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Abstract

The recognition of activities from sensory data is impor-

tant in advanced surveillance systems to enable prediction of

high-level goals and intentions of the target under surveil-

lance. The problem is complicated by sensory noise and

complex activity spanning large spatial and temporal extents.

This paper presents a system for recognising high-level hu-

man activities from multi-camera video data in complex spa-

tial environments. The Abstract Hidden Markov mEmory

Model (AHMEM) is used to deal with noise and scalability.

The AHMEM is an extension of the Abstract Hidden Markov

Model (AHMM) that allows us to represent a richer class of

both state-dependent and context-free behaviours. The model

also supports integration with low-level sensory models and

efficient probabilistic inference. We present experimental re-

sults showing the ability of the system to perform real-time

monitoring and recognition of complex behaviours of people

from observing their trajectories within a real, complex in-

door environment.

1 Introduction

Surveillance systems for monitoring the behaviour of peo-
ple have been the focus of much research. Most have worked

on human motion recognition in the context of gait recog-

nition, or simple activity detection in limited known spaces.
Large area surveillance systems include VSAM [9], which

are restricted in the complexity of the behaviours recognised.

Thus, one of the challenges is to develop scalable systems for
recognition of high level people behaviours in large, complex

environments and possibly during extended time intervals.

A review of work in modeling and recognising people’s
behaviours, especially highly structured behaviours, is pre-

sented by Aggarwal and Cai [1]. A simple approach to this
problem uses templates, although it is sensitive to variance in

different patterns of the same activity, and to noise in the ob-

servations. The Finite State Machine (FSM) can be used to
model high-level activities [3], but does not account for un-

certainty in the model. Alternatively, Hidden Markov Models

(HMMs) [19] have been widely used for tackling simple be-
haviours such as gestures or gait recognition [21, 20]. Other

extensions to the basic HMM have also been used such as

the Coupled Hidden Markov Models (CHMMs) for modeling

human behaviours and interactions [15], and variable length
Markov models (VLMMs) to locally optimise the size of be-

haviour models [8].

All these approaches employ a flat model of activities. To

develop scalable systems for high level behaviour recogni-
tion, we need a framework that utilizes the inherent hierar-

chical structure. Recognizing high-level, semantically rich
behaviours has traditionally been the focus of plan recog-

nition work [11, 6]. Sophisticated stochastic models for

representing high level behaviours have been used such as
Dynamic Bayesian Networks (DBN) [2], Abstract Hidden

Markov Models (AHMM) [5], stochastic grammars (includ-

ing Stochastic Context Free Grammar (SCFG) [17]) and
its state-dependent extension Probabilistic State Dependent

Grammars (PSDG) [18]. However, most work in this area

(with the exception of the AHMM) has been limited to in-
ference at the high level, and the issue of dealing with the

low-level noisy sensory models has not been addressed.

Attempts to integrate high level structured behaviour mod-

els with low level sensory models have only appeared re-
cently. Oliver [14] proposed a Layered Hidden Markov

Model (LHMM) where the classification results of the low
layer are used as inputs to the higher layer. Ivanov and Bobick

[10] proposed a two-stage strategy: at the low level, the basic

HMMs are used to detect simple patterns in the behaviours; at
the high level, the outputs produced by the HMMs are inter-

preted and parsed by a SCFG model of high level behaviours.

Alternatively, Nguyen et al [13] proposed a fully integrated
model for representing both high and low level behaviours

based on the Abstract Hidden Markov Model (AHMM).

These approaches have their own shortcomings. Oliver’s

work separates the task of behaviour classification layer by
layer, and the influence of inference in LHMM is only from

low level to high level. Ivanov and Bobick’s framework is
restricted by the context free constraint of the underlying

grammar. Complex behaviours, especially goal-directed be-

haviours, are often “state-dependent”, i.e. their evolution de-
pends on the current state of the world which makes them

non context-free [16]. Furthermore, the two-stage recogni-

tion strategy does not support online, seamless probabilistic
inference all the way from low level sensory data to high
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level behaviours. Nguyen et al’s framework does not have

these restrictions, but is limited by the expressive power of

the AHMM. Although not context free, the AHMM is en-
tirely state dependent, in the sense that the current behaviour

can only be dependent on the current environment state and

not on any behaviours that have taken place previously.
In this paper, we present a system architecture for recogni-

tion of high-level behaviours of people in large and complex

indoor environments. The novelty is in the use of the Ab-
stract Hidden Markov mEmory Model (AHMEM) [4]. This

model is as expressive as other grammar-based models, can
model state-dependent behaviours, and at the same time sup-

port online, scalable and efficient probabilistic inference of

high level behaviours from low level data. The hierarchical
nature of the model makes it suitable for the natural hierar-

chy existing in spatial regions, making it scalable to larger

and more complex environments.
The paper is organized as follows. An overview of the

surveillance system is provided in section 2. The AHMEM

framework used for behaviour modelling is described in sec-
tion 3. Finally, section 4 presents the the experimental results

of the implemented system in a real office-type environment.

