

Recognizing and Predicting Context
by Learning from User Behavior1

1This article is an extended version of:
R. Mayrhofer, H. Radi, and A. Ferscha. Recognizing and predicting context by learning from user behavior. W.
Schreiner G. Kotsis, A. Ferscha and K. Ibrahim, editors, The International Conference On Advances in Mobile
Multimedia (MoMM2003), volume 171, pages 25–35. Austrian Computer Society (OCG), September 2003.

Rene Mayrhofer, Harald Radi, Alois Ferscha
Institut für Pervasive Computing
Johannes Kepler Universität Linz

Altenbergerstraße 69, 4040 Linz, Austria
email : {mayrhofer,radi,ferscha}@soft.uni-linz.ac.at

Summary
Current mobile devices like mobile phones or
personal digital assistants have become more and
more powerful; they already offer features that only
few users are able to exploit to their whole extent.
With a number of upcoming mobile multimedia
applications, ease of use becomes one of the most
important aspects. One way to improve usability is to
make devices aware of the user’s context, allowing
them to adapt to the user instead of forcing the user
to adapt to the device. Our work is taking this
approach one step further by not only reacting to the
current context, but also predicting future context,
hence making the devices proactive. Mobile devices
are generally suited well for this task because they
are typically close to the user even when not actively
in use. This allows such devices to monitor the user
context and act accordingly, like automatically
muting ring or signal tones when the user is in a
meeting or selecting audio, video or text
communication depending on the user’s current
occupation. This article presents an architecture that
allows mobile devices to continuously recognize
current and anticipate future user context. The major
challenges are that context recognition and
prediction should be embedded in mobile devices
with limited resources, that learning and adaptation
should happen on-line without explicit training
phases and that user intervention should be kept to a
minimum with non-obtrusive user interaction. To
accomplish this, the presented architecture consists
of four major parts: feature extraction, classification,
labeling and prediction. The available sensors
provide a multi-dimensional, highly heterogeneous
input vector as input to the classification step,
realized by data clustering. Labeling associates
recognized context classes with meaningful names
specified by the user, and prediction allows

forecasting future user context for proactive
behavior.
Keywords
Feature Extraction, Context Awareness, Context
Prediction, Proactivity, Framework

1. Introduction

Computing environments are changing rapidly,
and the pace of this change is currently increasing.
Due to broad availability of computing and network
infrastructure, the potential audience of computing,
communication or other services of informational
nature is growing steadily. As a consequence thereof,
ease of use becomes a primary concern.

The purpose of our study is to enhance
information appliances [27] to predict context and
deliver proactive services to the user. An information
appliance is a device designed to perform a specific
function, specialized in information, with the ability
to share information with other appliances. They are
currently implemented as, for instance, mobile
devices or within Pervasive Computing.

Many have already presented their visions of
future computers, including Mark Weiser with
Ubiquitous Computing [39] (which is also called
Pervasive Computing), Steve Mann with Wearable
Computing [22], Hiroshi Ishi with Tangible Bits [18]
and Hans-Werner Gellersen with Smart-Its [13].
Common to most of them are the paradigms of
Mobile Computing and Context Awareness [35].
Although these visions are radically different, they all
agree that user interfaces should become less
obtrusive and “smarter” with regards to adapting to
the user. Today, most interfaces are explicit ones,
forcing the user to adapt to the interface, to learn how
to use it. If a “Personal Computer” or “Personal
Digital Assistant” (PDA) would live up to its name, it

should instead adapt to the user, offering implicit,
intuitive and sometimes invisible interfaces.

Our work strives to add another aspect to the
vision of future computers: proactivity. We postulate
that a PDA, which is not bounded to being a single
physical device, can only fulfill its intentions if it acts
proactively – good human assistants stand out for this
reason. Our idea is to provide software applications
not only with information about the current user
context, but also with predictions of future user
context. When equipped with various sensors, an
information appliance should classify current
situations and, based on those classes, learn the
user’s behaviors and habits by deriving knowledge
from historical data. Our current research focus is to
forecast future user context by extrapolating the past.

It should be pointed out that the topic of
proactivity in computer science is a controversial
one, especially in HCI; the general concept of context
awareness itself has to be handled with care [8].
Because the estimated current or predicted future
context and thus implicitly the actions started by the
appliance based on these assumption might be
erroneous, they might need to be reverted by the user,
possibly causing severe problems. Thus, proactivity
in applications, when utilized for controlling
actuators with impact on the real world, must be
handled with care. However, the possible uses for
predicted user context in applications are manifold,
ranging from simple reminder messages to
emergency procedures being started before an
accident happens. Our work is primarily concerned
with techniques that enable proactivity in embedded
devices and leaves decisions about starting actions to
applications built on top of it.

In the following, we present our architecture for
an application framework which provides predicted
user context on the basis of historical data in real-
time. The remainder of this article is structured as
follows: Section 2 defines our notions of proactivity
and context. Section 3 lists related work and sets our
work in relation to other projects. The main part of
this article, section 4, explains the architecture
including our contribution of adding proactivity to
context awareness. In section 5, our implementation
of this architecture in form of a cross-platform
software framework is discussed and current results
are presented in section 6. Finally, section 7 shortly
summarizes our work and describes future aims.

