areas of the current frame with the number
of edge pixels E0 of the first frame. If the ratio E=E0 is larger
than a threshold, the furrows are determined to be present.
Otherwise, the furrows are absent. For nasolabial furrows,
the existence of vertical to diagonal connected edges is used
for classification. If the connected edge pixels are larger
than a threshold, the nasolabial furrow is determined to be
present and is modeled as a line. The orientation of the
furrow is represented as the angle between the furrow line
and line connecting the eye inner corners. This angle
changes according to different AUs. For example, the
nasolabial furrow angle of AU 9 or AU 10 is larger than
that of AU 12.

3.4 Examples of Feature Extraction

Permanent Features: Fig. 4 shows the results of tracking
permanent features for the same subject with different
expressions. In Figs. 4a, 4b, and 4d, the lips are tracked as
they change in state from open to closed and tightly closed.
The iris position and eye boundaries are tracked while the
eye changes from widely opened to tightly closed and blink
(Figs. 4b, 4c, and 4d). Notice that the semicircular iris model
tracks the iris even when the iris is only partially visible.
Figs. 5 and 6 show examples of tracking in subjects who
vary in age, sex, skin color, and in amount of out-plane
head motion. Difficulty occurs in eye tracking when the eye
becomes extremely narrow. For example, in Fig. 5a, the
left eye in the last image is mistakenly determined to be
closed because the iris was too small to be detected. In
these examples, face size varies between 80� 90 and
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Fig. 2. Half circle iris mask. �x0; y0� is the iris center, r0 is the iris radius

r1 is the minimum radius of the mask, and r2 is the maximum radius of

the mask.

Fig. 3. The areas for nasolabial furrows, nasal root, and outer eye

corners.



200� 220 pixels. For display purpose, images have been

cropped to reduce space. Additional results can be found at

http://www.cs.cmu.edu/~face.
Transient Features: Fig. 7 shows the results of nasolabial

furrow detection for different subjects and AUs. The

nasolabial furrow angles systematically vary between AU 9

and AU 12 (Fig. 7a and 7b). For some images, the nasolabial

furrow is detected only on one side. In the first image of

Fig. 7d, only the left nasolabial furrow exists, and it is

correctly detected. In the middle image of Fig. 7b, the right

nasolabial furrow is missed because the length of the

detected edges is less than threshold. The results of nasal

root and crow's-feet wrinkle detection are shown in Fig. 8.

Generally, the crow's-feet wrinkles are present for AU 6,

and the nasal root wrinkles appear for AU 9.

4 FACIAL FEATURE REPRESENTATION AND AU
RECOGNITION by NEURAL NETWORKS

We transform the extracted features into a set of parameters
for AU recognition. We first define a face coordinate
system. Because the inner corners of the eyes are most
reliably detected and their relative position is unaffected by
muscle contraction, we define the x-axis as the line
connecting two inner corners of eyes and the y-axis as
perpendicular to it. We split the facial features into two
groups (upper face and lower face) of parameters because
facial actions in the upper face have little interaction with
facial motion in lower face and vice versa [14].

Upper Face Features:Werepresent theupper face features
by 15 parameters, which are defined in Table 4. Of these,
12 parameters describe the motion and shape of the eyes,
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Fig. 4. Permanent feature tracking results for different expressions of same subject. Note appearance changes in eye and mouth states. In this and

the following figures, images have been cropped for display purpose. Face size varies between 80� 90 and 200� 220 pixels.



brows, and cheeks, two parameters describe the state of the

crow's-feet wrinkles, and one parameter describes the

distance between the brows. To remove the effects of

variation in planar head motion and scale between image

sequences in face size, all parameters are computed as ratios

of their current values to that in the initial frame. Fig. 9 shows

the coordinate system and the parameter definitions.
LowerFaceFeatures:Nineparameters represent the lower

face features ( Table 5 and Fig. 10). Of these, six parameters

describe lip shape, state and motion, and three describe the

furrows in the nasolabial and nasal root regions. These

parameters are normalized by using the ratios of the current

feature values to that of the neutral frame.

AU Recognition by Neural Networks: We use three-
layer neural networks with one hidden layer to recognize
AUs by a standard back-propagation method [29]. Separate
networks are used for the upper- and lower face. For
AU recognition in the upper face, the inputs are the
15 parameters shown in Table 4. The outputs are the six
single AUs (AU 1, AU 2, AU 4, AU 5, AU 6, and AU7) and
NEUTRAL. In the lower face, the inputs are the seven
parameters shown in Table 5 and the outputs are 10 single
AUs ( AU 9, AU 10, AU 12, AU 15, AU 17, AU 20, AU
23� 24, AU 25, AU 26, and AU 27) and NEUTRAL. These
networks are trained to respond to the designated AUs
whether they occur singly or in combination. When AUs
occur in combination, multiple output nodes are excited.
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Fig. 5. Permanent feature tracking results for different subjects.