2 Overview of the surveillance system

The surveillance system has two major components: the

distributed tracking module and the behaviour recognition

module (see Fig. 1). The distributed tracking module extracts
people’s trajectories using multiple static cameras. The mod-

ule implements the architecture and tracking algorithms de-
scribed in [12]. A Central Module (CM) is used to coordinate

operations of cameras and maintain the trajectories of people

in the scene. There is a Camera Processing Module (CPM)
for each camera, which tracks the bounding box of each per-

son in the camera’s fields of view using the Kalman filter. The

outputs of the Kalman filters are sent to the CM after each
time slice where they will be used to form the trajectories of

all objects in the scene. The trajectories are passed to the

behaviour recognition module to infer behaviours at higher
levels.

Since the camera fields of view can overlap, a person in

the overlapping area may be viewed from several cameras at
a time. In this case, the CM will choose a suitable camera

to track the person. Usually, the CM assigns the tracking of
a person to the nearest camera to the person. If there is oc-

clusion, the person is assigned to the nearest camera that can

offer a clear non-occluded view. Lost objects will be recov-
ered by a matching procedure at the Central Module.

The output of the distributed tracking module is a sequence

of coordinates for each object in the scene. Fig. 6 shows ex-
amples of typical trajectories returned by the module.

3 Behaviour Recognition

The behaviour recognition module takes a sequence of ob-
served coordinates returned by the tracking module and de-

CM

CPM 1 CPM 2 CPM n−1 CPM n

camera 1 camera 2 camera n−1 camera n

Top level
behaviours

Bottom level
behaviours

States

Observations

Time

coordinates

AHMEM

1 32 T

Behaviour recognition

Distributed tracking

LAN

Figure 1. The system architecture.

rives the most probable high level behaviour that matches the
observed sequence. For example, if the tracked person ap-

proaches a computer, followed by a printer, the system can
predict that the most likely activity performed by that per-

son is printing. In reality, the problem is complicated by two

factors. Firstly, the observations are noisy due to the camera
noise and object occlusion. Secondly, the signature of a sin-

gle activity may vary, while signatures of different activities

may look similar. This means that a simple pattern matching
approach for behaviour recognition would perform poorly.

Our solution is based on a Bayesian formulation involving
two issues. Firstly, we need a model of how each high-level

activity would lead to possible sequences of observations. In
other words, we need a model for specifying the conditional

distribution � ������, where � denotes an activity and �� de-

notes a sequence of observations. Secondly, we need an effi-
cient inference procedure to compute � ������, the probabili-

ties of different activities given the observed sequence. This

would give us a full distribution over the set of possible be-
haviours. From this, the most likely behaviour can be com-

puted if desired. We employ the Abstract Hidden Markov

mEmory Model (AHMEM) [4] as the underlying framework
for both the representational and computational tasks.

3.1 The Abstract Hidden Markov Memory Model

The Abstract Hidden Markov mEmory Model (AHMEM)

[4] is an extension of the AHMM [5], a probabilistic frame-
work for representing and recognising complex behaviours

under uncertainty. A behaviour can be refined into a sequence
of more simple behaviours at lower levels. The rules for re-

finement can be made non-deterministic or stochastic if de-

sired. In the language of the AHMM, a behaviour is repre-
sented as an abstract policy, analogous to a policy in Markov

Decision Processes (MDP). While a policy in an MDP sim-

ply selects an action for execution at each state, an abstract
policy is allowed to select other abstract policies in a recur-
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sive manner. Each abstract policy �� has a selection function

��� � ��� � � � ��� �℄ where ��� is the set of applicable

states of ��, � is the set of abstract policies at the lower level
which �� can select from, and ������ �� � 	
�� � �� ��� is

the probability that �� selects the policy � at the state �. In

addition, each abstract policy also has a terminating proba-
bility for each state ������, representing the chance of ter-

minating its execution at state �. When a hierarchy of such

policies is considered, a top-level policy �� will first select
a policy ���� for execution until ���� terminates at some

state ��. Then, a new policy ��
���

is selected by �� at state ��

and so on. The policy at the bottom level �� does not select

any other policies, but is modelled as a Markov chain (with

termination) within the state space �. Finally, the state can
be made hidden, as in the Hidden Markov Models [19], by

considering a set of observations and an observation model

� �����.
The policy hierarchy of the AHMM can be viewed as a

stochastic grammar, where the policies correspond to a set
of non-terminal symbols, and the selection probabilities for

the policies correspond to a set of stochastic production rules.