2. Definitions

2.1 Proactivity

The term proactivity has been used in computer
science mostly for software agents, where one
important difference between agent oriented

programming and object oriented programming is the
proactivity of software agents [40]. Formally, the
difference between reactivity and proactivity lies in
the dependence of the current system output on the
system state trajectory. If interpreted as an abstract
(Moore) state machine, the internal “state” of a
system at time t can be described as

()11, −−= ttt aqq δ , where tq is the current state, 1−tq
is the last state and 1−ta is the input value at time

1−t (cf. [29]). In this definition, system inputs and
state transitions are assumed at discrete time steps

0Ν∈t . The system output depends on the state –
this is how the difference between reactivity and
proactivity is defined in the context of this article. In
a reactive system, the output tb at time t only
depends on the current and – implicitly – on past
states:

()tt qb λ=

In a proactive system, it can also depend on
predicted future states:

mttttt qqqqb +++= ,,,, 21 Kλ

The future states mttt qqq +++ ,,, 21 K for m

discrete time steps are predicted recursively
by some arbitrarily complex process

11 ,,, −+++ = itttit qqqpq K ; if only tq is necessary

for predicting any itq + , then p can simply ignore the

predicted states 11 ,, −++ itt qq K .

2.2 Context

Context has been defined by Dey [7] as

any information that can be used to
characterize the situation of an entity, where
an entity can be a person, place, or a physical
or computational object

which we adopt in this article. A good overview
on different definitions of context can be found in
[34].

IEICE TRANS. FUNDAMENTALS/COMMUN./ELECTRON./INF. & SYST., VOL. E85-A/B/C/D, No. 1 JANUARY 2002
3

Describing the situation in general, context can
have many aspects, typically:
• geographical

• physical

• organizational

• social

• user

• task

• action

• technological

• time

As described in more detail in section 4.1, a
single sensor does not seem to be appropriate to
capture the different aspects of context.

3. Related Work

Context awareness is currently a highly active
research topic [2], but most publications assume few
but powerful sensors like video or infrastructure
based location-tracking. Albrecht Schmidt, Hans-
Werner Gellersen and Kristof van Laerhoven have
presented an architecture for recognizing context
from multiple simple sensors[21][34][35][36] in the
TEA and Smart-Its projects. Our work takes a
comparable approach to context detection by using
multiple diverse sensors, but extends it to also exploit
qualitative, non-numerical features [24].
Additionally, our framework introduces the
prediction of future context, which has not been
considered in the TEA project. The ORESTEIA
project is concerned with hybrid intelligent artifacts,
but depends on a priori training of artifacts by a
vendor in a special training phase and explicit
retraining phases for adaptation [28]; we seek to
avoid the distinction of operation and training phases
so that a device can be fully operational at all times.

Feature extraction from different types of
sensors has also been described in various
publications in the field of context awareness, e.g. [4]
describes the use of K-Means clustering and HMM to
obtain context from a microphone, while [3]
describes the use of audio and video for context
detection, and others [5][17][23]. Our notion of
features is equal to “cues” in the TEA project or to
“Contextual Information Providers” in CIS [19]. In
the field of robotics, feature extraction and sensor
fusion have been studied extensively, but with a
different focus. For autonomous robots, the
geometrical properties of the environment (e.g.

surfaces, angles, edges, color, textures, etc.) are of
utter importance and need to be determined
accurately to avoid potential collisions. Sensor fusion
provides an appropriate means of combining multiple
different sensors to resolve ambiguities, increase
robustness due to redundancy and determine different
properties of the same real-world objects [1]. For
context awareness in information appliances, sensor
fusion is at the current state of research not
appropriate, because the available sensors typically
capture different, mostly orthogonal aspects of the
user or device context. Fusing of sensors necessitates
some level of redundancy and a common model,
which is currently not available for context
descriptions. A possibility for exploiting multiple
similar sensors, which can obviously be fused, is to
exchange raw sensor or feature vectors between
devices in spatial proximity. If two or more devices
have similar sensors, their samples can be merged to
obtain a possibly more complete view on the
environment. This has been proposed independently
in [23], similar to our recommendation in section 4.1.

In [7], Anind K. Dey et.al. described a software
infrastructure for context awareness, which depends
on a server for aggregating context and is limited to
discrete-valued types of sensors. An implementation
of this infrastructure is the Context Toolkit [32]. This
toolkit is not directly comparable to our work; we
aim to implement context recognition and prediction
locally on each device, without the need for
infrastructure components, while the Context Toolkit
intentionally is an infrastructure approach.

Proactive adaptation of applications on the base
of context has also been explored in [19]. The
“Contextual Information Service” provides a
lightweight interface for obtaining context
information, but follows the approach of adapting the
environment. We intend to autonomously adapt the
device to a changing environment, which includes
changing user behavior.

Learning user’s habits has previously been
explored by Michael C. Mozer in The Neural
Network House [25], which is able to predict
occupancy of rooms, hot water usage and likelihood
that a zone is entered in the next few seconds using
trained feedforward neural networks. Kidd et.al.
reported [20] about the Aware House, which should
also learn user’s habits, but was not finished at the
time of the report. The MavHome project [6] by
Diana J. Cook et.al. also utilizes prediction
algorithms to forecast user actions, but parts of the
prediction seem to rely on database support and batch
training.

Time series forecast has been explored in
different areas, including distributed simulation [10],
software agents [31], data value prediction in
processors [33], data mining from health records [38]
and theoretically for neural networks [37].

Utilizing different types of features for context
recognition and the use of time series forecast
methods for predicting future context on the level of
aggregated context identifiers is, to the best of our
knowledge, a new approach and has not been covered
before by published research.