5 EXPERIMENTAL EVALUATIONS

Weconducted three experiments to evaluate theperformance
of our system. The first is AU recognition in the upper face
when image data contain only single AUs. The second is
AU recognition in the upper and lower facewhen image data
contain both single AUs and combinations. The third
experiment evaluates the generalizability of our system by
using completely disjointed databases for training and
testing, while image data contain both single AUs and
combinations. Finally, we compared the performance of our
system with that of other AU recognition systems.

5.1 Facial Expression Image Databases

Two databases were used to evaluate our system: the Cohn-
Kanade AU-Coded Face Expression Image Database [20]

and Ekman-Hager Facial Action Exemplars [15].
Cohn-Kanade AU-Coded Face Expression Image Data-

base: We have been developing a large-scale database for

promoting quantitative study of facial expression analysis

[20]. The database currently contains a recording of the

facial behavior of 210 adults who are 18 to 50 years old,
69 percent female and 31 percent male, and 81 percent

Caucasian, 13 percent African, and 6 percent other groups.

Over 90 percent of the subjects had no prior experience in

FACS. Subjects were instructed by an experimenter to

perform single AUs and AU combinations. Subjects' facial
behavior was recorded in an observation room. Image
sequences with in-plane and limited out-of-plane motion
were included.

The image sequences began with a neutral face and were
digitized into 640� 480 pixel arrays with either 8-bit
gray-scale or 24-bit color values. To date, 1,917 image
sequences of 182 subjects have been FACS coded by certified
FACS coders for either the entire sequence or target AUs.
Approximately 15 percent of these sequences were coded by
two independent certified FACS coders to validate the
accuracy of the coding. Interobserver agreement was quanti-
fied with coefficient kappa, which is the proportion of
agreement abovewhatwould be expected to occur by chance
[17]. Themean kappas for interobserver agreementwere 0.82
for target AUs and 0.75 for frame-by-frame coding.

Ekman-Hager Facial Action Exemplars: This database
was provided by P. Ekman at the Human Interaction
Laboratory, University of California, San Francisco, and
contains images that were collected by Hager, Methvin, and
Irwin. Bartlett et al. [2] and Donato et al. [10] used this
database to train and test their AU recognition systems. The
Ekman-Hager database includes 24 Caucasian subjects
(12 males and 12 females). Each image sequence consists
of six to eight frames that were sampled from a longer
image sequence. Image sequences begin with a neutral
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Fig. 6. Permanent feature tracking results with head motions. (a) Head yaw. (b) Head pitch. (c) Head up and left with background motion.



expression (or weak facial actions) and end with stronger
facial actions. AUs were coded for each frame. Sequences
containing rigid head motion detectable by a human
observer were excluded. Some of the image sequences
contain large lighting changes between frames and we
normalized intensity to keep the average intensity constant
throughout the image sequence.

5.2 Upper Face AU Recognition for Image Data
Containing Only Single AUs

In the first experiment, we used a neural network-based

recognizer having the structure shown in Fig. 11. The inputs

to the network were the upper face feature parameters

shown in Table 4. The outputs were the same set of six

single AUs (AU 1, AU 2, AU 4, AU 5, AU 6, AU 7); these are

the same set that were used by Bartlett and Donato. In

addition, we included an output node for NEUTRAL. The

output node that showed the highest value was interpreted

as the recognized AU. We tested various numbers of hidden

units and found that six hidden units gave the best

performance.
From the Ekman-Hager database, we selected image

sequences in which only a single AU occurred in the upper

face. 99 image sequences from 23 subjects met this criterion.

These 99 image sequences we used are the superset of the

80 image sequences used by Bartlett and Donato. The initial

and final two frames in each image sequence were used. As

shown in Table 6, the image sequences were assigned to

training and testing sets in two ways. In S1, the sequences
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Fig. 7. Nasolabial furrow detection results.



were randomly selected, so the same subject was allowed to
appear in both training and testing sets. In S2, no subject
could appear in both training and testing sets; testing was
performed done with novel faces.