However, in the AHMM framework and its extension, the re-
finement rule is dependent on the special state variable � rep-

resenting the state of the environment. The AHMM language
is thus non context-free, and is a type of Probabilistic State

Dependent Grammar (PSDG).

Due to its state-dependency, the AHMM has an advantage

over the SCFG since the evolution of complex, and espe-

cially goal-directed behaviours, depends on the current state
of the environment and its relationship to the goal states. The

AHMM however is restricted as the way a policy selects a

lower-level policy depends only on the current state, and not
on any other policies that have been selected in the past. This

prevents the AHMM from representing policies that evolve

in a number of stages. For example, the behaviour “printing”
can be specified in three stages, e.g. “going to computer”

followed by “going to printer” followed by “exiting environ-

ment”. AHMM can not represent this behaviour since it has
no way of remembering the current stage of execution.

The AHMEM [4] removes this restriction by allowing
each policy to have internal memory with domain � . A pol-

icy can uses its memory variable 	 � � to “remember” its

current stage of execution. In the most general form, when
a policy �� commences at some state �, the memory vari-

able 	 can be initialised according to some initial distribu-
tion 	
�	���� ��. Then, each time a lower-level policy termi-

nates and returns at some state ��, the memory variable for ��

can be updated by the transition probability	
�	��	� ��� ���.
Importantly, the selection and termination model of a policy

can be made dependent not only on the current state, but also

on the current memory: ������	� �� � 	
�� � ��	� ��� is
the probability that �� selects � at current state � when the

current memory of �� is 	; ������	� is the probability that

�� terminates at a state � when the current memory is 	.

The original AHMM is simply a AHMEM with no-

memory policies, e.g. when the domain for memory values
� is singleton. A PSDG can also be reduced to a AHMEM

with linear memory, i.e. the memory variable in each pol-

icy is simply increased by 1 each time it is updated. The

AHMEM thus has an expressiveness comparable to grammar-
based models. It is also state-dependent, and can handle noisy

observation of the state. It is therefore an ideal language for

behaviour modelling in our surveillance domain. We now de-
scribe an example of using the AHMEM for modelling a be-

haviour hierarchy in a real office-type environment.

3.2 Example of a Behaviour Hierarchy

camera 3

camera 4

camera 2

camera 0

library (book cases)

printer

Computer B

Vision Lab

Corridorleft entrance right entrance

camera 1

paper
store

working table

Staff room

Computer A

working table

Figure 2. The complex spatial environment.

The environment that we consider consists of three re-

gions: the corridor, the staff room and the vision lab (see
Fig. 2 and Fig. 3). People enter and exit the scene via the

left or the right entrance. Landmarks represent locations of

important objects in the environment: the two computers, the
printer, the book cases (library) and the paper store. The envi-

ronment is modeled by a grid of cells. The cell coordinate of

a person’s position is represented by the state variable �. The
observation of a state is the coordinate returned from the dis-

tributed tracking component. We assume that the observation

(a) camera 0 (b) camera 1 (c) camera 2

(d) camera 3 (e) camera 4

Figure 3. The scene viewed from the five cameras.
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(5) go−to−Computer−A−1

(6) go−to−paper−1

(7) go−to−library−1

(8) access−library−1

(9) walk−around−Staff−room−1

(10) exit−Staff−room−1

(3) exit−corridor−left−1

(4) exit−corridor−right−1

(2) enter−Vision−lab−1

(1) enter−Staff−room−1 (11) go−to−Computer−B−1

(12) go−to−printer−1

(13) walk−around−Vision−lab−1

(14) exit−Vision−lab−1

(1) go−to−computer−2

(2) go−to−printer−2

(3) go−to−paper−2

(4) go−to−library−2

(5) access−library−2

(6) walk−around−2

(7) exit−2

policies in Corridor policies in Staff room policies in Vision lab

policies in the environment

(2) use−library−3

(3) unclassified−task−3

(1) print−3Level 3

Level 2

Level 1

Figure 4. The behaviour hierarchy.

can only be in the 5x5 neighbourhood of the true state. Thus
for each camera, the observation model �� ����� is defined by

a 5x5 matrix specifying the observation likelihood within the

neighbourhood of any given state.