4. Architecture

Sensor readings are classified to detect common
patterns in the input values. These patterns are
interpreted as “states” of an abstract state machine
that act as context identifiers. A user context is
therefore abstracted to these states, whose internal
data structures relate sensor readings to states.
Although this interpretation makes it more
complicated for applications to query for specific
aspects of a context (e.g. location) instead of the
context identifier, it allows to monitor and record the
state trajectory of this abstract state machine. When a
user advances from one context to another, sensor
readings will change and another state will become
active, reflecting the context change. Thus,
interpreting the context changes as a state trajectory
allows to forecast the future development of the
trajectory, and therefore to predict the anticipated
context. For clarity, we will only use the term context
in the remainder of this article, which is similar to a
state in our interpretation.

It is important to note that context classification
and prediction must be performed in real-time for any
practical application; it is not feasible to log data and
process it offline. For the vision described in
section 1, an information appliance will have to be
continuously running and always be able to provide
services to the user. Therefore, our architecture is
targeted towards embedded systems, running without
user intervention for arbitrarily long periods.
To derive knowledge about the device/user context
from raw sensor data, the following steps are applied,
which are depicted in Fig. 1:

1. Sensor data acquisition: Sensors, e.g.
brightness, microphone or IEEE802.15
Bluetooth and IEEE802.11b Wireless LAN
(WLAN) network interfaces, provide data
streams (time series) of measurements. Usually
some physical values like the incoming RF
signals are the base for measurements, but more
abstract sensors like the currently active
application can also be utilized. In [34], sensors
are classified as physical or logical, which we
are not doing for a variety of reasons. Within
our work, a sensor is any entity that can provide
measurements of the environment a device is
situated in. Values are sampled at discrete time
steps 0Ν∈t , whose frequency should be set to
the maximum desired sample frequency of the
used sensors. As this is highly application
specific, no general distance between sample
time steps can be determined.

tlsss ,...,, 21 →

Input vector
(Sensor vector)

tnfff ,...,, 21 →

Feature vector

tmccc ,...,, 21 →

Class vector

∆+tmccc ,...,, 21

Future class vector

Fig. 1 Architecure for proactivity via predicted user context

IEICE TRANS. FUNDAMENTALS/COMMUN./ELECTRON./INF. & SYST., VOL. E85-A/B/C/D, No. 1 JANUARY 2002
5

A sensor vector lSSS ××× K21 defines sensor

readings ltl SSSsss ×××∈ KK 2121 ,,, for

points in time t .

2. Feature Extraction: From raw sensor data,
information can be extracted by domain-specific
methods, yielding multiple data values per
sensor, which are called features F with
samples Ff ∈ as a function of time. During
feature extraction, the available data is
deliberately simplified, transformed or even
expanded, allowing it to be interpreted better.
Usually, simple statistical parameters like the

mean x , standard deviation σ or higher
moments are used as features for time series of
numerical data. For nominal and ordinal data,
alternative methods should be explored.

The set of features is called a feature vector
nFFF ××× K21 , which defines samples

ntn FFFfff ×××∈ KK 2121 ,,, for points in

time t in the multi-dimensional feature space.

Although this definition does not allow for meta
attributes on feature values, it might be
advantageous to do so. In the CIS project [19],
meta information like confidence or accuracy is
added to feature values and can be used by
applications. In the architecture presented in
this article, a confidence value might be mapped
to a weight in the classification step to
adaptively weaken the influence of features with
(currently) poor sampling quality.

3. Classification: The task of classification is
to find common patterns in the feature space,
which are called classes or clusters. Because a
feature vector should possibly be assigned to
multiple classes with certain degrees of
membership (the “probability” or “confidence”
that the feature vector belongs to a class), soft
classification / soft clustering approaches are
utilized. These approaches map a feature vector
of n different features to degrees of
membership Cc ∈ with []1;0:=C of m

different classes: m
n CFFF →××× K21 . The

classes ic for mi K1= are regarded as the
detected user context and are identified by a
simple index in the class vector.

The class vector mC defines class degrees of
membership m

tm Cccc ∈,,, 21 K for points in

time t .

4. Labeling: To ease the development of
context-aware applications and for presenting

detected context to the user, descriptive names
should be assigned to single classes or
combinations of classes (cf. [21]). Labeling
maps class vectors to a set of names: NC m →
where N is a set of user-defined context names
(strings).

A context name or context label Nnt ∈
describes the currently active context for points
in time t .

5. Prediction: To enable proactivity, our
approach is to forecast future context. Thus, the
prediction step generates anticipated future
class vectors from current ones:

mm CRRC →×× ++ .

A (future) class vector defines degrees of
membership for each class:

()stcccpccc
tmsm ,,,,,,,, 2121 KK = for

points in time t and s with ts > .

The following sections describe these five

blocks in more detail.

4.1 Sensors

Context awareness of information appliances
premises that they can rely on context-relevant
information gathered by sensors. The acquired
information should be as close to the user’s world
perception as possible [34]. Unlike sensing
information in other domains (e.g. quality assurance,
robotics, etc.), where the object of interest is
explicitly investigated for the sake of accurate and
highly reliable measurement reading, sensors for
Pervasive Computing information appliances have to
be less intrusive and ostensible. Furthermore, for
collecting context information, varieties and events in
the measured data are much more interesting than the
actual sensor output; thus different techniques and
methods are required [9]. Gellersen et.al. proposed
the use of diverse simple sensors as an alternative to
the integration of a single generic sensor. Presuming
that current information appliances are already
equipped with sensors that can be exploited for those
means, this approach is more rational. The variety of
different sensor types results in a better
representation of the users context than a single
generic sensor [13]. Examples of such sensors in a
typical information appliance are listed in Table 1,
while Table 2 lists additional sensors that might be
useful for recognizing user context and can be easily
added to current and future information appliances.