Table 7 shows the recognition results with the S1 testing
set. The average recognition rate was 88.5 percent when

samples of NEUTRAL were excluded (Recognizing neutral
faces is easier), and 92.3 percent when samples of
NEUTRAL were included. For the S2 test set (i.e., novel
faces), the recognition rate remained virtually identical:
89.4 percent (NEUTRAL exclusive) and 92.9 percent
(NEUTRAL inclusive), which is shown in Table 8.
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Fig. 8. Nasal root and crow's-feet wrinkle detection. For the left image of (a), (b), and (c), crow's-feet wrinkles are present. For the right image of (a),

(b), and (c), the nasal root wrinkles appear.

TABLE 4
Upper Face Feature Representation for AU Recognition



5.3 Upper and Lower Face AU Recognition for
Image Sequences Containing Both Single AUs
and Combinations

Because AUs can occur either singly or in combinations, an

AU recognition system must have the ability to recognize

them however they occur. All previous AU recognition

systems [2], [10], [24] were trained and tested on single AUs

only. In these systems, even when AU combinations were

included, each combination was treated as if it were a

separate AU. Because potential AU combinations number

in the thousands, this method of separately treating

AU combinations is impractical. In our second experiment,

we trained a neural network to recognize AUs singly and in

combinations by allowing multiple output units of the

networks to firewhen the input consists of AU combinations.

Upper Face AUs: The neural network-based recognition

system for AU combination is shown in Fig. 12. The

network has a similar structure to that used in Experiment 1,

where the output nodes correspond to six single AUs plus

NEUTRAL. However, the network for recognizing AU

combinations is trained so that when an AU combination is

presented, multiple output nodes that correspond to the

component AUs are excited. In training, all of the output

nodes that correspond to the input AU components are set

to have the same value. For example, when a training input

is AU 1� 2� 4, the output values are trained to be 1.0 for

AU 1, AU 2, and AU 4; 0.0 for the remaining AUs and

NEUTRAL. At the runtime, AUs whose output nodes

show values higher than the threshold are considered to be

recognized.

A total of 236 image sequences of 23 subjects from the

Ekman-Hager database (99 image sequences containing

only single AUs and 137 image sequences containing

AU combinations) were used for recognition of AUs in

the upper face. We split them into training (186 sequences)
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Fig. 9. Upper face features. hl�hl1� hl2� and hr�hr1� hr2� are the
height of left eye and right eye; D is the distance between brows; cl and
cr are the motion of left cheek and right cheek. bli and bri are the motion
of the inner part of left brow and right brow. blo and bro are the motion of
the outer part of left brow and right brow. fl and fr are the left and right
crow's-feet wrinkle areas.

TABLE 5
Lower Face Feature Representation for AUs Recognition

Fig. 10. Lower face features. h1 and h2 are the top and bottom lip

heights; w is the lip width;Dleft is the distance between the left lip corner

and eye inner corners line; Dright is the distance between the right lip

corner and eye inner corners line; n1 is the nasal root area.

Fig. 11. Neural network-based recognizer for single AUs in the upper

face. The inputs are the feature parameters, and the output is one label

out of six single AUs and NEUTRAL.



and testing (50 sequences) sets by subjects (9 subjects for

training and 14 subjects for testing) to ensure that the same

subjects did not appear in both training and testing. Testing,

therefore, was done with ªnovel faces.º From experiments,

we have found that it was necessary to increase the number

of hidden units from six to 12 to obtain optimized

performance.

Because input sequences could contain one or more AUs,

several outcomes were possible. Correct denotes that the

recognized results were completely identical to the input

samples. Partially correct denotes that some, but not all of

the AUs were recognized (Missing AUs) or that AUs that

did not occur were misrecognized in addition to the one(s)

that did (Extra AUs). If none of the AUs that occurred were

recognized, the result was Incorrect.

Using (1) and (2), we calculated recognition- and false-

alarm rates for input samples and input AU components,

respectively. Human FACS coders typically use the latter to

calculate percentage agreement. We believe, however, that
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TABLE 6
Details of Training and Testing Data from Ekman-Hager Database that Are Used for Single AU Recognition in the Upper Face

In S1, some subjects appear in both training and testing sets. In S2, no subject appears in both training and testing sets.

TABLE 7
AU Recognition for Single AUs on S1 Training and Testing Sets in Experiment 1

A same subject could appear in both training and testing sets. The numbers in bold are results excluding NEUTRAL.

TABLE 8
AU Recognition for Single AUs on S2 Train and Testing Sets in Experiment 1

No subject appears in both training and testing sets. The numbers in bold are results excluding NEUTRAL.

Fig. 12. Neural network-based recognizer for AU combinations in the

upper face.



the recognition rates based on input samples are the more

conservative measures.