Fig. 4 shows a three level behaviour hierarchy defined

in this environment. At level 1, the policies represent be-
haviours that are constrained within a single region. For ex-

ample, go-to-X� where X is a landmark, is a level 1 policy

that takes a person to � . A level 1 policy is specified by the
transition model ��������. Together with the camera obser-

vation model, these parameters form a HMM. Since from the
current state �, the next state �� and the observation � of �

must be in the neighbourhood, the parameters of the HMM

are “tied”. Therefore, only the conditional probability within
a neighbourhood needs to be estimated. We thus learn the pa-

rameters �������� and ������� from a set of training video se-

quences using the expectation maximization (EM) algorithm
for HMM with tied parameters.

stage 1

go−to−computer

stage 2

go−to−printer

stage 3

go−to−paper

stage 4

go−to−printer

stage 5

go−to−computer

stage 6

exit

terminate terminate

stage 1

stage 2

stage 3

go−to−library

access−library

exit

(b)(a)

1.00

0.34

1.00

0.50

1.00

1.00

0.33

0.50

0.33

1.00

1.00

1.00

Figure 5. The transition diagrams of the memory vari-

able in behaviours (a) print� and (b) use-library�.

The level 2 policies represent the movement of a person

within the entire environment, such as going to a particular

landmark from a position anywhere in the environment. For
example, go-to-computer� is a policy that takes the user to

the nearest computer. This is modelled as a level 2 policy

�� in the AHMEM which selects a level 1 policy for execu-
tion depending on the current state � (representing the cur-

rent position of the person). If � is inside the staff room,

the person is most likely to go to Computer-A, thus the con-
ditional distribution �������� ��� would peak at the value

�� � go-to-Computer-A�. Similarly, if the person is in the
vision lab, the person is most likely to use Computer-B, and

the conditional distribution �������� ��� would peak at the

value �� � go-to-Computer-B�. Note that a level 2 policy
defined this way is state-dependent, but memoryless, since

the selection probabilities do not depend on the value of the

memory variable �.
The level 3 policies represent the different tasks that a per-

son might perform during the entire interval that the person

stays in the environment, e.g. printing document, accessing
the library, or simply walking around. For example, print�

is represented by a level 3 policy �� in the AHMEM. Unlike

the memoryless policies defined at level 2, this policy has an
internal memory variable whose transition diagram is shown

in Fig. 5(a). The printing behaviour thus involves first going
to a computer followed by going to the printer. If however

the printer has run out of paper, the person has to go and fetch

more paper, then come back to the printer. Note that the mem-
ory transition probability � ���

��� �� ��� does not depend on

the current state �. In addition, the memory variable in Fig.

5(a) immediately determines which policy at level 2 should be
selected. For example, �� ��� � ��� � go-to-paper� ��� � �
when �� � go-to-paper�. Therefore, the definition of a third

level policy �� has memory but is state-independent, and thus
is similar to a set of SCFG production rules. However, the

entire policy hierarchy is not context-free due to the state-

dependency at level 2.
Since the parameters at level 2 and 3 are intuitive, their

values are manually chosen as in Fig. 5. However, they can
be easily learned from labelled training data by estimating the

frequency of the next landmark given the current landmark.

3.3 Inferring Behaviours from Observations

The AHMEM and its parameters define a conditional
distribution over the observation sequences given a policy:

���������. In recognising the behaviour of a person in the

scene, we are given a sequence of observations ����� �
���� � � � � ����� up to the current time �, and need to compute

the probability �� ���
� �������, where ��

� represents the policy
being executed at level 	 and time �. This provides the dis-

tribution of the possible behaviours that might be currently

executed at level 	 in the hierarchy. The computation needs
to be done at every time instance � when a new observation ��
arrives. The problem is termed policy recognition [5], and is

equivalent to the on-line inference (filtering) problem in the
AHMEM. Exact solutions to this problem will have exponen-
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tial complexity in the number of levels of the policy hierarchy,

and thus can not scale up to domains of larger sizes.

Fortunately, there is an efficient approximate inference
algorithm based on the Rao-Blackwellised Particle Filter

(RBPF) [7] for computing these probabilities [4, 5]. The

RBPF algorithm gains its efficiency by exploiting the special
probabilistic independence structure of the AHMEM, due to

the special mechanism for selecting policies at the lower lev-

els. The inference algorithm also supports other queries in-
volving the current variables in the AHMEM. For example,

assuming that the current policy at level � is ��
� , then its cur-

rent stage of execution can be determined from the probabil-

ity �����
�
���

�
� ������ where ��

�
is the current memory vari-

able at level �. The current state (position) of the person can
also be determined by computing ������������. If AHMEM

inference engine gets no observation due to temporary occlu-

sion in the scene, the engine still carries on the inference step
by rolling forward the belief state, but not updating it with

any observation.