Table 1 Typical sensors
available in a mobile device

time

microphone

brightness

Bluetooth

Wireless LAN

(un)docked

logged on(pff

application
manager

Table 2 Additional sensors for
a mobile device

GPS

GSM

compass

accelerometer

tilt sensor

temperature sensor

pressure sensor

various bio-
medical sensors

Fig. 2 Feature extraction on a typical PDA with a mobile phone as
additional sensor

Fig. 3 Feature extraction on a typical PDA with a mobile phone as
additional sensor: example values

To improve the quality of context recognition,
information appliances can share their perceptions to
create a more complete model of the current context.
This is accomplished by mutually granting access to
the raw sensor data of devices in the neighborhood in
a peer-to-peer manner. Own sensor data can be
correlated with the data of sensors in range,
increasing the accuracy. Nevertheless, context
information can only be shared within a close range
to ensure that the recognized context is still local and
distinct and not a global representation of different
neighboring situations. By this means, the list of
sensors is easily extensible by equipping the user
with smart sensors that expose their information to a
close, interested (and authorized) device. E.g., a
biological sensor could measure the user’s pulse and
transmit it to the information appliance via Bluetooth
or similar ad-hoc communication methods. Fig. 2
shows an example of using a mobile phone for
retrieving GSM sensor data via Bluetooth. The list of
processed sensor information is only limited by
processing capabilities and memory of the
information appliance.

4.2 Feature Extraction

Although feature extraction and classification
are well-known fields of research, most publications
only cover numerical, continuous features. Recently
we introduced a model for utilizing heterogeneous
features (e.g. a list of Bluetooth or WLAN devices in
range in combination with the time stamp) in a
common classification step [24].

The feature vector nfff ,,, 21 K formed by

an arbitrary combination of these features is highly
heterogeneous; therefore, it is necessary to find a way
to cope with the different types and semantics of the
feature space dimensions in the classification step. In
our concept, a feature type is defined by the feature
extractor that does the actual transformation of raw
sensor data into the more relevant exposition of the
data. Therefore, these transformations can be done
independently for each feature and are completely
domain specific; each feature type can implement its
operators needed for classification differently. This
abstraction virtually maps different kinds of sensor
data and their respective feature types to a unified
multidimensional, homogeneous feature space that
can be classified by commonly used algorithms.

Feature types can be categorized as one of the

following (a similar, albeit not identical taxonomy
has been used in [26]):
• nominal (categorical, qualitative): The feature

takes on values of a set on which no order
relation has been or can be defined. A special
case are binary features with { }1,0=F .

IEICE TRANS. FUNDAMENTALS/COMMUN./ELECTRON./INF. & SYST., VOL. E85-A/B/C/D, No. 1 JANUARY 2002
7

• ordinal (rank): The feature takes on a values of
a set with a defined order relation FF ×<: .

• numerical (quantitative): The feature takes on
values of an ordered set with defined + and •
operations (an algebraic field). It can be further
distinguished according to the density of values
in the set:

o discrete: ZF ∈

o continuous: RF ∈

• interval: The feature takes on intervals instead
of single values, e.g. ()RPotF ⊆ .

A preliminary comparison of different
classification methods, ranging from clustering
algorithms to neural networks, showed that only two
operations are necessary on an abstract feature F : a
distance metric and an adaptation operator [24]. With
these two operations, supervised and unsupervised
classifiers like the Kohonen Self-Organizing Map
(SOM), K-Means clustering or Lifelong GNG [16]
can be easily applied to any feature which defines
them. In Fig. 3, an example list of features in a
typical mobile scenario is shown on the PDA screen,
including lists of Bluetooth and WLAN devices in
range, the current GSM cell (queried from a mobile
phone via Bluetooth) and specific audio features
from the microphone. Each of these features has been
implemented with appropriate distance and
modification operators.

4.3 Classification

The classification step is used to find similarities
in and learn recurring patterns from its input data. It
serves the input for the labeling and the prediction
steps in form of a probability vector containing the
probability of activity for each learned class.

A classification algorithm has to fulfill several
requirements to be applicable for classifying sensor
data and recognizing context:
• On-line learning: There is no dedicated training

phase, learning has to be done unsupervised and
continuously.

• Adaptivity: Learning must never stop; as user’s
habits will change over time, classes must
always adapt to new input data. This prevents
the use of a continuously decreasing learning
rate as used in many methods (e.g. some neural
networks).

• Variable topology: Because the number of
classes can not be determined a priori for the
general case, the internal topology must be able
to adapt dynamically.

• Soft classification: Context classes are not
mutually exclusive, more than one context can
be active at the same time (e.g. ’at home’ and
’sleeping’).

• Noise resistance: When working with real-
world data, the algorithms have to cope with the
intrinsic noise that is sampled with all signals.

• Limited resources: The algorithm has to work
within the capability constraints of an
information appliance (small RAM, little
processing power, etc.).

• Simplicity: In our case, the algorithm should
perform as few distinct operations on the feature
vector as possible. As the feature extractors
have to provide the necessary operators (see
feature extraction), a multitude of operators
drastically complicates the implementation.