Recognition rate �
Total number of correctly recognized samples

Total number of samples
based on input samples

Total number of correctly recognized AUs

Total number of AUs
based on AU components

(

�1�

False alarm rate �
Total number of recognized samples with extra AUs

Total number of samples
based on input samples

Total number of extra AUs

Total number of AUs
based on AU components:

�

�2�

Table 9 shows a summary of the AU combination

recognition results of 50 test image sequences of 14 subjects

from the Ekman-Hager database. For input samples, we

achieved average recognition and false alarm rates of

88 percent and 6.7 percent, respectively, when NEUTRAL

was included, and 82 percent and 12 percent, respectively,

when NEUTRAL was excluded. AU component-wise, an

average recognition rate of 96.4 percent and a false alarm rate

of 6.3 percent were achievedwhenNEUTRALwas included

and a recognition rate of 95.4 percent and a false alarm rate of

8.2 percent was obtained whenNEUTRALwas excluded.

Recognition rates in Experiment 2 were slightly higher

than those in Experiment 1. There are two possible reasons:

One is that in the neural network used in Experiment 2,

multiple output nodes could be excited to allow for recogni-

tionofAUsoccurring incombinations.Anotherreasonmaybe

that a larger training data set was used in Experiment 2.

Lower Face AUs: The same structure of the neural

network-based recognition scheme, as shown in Fig. 12,

was used, except that the input feature parameters and the

output component AUs now are those for the lower face. The

inputswere the lower face feature parameters shown inTable

5. The outputs of the neural network were the 11 single AUs

(AU 9, AU 10, AU 12, AU 15, AU 17, AU 20, AU 25, AU 26,

AU 27, AU 23� 24, andNEUTRAL) (see Table 2). Note that

AU 23� 24 is modeled as a single unit, instead of as AU 23

and AU 24 separately, because they almost always occurred

together in our data. Use of 12 hidden units achieved the best

performance in this experiment.
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TABLE 9
Upper Face AU Recognition with AU Combinations in Experiment 2

The numbers in bold are results excluding NEUTRAL. The Missing AUs column shows the AUs that are missed. The Extra AUs column lists the
extra AUs that are misrecognized. The recognized AU with ª*º indicates that it includes both Missing AUs and Extra AUs.



A total of 463 image sequences from the Cohn-Kanade

AU-Coded Face Expression Image Database were used for

lower face AU recognition. Of these, 400 image sequences

were used as the training data and 63 sequences were used

as the testing data. The test data set included 10 single AUs,

NEUTRAL, and 11 AU combinations (such as AU 12� 25,

AU 15� 17� 23, AU 9� 17� 23� 24, and AU 17� 20� 26)

from 32 subjects; none of these subjects appeared in training

data set. Some of the image sequences contained limited

planar and out-of-plane head motions.

Table 10 shows a summary of the AU recognition results

for the lower face when image sequences contain both

single AUs and AU combinations. As above, we report the

recognition and false alarm rates based on both the number

of input samples and the number of AU components (see

(1) and (2)). With respect to the input samples, an average

recognition rate of 95.8 percent was achieved with a false

alarm rate of 4.2 percent when NEUTRAL was included

and a recognition rate of 93.7 percent and a false alarm rate

of 6.4 percent whenNEUTRALwas excluded. With respect

to AU components, an average recognition rate of 96.7 per-

cent was achieved with a false alarm rate of 2.9 percent

when NEUTRAL was included, and a recognition rate of

95.6 percent with a false alarm rate of 3.9 percent was

obtained when NEUTRAL was excluded.

Major Causes of the Misidentifications: Most of the

misidentifications come from confusions between similar

AUs: AU1 and AU2, AU6 and AU7, and AU25 and AU26.

The confusions between AU 1 and AU 2 were caused by the

strong correlation between them. The action of AU 2, which
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TABLE 10
Lower Face AU Recognition Results in Experiment 2



raises the outer portion of the brow, tends to pull the inner

brow up as well (see Table 1). Both AU 6 and AU 7 raise the

lower eyelids and are often confused by human AU coders

as well [8]. All the mistakes of AU 26 were due to confusion

with AU 25. AU 25 and AU 26 contain parted lips but differ

only with respect to motion of the jaw, but jaw motion was

not detected or used in the current system.

5.4 Generalizability between Databases

To evaluate the generalizability of our system, we trained

the system on one database and tested it on another

independent image database that was collected and FACS

coded for ground-truth by a different research team. One

was Cohn-Kanade database and the other was the Ekman-

Hager database. This procedure ensured a more rigorous

test of generalizability than more usual methods which

divide a single database into training and testing sets.