4 Experiments and Results

Staff room

Vision lab

paper store

computer A

library

computer B

printer

left entrance right entrance

(a)

Staff room

paper store library

computer A

computer B

Vision lab

printer

left entrance right entrance

(b)

Staff room

paper store library

computer A

computer B

printer
Vision lab

left entrance right entrance

(c)

Staff room

Computer A

library

printer

paper store

Computer B
Vision Lab

left entrance right entrance

(d)

Figure 6. (a) Person A’s trajectory in scenario 1: goes

to Computer B, to the printer, to the paper store, to the

printer again and exits. (b) Person B’s trajectory in

scenario 2: goes to Computer B, to the printer, to the

Computer B again, to the printer again, to the paper

store, to the printer for the third time and exits. (c)

Person C’s trajectory in scenario 2: walks around in

the Staff room, walks around in the Vision lab and ex-

its. (d) Person C’s trajectory in scenario 3: goes to the

library, uses the library and exits.

The AHMEM and its RBPF inference algorithm have been
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Figure 7. (a) Querying the top level behaviours of per-

son A in scenario 1. (b) The progress of executing be-

haviour print� of person A in scenario 1.

used for implementing the behaviour recognition module in

our surveillance system. The surveillance system as shown in

Fig. 2 has five static cameras. Fig. 3 shows the scene viewed
from these cameras. The behaviour hierarchy is as outlined

in section 3.2.

We examine how the system tracks the top level be-
haviours (level 3) which are print�, use-library� and

unclassified-task�. We consider three scenarios. In sce-
nario 1, person A enters the scene from the left entrance,

visits the Staff room and the Vision lab, then goes out of

the scene via the right entrance. The trajectory of person
A detected by the multiple cameras is shown in Fig. 6(a).

Fig. 7(a) shows the probabilities that person A is executing

behaviours print�, use-library
� or unclassified-task

�. These
probabilities are denoted by �print-3, �lib-3 and �unc-3 re-

spectively. At the beginning �unc-3 is the highest because the

unclassified-task� has the highest prior. Then �print-3 starts

to increase when person A approaches Computer B. When he

leaves computer B and approaches the printer, �print-3 be-

comes higher than �unc-3 and remains high while person A

goes to the paper store, returns to the printer and exits the
environment. Fig. 7(b) shows the probability of the current

memory of behaviour print� over time. It can be seen that

person A executes stages 1, 2, 3, 4 and 6 consecutively. This
means that the sequence of level 2 behaviours executed by

person A is go-to-computer�, go-to-printer�, go-to-paper�,

go-to-printer� and exit�.

In scenario 2, there are two people B and C in the scene.

The trajectories of the two people are shown in Fig. 6(b)
and Fig. 6(c). Fig. 8(a) shows the results of querying the

top level behaviours of person B. As in the figure, the sys-

tem recognises print� as the winning behaviour of person B.
This is consistent with the fact that person B goes to com-

puter B, to the printer, to computer B again, to the printer

again, to the paper store, to the printer for the third time and
exits. The system also recognises correctly unclassified-task�

as the winning behaviour of person C (see Fig. 8(b)).

Fig. 6(c) shows the trajectory of person D in scenario 3.

The system correctly finds that use-library� is the winning top

level behaviour (see Fig. 9(a)). The results of querying the
stage transition of behaviour use-library� are shown in Fig.
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Figure 8. Querying the top level behaviours of (a) per-

son B and (b) person C in scenario 2.
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Figure 9. (a) Querying the top level behaviours of per-

son D in scenario 3. (b) The progress of executing be-

haviour use-library� of person D in scenario 3.

9(b) and this corresponds to the 3 stages of this behaviour

shown in Fig. 5(b).

The results in the three scenarios are obtained by using
RBPF algorithm with 3000 samples. The average process-

ing time for each observation is approximately 0.9 sec on an

AMD Athlon(TM) XP1700+ machine. The results show that
the system is able to correctly recognise the activities being

modelled, and monitor the progress of these activities in real

time.

5 Conclusion

We have developed a surveillance system for recognis-

ing and monitoring high-level human behaviours from multi-
camera surveillance data. Using the AHMEM as the un-

derlying framework, the system can query the high-level be-

haviours executed by a person over time and detect the period
of time which the person executes each sub-behaviour. Pre-

liminary results demonstrate the ability of the system to pro-

vide real-time monitoring of high level behaviours in complex
spatial environments.
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