Ideally, a classification algorithm must be on-
line and thus unsupervised and must have a variable
network topology to cope with changing feature
vector dimensionality (changing sensor
configurations). The classification algorithm must not
be hard competitive to allow multiple active contexts
and it has to be designed for life long learning to not
forget or overwrite already learned clusters over time
(which is known as the plasticity-stability dilemma
[15] in neural networks and clustering literature).
Table 3 shows a comparison of the most common on-
line clustering algorithms and serves as a base for
selecting the most appropriate one. K-Means, Leader,
G K-Means and IDBSCAN segregate themselves due
to their hard competitive classification strategies.
SOM and RSOM tend to forget their previously
learned classes very quickly due to their learning
strategy and fixed network topology. Although this
can be circumvented by combining the SOM with K-
Means clustering [21], GNG [11] still seems to
provide more flexibility in environments with
changing configurations.

In [16], Hamker proposed modifications to the
original GNG algorithm to cope with continuously
changing environments and life-long learning
(LLGNG). These modifications prevent the GNG
from growing permanently by introducing a learning
rate with a locality criteria. This results in a locally
converging but globally still adaptive learning
algorithm. New classes will always be learned but
changes in already learned classes are only applied if
the cluster representing this class does not match the
new input vector properties to a reasonable extent.
Due to these modifications, the algorithm also
performs better in environments with small memory
because a new cluster always represents a new
context and is never redundant. Therefore, LLGNG
can forget the oldest and most erroneous cluster when

the memory boundaries are reached; this ensures that
memory is always available for learning new classes.
The basic rule behind learning and insertion in the
LLGNG is that “organisms only learn when events
violate their expectations”, previously assumed by
[30]. Tests and performance evaluations are in work
and will be presented in more detail in future
publications.

Table 3 General overview of algorithms for unsupervised
clustering of sensor data, based on [21]: 1

On-line
Algorithm

Network
Topology

Topology
Preserving Competitive

SOM fixed yes soft

RSOM fixed yes soft

K-Means fixed no hard

Leader variable no hard

G K-Means variable no hard

Neural Gas variable no soft

NG+CHL variable yes soft

GNG variable yes soft

IDBSCAN variable no hard

4.4 Labeling

Applications will generally be unaware of
classes and their current degrees of membership. In
real world scenarios, it would be virtually impossible
to design applications to work with these class
vectors, because they are learned in an unsupervised
way and will therefore differ from one device to
another; class vectors depend on the order in which
those classes were detected first. Therefore, the
indices of the currently active classes need to be
mapped to more meaningful values. In our
architecture, simple strings are used as context labels
allowing users to enter them. This is the only step
where user interaction is necessary and even in this
case, it can be non-obtrusive. Approaches for such an
interface include a discreet icon in one corner of the
device screen which blinks when a still unlabeled
context class has been active for some period of time,
allowing a user to assign a name for the current
context. Another option is to display an automatically
created context log in form of a diary, which allows
the user to label formerly detected context classes.

1 Kohonen Self-Organizing Map (SOM), the
Recurrent Self-Organizing Map (RSOM), K-Means
clustering, Hartigan’s sequential leader clustering,
growing K-means clustering, neural gas, neural gas
with competitive Hebbian learning (NG+CHL),
growing neural gas (GNG) and incremental
DBSCAN (IDBSCAN). Unlike Van Laerhoven we
rate NG+CHL and GNG as topology preserving [12].

The complexity necessary for this step mostly
depends on the quality of the classification step. If
classes are long-term stable, i.e. previously learned
classed are not overwritten by different new ones,
then a simple 1-to-1 mapping of classes to labels
might be enough. However, if the used classification
algorithm overwrites older classes in order to learn
new context, then the degrees of membership of all
classes will need to mapped to labels. In [21], a
simple K-Means clustering algorithm is used as a
second step after clustering. For each class,
represented by a winner neuron of the Kohonen SOM
clustering, K-Means is applied to the input vectors of
the SOM (which correspond to feature vectors in our
architecture) to avoid overwriting of labels. This
added complexity is necessary because of the
shortcomings of the SOM, and one of the reasons for
selecting GNG for our first experiments.

Fig. 4 GUI prototype: Allowing the user to assign descriptive
labels

Fig. 5 GUI prototype: non-obtrusive display of current context

The first implementation is based on a direct 1-
to-1 mapping and provides the user a non-obtrusive
way to assign a label to a class. The prototype
labelling application is currently realized
independently from the framework to permit
autonomous development and testing. The
communication between the labelling application and
the classification framework occurs via a simple
SOAP protocol (a DCOM interface on windows is
also available), not being restricted to a single
platform. Fig. 4 shows the dialog used to assign
labels to the classes found by the classification
algorithm, Fig. 5 shows how the application signals
the user the currently active context. It is also

IEICE TRANS. FUNDAMENTALS/COMMUN./ELECTRON./INF. & SYST., VOL. E85-A/B/C/D, No. 1 JANUARY 2002
9

possible to view the context history to assist the
labelling of new contexts.

It is still an open issue if the classification
quality will facilitate the use of a simple 1-to-1
mapping or if a more complex n-to-1 mapping from
the whole class vector to labels will perform better.
When an appropriate solution has been found for a
wide range of application areas, the labeling will be
incorporated directly into the framework. Thus, the
labeling application will only be responsible for the
naming of recognized contexts, but not for storing the
associations or the context history.