Table 11 summarizes the generalizability of our system.

For upper face AU recognition, the network was trained

on 186 image sequences of nine subjects from the Ekman-

Hager database and tested on 72 image sequences of seven

subjects from the Cohn-Kanade database. Of the 72 image

sequences, 55 consisted of single AUs (AU 1, AU 2, AU 4,

AU 5, AU 6, and AU 7) and the others contained

AU combinations such as AU 1� 2, AU 1� 2� 4, and

AU 6� 7. We achieved a recognition rate of 93.2 percent

and a false alarm of 2 percent (when samples of NEUTRAL

were included), which is only slightly (3-4 percent) lower

than the case when the Ekman-Hager database was used for

both training and testing.

For lower face AU recognition, the network was trained

on 400 image sequences of 46 subjects from the Cohn-

Kanade database and tested on 50 image sequences of

14 subjects from the Ekman-Hager database. Of the 50 image

sequences, half contained AU combinations, such as

AU 10� 17, AU 10� 25, AU 12� 25, AU 15� 17, and

AU 20� 25. No instances of AU 23� 24 were available in

the Ekman-Hager database. We achieved a recognition rate

of 93.4 percent (when samples of NEUTRAL were

included). These results were again only slightly lower

than those of using the same database. The system showed

high generalizability.

5.5 Comparison with Other AU Recognition
Systems

We compare the current AFA system's performance with

that of Cohn et al. [8], Lien et al. [24], Bartlett et al. [2], and

Donato et al. [10]. The comparisons are summarized in

Table 12. When performing comparison of recognition

results in general, it is important to keep in mind

differences in experimental procedures between systems.

For example, scoring methods may be either by dividing the

data set into training and testing sets [8], [24] or by using a

leave-one-out cross-validation procedure [2], [10]. Even

when the same data set is used, the particular AUs that

were recognized or the specific image sequence that were

used for evaluation are not necessarily the same. Therefore,

minor differences in recognition rates between systems are

not meaningful.

In Table 12, the systems were compared along several

characteristics: feature extractionmethods, recognition rates,

treatment of AU combinations, AUs recognized, and data-

bases used. The terms ªold facesº and ªnovel facesº in the

third column requires some explanation. ªOld facesº means

that in obtaining the recognition rates, some subjects appear

in both training and testing sets. ªNovel facesº means no

same subject appears in both training and testing sets; this is

obviously a little more difficult case than ªOld faces.º In the

fourth column, the terms ªNo,º ªY es=Y es,º and ªY es=Noº

are used to describe how the AU combinations are treated.

ªNoº means that no AU combination was recognized.

ªY es=Y esº means that AU combinations were recognized

and AUs in combination were recognizable individually.

ªY es=Noºmeans that AU combinationswere recognized but

eachAU combinationwas treated as if it were a separate new

AU.Our current AFA system,while being able to recognize a

larger number of AUs and AU combinations, shows the best

ornear thebest recognition rates even for the testswithªnovel

facesº or in tests where independent different databases are

used for training and testing.

6 CONCLUSION

Automatically recognizing facial expressions is important to

understand human emotion and paralinguistic communica-

tion, to design multimodal user interfaces, and to relate

applications, such as human identification. The facial action

coding system (FACS) developed by Ekman and Friesen

[14] is considered to be one of the best and accepted

foundations for recognizing facial expressions. Our feature-

based automatic face analysis (AFA) system has shown

improvement in AU recognition over previous systems.

It has been reported [2], [5], [40] that holistic template-

based methods (including image decomposition with image
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TABLE 11
Generalizability to Independent Databases

The numbers in bold are results from independent databases.



kernels such as Gabors, Eigenfaces, and Independent

Component Images) outperform explicit parameterization

of facial features. Our comparison indicates that a feature-

based method performs just as well as the best holistic

template-based method and in more complex data. It may

be premature to conclude that one or the other approach is

superior. Recovering FACS-AUs from video using auto-

matic computer vision techniques is not an easy task and

numerous challenges remain [20]. We feel that further

efforts will be required for combining both approaches in

order to achieve the optimal performance, and that tests

with a substantially large database are called for [1].
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TABLE 12
Comparison with Other AU Recognition Systems

In the fourth column, ªNoº means that no AU combination was recognized. ªY es=Y esº means that AU combinations were recognized and AUs in
combination were recognizable individually. ªY es=Noº means that AU combinations were recognized but each AU combination was treated as if it
were a separate new AU.
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