4.5 Prediction

Prediction is the main novelty in our
architecture and the focus of our current research. As
prediction should again be performed without user
interaction, it is not necessary to work with labeled
context. Instead, the prediction step in our
architecture builds upon the class vector generated by
the classification step. This allows to predict more
than a single future “best matching” context by
exploiting the class degrees of membership (which
would be impossible if the prediction would take the
single “best matching”, labeled context as input).

The aim is to generate class vectors for future
points in time, which have the same meaning as the
current class vector provided by the classification
step. This allows to feed the predicted class vectors
into the labeling step to provide predicted context
labels for use in proactive applications (cf. Fig. 1).
Before going into more detail, it is generally good to
first analyze the requirements for a prediction
algorithm in this sense.
• Unsupervised model estimation: Model

topology and parameters need to be estimated
automatically without user interaction or
explicit definition of input/output behavior.

• On-line learning: For embedded devices in real-
world scenarios, it is infeasible to switch
between artificially separated training and
prediction phases or even to store enough
history for a batch training. Therefore, the
algorithm has to continuously adapt its
parameters during normal operation,
incorporating new class vectors as soon as they
arrive.

• An exception to this is to store only the recent
history in detail, which could be used to
optimize

• and/or evaluate the quality of the predictions
(by splitting the history in a training and a test
set).

• Incremental model growing: When new classes
are detected in the classification step during

run-time, new dimensions will be added to class
vectors. The prediction algorithm must be able
to incrementally increase its internal model
topology without requiring a complete
retraining, e.g. by initializing new dimensions
with default values. It is currently unclear if
shrinking of class vectors during run-time is
also necessary or if “dead classes” could simply
receive a minimum probability.

• Confidence estimation: The algorithm should be
able to compute an estimation of the correctness
of the forecasted context along with the forecast
itself. This estimation can be used by the
application as a confidence measure to
determine if the prediction should be relied on
for certain actions.

• Automatic feedback: The prediction engine
should continuously estimate the next class
vectors and evaluate its estimations by
comparing with the real class vectors when they
are available.

• Manual feedback: If some action that has been
carried out automatically due to a forecast is
reverted/canceled by the user, this forecast
should receive a penalty to make it less likely
the next time (this is known as reinforcement
learning in machine learning) .

• Long-term vs. short-term: The used method
should ideally be suitable (e.g. parameterizable)
for different forecasting horizons, i.e. predicting
context in the near future with high confidence,
but also being able to predict later context, most
probably with lower confidence.

We have currently not selected a specific
algorithm for the prediction step because our
architecture is open for arbitrary algorithms that can
be adapted to suit our interface. However, after first
research on possible candidates, Markov predictors
seem to be generally suited well. Active LeZi [14]
has already been implemented as predictor plug-in
within the framework and is currently used for initial
experiments on real-world data. Although prediction
accuracy on simple artificial data sets looks
promising, the results with real-world data suggest
further research. Another special form of Markov
predictors, the Variable Duration Hidden Markov
Models (VDHMM) also seem to be applicable for
predicting context trajectories. They explicitly model
the duration distributions and are thus capable of
predicting for different forecasting horizons and, as
for nearly all variants of HMMs, there exist mature
methods for learning model parameters. It might be
necessary to use multiple different predictor plug-ins
concurrently and fuse their results to generate a

reasonable forecast of the context trajectory. A single
prediction method is usually unable to respect trends
and periodic patterns in the context history as well as
performing sequential Prediction by Partial Match
(PPM). For combining the results of different
predictors, it is important that a confidence
estimation is generated by the method.

5. Implementation

The described architecture has been
implemented in form of a cross-platform framework
which is freely available under an open source
license. Interfaces provided by the framework are
implemented by adhering to standardised protocols
like SOAP and DCOM to guarantee most flexibility
when developing context aware third party
applications.

Currently it runs under Windows 2000 or XP,
Linux on IA32 and ARM processor platforms,
Windows CE 3.0 and, with restrictions, under
Symbian OS 7.0.

6. Experiments and Evaluation

We have evaluated our framework for context
recognition and prediction on two real-world data
sets. The first data set has been gathered over 3
weeks on one of the servers for our smart room and
includes the list and number of Bluetooth devices in
the room and the list and number of Wireless LAN
clients in the room. For the second data set, a broader
range of sensors has been used. On a standard
notebook computer, which is used for daily work, the
following features were recorded over a period of
about 2 months with over 100000 samples: weekday,
active window (i.e. active application), mean
environmental loudness, plugged into charger,
WLAN ESSID, WLAN mode, WLAN signal level,
WLAN access point MAC address, Bluetooth peers
in range, number of Bluetooth peers in range and the
GSM cell ID of the mobile phone (which was
connected via Bluetooth). Fig. 6 shows the trajectory
of 6 out of these 11 feature values over the whole
recording period – the other features are not shown
because they either yield non-atomic values or do not
contribute significantly to context recognition.

Fig. 6 Feature value trajectories of the complete data set

IEICE TRANS. FUNDAMENTALS/COMMUN./ELECTRON./INF. & SYST., VOL. E85-A/B/C/D, No. 1 JANUARY 2002
11

In Fig. 7, a part of the data set over roughly 2
weeks is shown in more detail. The first 6 plots
depict the feature values, while the last one shows the
respective context ID with highest activation after the
classification step. As can be seen, the classification
algorithm selected 3 different contexts during this
time frame.

7. Conclusions and Future Work

We have presented an architecture to recognize
and predict user context by utilizing multiple
heterogeneous sensors. This architecture consists of
four steps: feature extraction (to generate a more
relevant representation of sensor data, exploiting
domain-specific knowledge), classification (to find
similarities and common patterns in the input data),
labeling (to assign simple context names to
recognized classes) and prediction (to forecast future
user context based on past behaviors). The novelties
in this approach are the prediction of possible user
actions via context forecast and the abstraction of

feature types to allow heterogeneous features to be
combined in a single classification step. To
accomplish this, all feature types independently
define the operations necessary for classification.

We have already implemented feature extraction
for various sensors available on typical information
appliances, including microphone, Bluetooth,
Wireless LAN and additional, external sensors like a
mobile phone accessible via Bluetooth. A next step in
research will include gathering real-world data in an
empirical study and evaluating classification and
prediction algorithms based on this data.

Proactivity in applications can support users by
allowing information appliances to adapt to the user
instead of forcing the user to learn specifics of the
interface. When equipped with multiple sensors and
using those sensors to detect and predict context, an
information appliance can become smarter and more
intuitive to use, fostering a wider acceptance of
information appliances in everyday life.

Fig. 7 Recognized context identifiers

Acknowledgments

We especially thank Manfred Hechinger and
Günther Blaschek for helpful discussions on the
general topic of proactivity and the implications on
user interfaces.

References
[1] S.B.H. Bruder. An information centric approach to

heterogeneous multi-sensor integration for robotic
applications. Robotics and Autonomous Systems,
26(4), March 1999.

[2] G. Chen and D. Kotz. A survey of context-aware
mobile computing research. Technical Report
TR2000-381, Dept. of Computer Science, Dartmouth
College, November 2000.

[3] B. Clarkson, K. Mase, and A. Pentland. Recognizing
user context via wearable sensors. In ISWC, pages
69–76, 2000.

[4] B. Clarkson, N. Sawhney, and A. Pentland. Auditory
context awareness via wearable computing. In
Proceedings of the 1998 Workshop on Perceptual
User Interfaces (PUI’98), San Francisco, CA, USA,
November 1998.

[5] B. Clarkson and A. Pentland. Unsupervised clustering
of ambulatory audio and video. Technical Report 471,
MIT Media Lab, Perceptual Computing Group, 1998.

[6] D. J. Cook, M. Youngblood III, E. O. Heiermann, K.
Gopalratnam, S. Rao, A. Litvin, and F. Khawaja.
MavHome: An agent-based smart home. In First
IEEE International Conference on Pervasive
Computing and Communications (PerCom’03), pages
521–524, IEEE Computer Society Press, March 2003.

[7] A. Dey, G. D. Abowd, and D. Salber. A context-based
infrastructure for smart environments, 1999.

[8] T. Erickson. Some problems with the notion of
context-aware computing. Communications of the
ACM, 45(2):102–104, ACM Press , February 2002.

[9] D. Estrin, D. Culler, K. Pister, and G. Sukhatme.
Connecting the physical world with pervasive
networks. IEEE Pervasive Computing, 1(1):59–69,
January–March 2002.

[10] A. Ferscha. Adaptive time warp simulation of timed
petri nets. IEEE Transactions on Software
Engineering, 25(2):237–257, March/April 1999.

[11] B. Fritzke. A growing neural gas network learns
topologies. In G. Tesauro, D. S. Touretzky, and T. K.
Leen, editors, Advances in Neural Information
Processing Systems 7, pages 625–632. MIT Press,
Cambridge MA, 1995.

[12] B. Fritzke. Some competitive learning methods.
Technical report, Systems Biophysics, Inst. for Neural
Comp., Ruhr-Universität Bochum, April 1997.

[13] H.W. Gellersen, A. Schmidt, and M. Beigl. Multi-
sensor context-awareness in mobile devices and smart
artefacts. Mobile Networks and Applications,
7(5):341-351. ACM Press, October 2002.

[14] K. Gopalratnam and D. J. Cook. Active LeZi: An
incremental parsing algorithm for sequential
prediction. Proceedings of the Florida Artificial
Intelligence Research Symposium, 2003.

[15] S. Grossberg. Adaptive pattern classification and
universal recoding: Parallel development and coding

of neural feature detectors. Biological Cybernetics,
23:121–134, 1976.

[16] F. H. Hamker. Life-long learning cell structures—
continuously learning without catastrophic
interference. Neural Networks, 14(4–5):551–573,
May 2001.

[17] R. Headon. Movement awareness for a sentient
environment. In First IEEE International Conference
on Pervasive Computing and Communications
(PerCom’03), pages 99-106, IEEE Computer Society
Press, March 2003.

[18] H. Ishii and B. Ullmer. Tangible bits: Towards
seamless interfaces between people, bits and atoms. In
Proceedings of Conference on Human Factors in
Computing Systems (CHI ’97), pages 234–241. ACM,
March 1997.

[19] G. Judd and P. Steenkiste. Providing contextual
information to pervasive computing applications. In
First IEEE International Conference on Pervasive
Computing and Communications (PerCom’03), pages
133-142, IEEE Computer Society Press, March 2003.

[20] C. D. Kidd, R. Orr, G. D. Abowd, C. G. Atkeson, I.
A. Essa, B. MacIntyre, E. D. Mynatt, T. Starner, and
W. Newstetter. The aware home: A living laboratory
for ubiquitous computing research. In Proceedings of
the Cooperative Buildings, Integrating Information,
Organization, and Architecture, Second International
Workshop, CoBuild’99, volume 1670 of Lecture
Notes in Computer Science, pages 191–198. Springer,
1999.

[21] K. Van Laerhoven and S. Lowette. Real-time analysis
of data from many sensors with neural networks. In
Proceedings of the fourth International Symposium
on Wearable Computers (ISWC) Zurich, 7-9 October
2001. IEEE Press, 2001.

[22] S. Mann. Wearable computing: A first step toward
personal imaging. IEEE Computer, 30(2), February
1997.

[23] J. Mäntyjärvi, J. Himberg, and P. Huuskonen.
Collaborative context recognition for handheld
devices. In First IEEE International Conference on
Pervasive Computing and Communications
(PerCom’03), pages 161-168, IEEE Computer
Society Press, March 2003.

[24] R. Mayrhofer, H. Radi, and A. Ferscha. Feature
extraction in wireless personal and local area
networks. In Proceedings of The Fifth IFIP TC6
International Conference on Mobile and Wireless
Communications Network (MWCN 2003). World
Scientific, October 2003.

[25] M. C. Mozer. The neural network house: An
environment that adapts to its inhabitants. In
Proceedings of the AAAI 1998 Spring Symposium on
Intelligent Environments, pages 110–114. AAAI
Press, 1998.

[26] S. Negri and L. Belanche. Heterogeneous kohonen
networks. In José Mira and Alberto Prieto, editors,
Proceedings of the 6th International Work-
Conference on Artificial and Natural Neural
Networks (IWANN 2001), Lecture Notes in Computer
Science, pages 243–252. Springer, 2001.

[27] D. A. Norman. The invisible computer. MIT Press,
Cambridge, 1998.

IEICE TRANS. FUNDAMENTALS/COMMUN./ELECTRON./INF. & SYST., VOL. E85-A/B/C/D, No. 1 JANUARY 2002
13

[28] Deliverable D05: 1st year progress report of the
Oresteia project. Technical report, January 2002.

[29] F. Pichler. Mathematische Systemtheorie:
Dynamische Konstruktionen. Walter de Gruyter,
Berlin, New York, 1975.

[30] R. A. Rescorla and A. R. Wagner. A theory of
pavlovian conditioning: Variations in the
effectiveness of reinforcement and non-
reinforcement. In A. H. Black and W. F. Prokasy,
editors, Classical Conditioning II. Current
Research and Theory. Appleton Century Crofts, New
York, 1972.

[31] M. T. Rosenstein and P. R. Cohen. Concepts
from time series. In AAAI/IAAI, pages 739–745,
1998.

[32] D. Salber, A. K. Dey, and G. D. Abowd. The
context toolkit: Aiding the development of
context-enabled applications. In Proceedings of
the 1999 Conference on Human Factors in
Computing Systems (CHI’99), pages 434–441,
May 1999.

[33] Y. Sazeides and J. E. Smith. The predictability of data
values. In International Symposium on
Microarchitecture, pages 248–258, 1997.

[34] A. Schmidt. Ubiquitous Computing – Computing
in Context. PhD thesis, Lancaster University,
November 2002.

[35] A. Schmidt and M. Beigl. There is more to
context than location: Environment sensing
technologies for adaptive mobile user interfaces.
In Workshop on Interactive Applications of
Mobile Computing IMC’98, 1998.

[36] A. Schmidt and K. Van Laerhoven. How to build
smart appliances. IEEE Personal Communications,
August 2001:66–71, 2001.

[37] Z. Tang and P. A. Fishwick. Feed-forward neural nets
as models for time series forecasting. Technical
Report 91-008, University of Florida, 1993. also
published in ORSA Journal of Computing 5(4), 374–
386.

[38] M. A. Orgun, W. Lin and G. J. Williams. Multilevels
hidden markov models for temporal data mining. In
Proceedings of the KDD 2001 Workshop on
Temporal Data Mining (held in conjunction with the
7th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-
2001)), San Francisco, CA, USA, August 2001.

[39] M. Weiser. The computer of the twenty-first century.
Scientific American, 1496:94–100, September 1991.

[40] M. Wooldridge and N. R. Jennings. Intelligent agents:
Theory and practice.
HTTP://www.doc.mmu.ac.uk/STAFF/mike/ker95/ker
95-html.h (Hypertext version of Knowledge
Engineering Review paper), 1994.

Rene Mayrhofer received the Dipl.-Ing.
degree in Computer Science from the
Johannes Kepler Universität Linz, Austria in
2002 and is currently working on his PhD on
context prediction, also at Johannes Kepler
Universität Linz. His research interests
include context awareness, embedded systems
and artificial intelligence. He is a contributing
developer of the Debian GNU/Linux project.

Harald Radi is currently working on
his Dipl-Ing. degree in Computer Science at
Johannes Kepler Universität Linz, Austria.
His research interests include component
technologies, artificial intelligence and
context awareness. He is a member of the
PHP development team and contributor to
the PEAR repository.

Alois Ferscha received his Mag. degree
in 1984, and a PhD degree in business
informatics in 1990, both from the University
of Vienna, Austria. From 1986 through 2000
he was with the Department of Applied
Computer Science at the University of Vienna
at the levels of assistant and associate
professor. In 2000 he joined the University of
Linz as full professor where he is now head of
the Institute for Pervasive Computing. He has
served on the committees of several

conferences like Pervasive Computing, UMBICOMP,
WWW, PADS, DIS-RT, SIGMETRICS, MASCOTS,
TOOLS, PNPM, ICS, etc. and is currently the program
chair for the PERVASIVE 2004 conference.

