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Summary 
Current mobile devices like mobile phones or 
personal digital assistants have become more and 
more powerful; they already offer features that only 
few users are able to exploit to their whole extent. 
With a number of upcoming mobile multimedia 
applications, ease of use becomes one of the most 
important aspects. One way to improve usability is to 
make devices aware of the user’s context, allowing 
them to adapt to the user instead of forcing the user 
to adapt to the device. Our work is taking this 
approach one step further by not only reacting to the 
current context, but also predicting future context, 
hence making the devices proactive. Mobile devices 
are generally suited well for this task because they 
are typically close to the user even when not actively 
in use. This allows such devices to monitor the user 
context and act accordingly, like automatically 
muting ring or signal tones when the user is in a 
meeting or selecting audio, video or text 
communication depending on the user’s current 
occupation. This article presents an architecture that 
allows mobile devices to continuously recognize 
current and anticipate future user context. The major 
challenges are that context recognition and 
prediction should be embedded in mobile devices 
with limited resources, that learning and adaptation 
should happen on-line without explicit training 
phases and that user intervention should be kept to a 
minimum with non-obtrusive user interaction. To 
accomplish this, the presented architecture consists 
of four major parts: feature extraction, classification, 
labeling and prediction. The available sensors 
provide a multi-dimensional, highly heterogeneous 
input vector as input to the classification step, 
realized by data clustering. Labeling associates 
recognized context classes with meaningful names 
specified by the user, and prediction allows 

forecasting future user context for proactive 
behavior. 
Keywords 
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1. Introduction 

Computing environments are changing rapidly, 
and the pace of this change is currently increasing. 
Due to broad availability of computing and network 
infrastructure, the potential audience of computing, 
communication or other services of informational 
nature is growing steadily. As a consequence thereof, 
ease of use becomes a primary concern. 

The purpose of our study is to enhance 
information appliances [27] to predict context and 
deliver proactive services to the user. An information 
appliance is a device designed to perform a specific 
function, specialized in information, with the ability 
to share information with other appliances. They are 
currently implemented as, for instance, mobile 
devices or within Pervasive Computing.  

Many have already presented their visions of 
future computers, including Mark Weiser with 
Ubiquitous Computing [39] (which is also called 
Pervasive Computing), Steve Mann with Wearable 
Computing [22], Hiroshi Ishi with Tangible Bits [18] 
and Hans-Werner Gellersen with Smart-Its [13]. 
Common to most of them are the paradigms of 
Mobile Computing and Context Awareness [35]. 
Although these visions are radically different, they all 
agree that user interfaces should become less 
obtrusive and “smarter” with regards to adapting to 
the user. Today, most interfaces are explicit ones, 
forcing the user to adapt to the interface, to learn how 
to use it. If a “Personal Computer” or “Personal 
Digital Assistant” (PDA) would live up to its name, it 



 
 

 

  

should instead adapt to the user, offering implicit, 
intuitive and sometimes invisible interfaces. 

Our work strives to add another aspect to the 
vision of future computers: proactivity. We postulate 
that a PDA, which is not bounded to being a single 
physical device, can only fulfill its intentions if it acts 
proactively – good human assistants stand out for this 
reason. Our idea is to provide software applications 
not only with information about the current user 
context, but also with predictions of future user 
context. When equipped with various sensors, an 
information appliance should classify current 
situations and, based on those classes, learn the 
user’s behaviors and habits by deriving knowledge 
from historical data. Our current research focus is to 
forecast future user context by extrapolating the past. 

It should be pointed out that the topic of 
proactivity in computer science is a controversial 
one, especially in HCI; the general concept of context 
awareness itself has to be handled with care [8]. 
Because the estimated current or predicted future 
context and thus implicitly the actions started by the 
appliance based on these assumption might be 
erroneous, they might need to be reverted by the user, 
possibly causing severe problems. Thus, proactivity 
in applications, when utilized for controlling 
actuators with impact on the real world, must be 
handled with care. However, the possible uses for 
predicted user context in applications are manifold, 
ranging from simple reminder messages to 
emergency procedures being started before an 
accident happens. Our work is primarily concerned 
with techniques that enable proactivity in embedded 
devices and leaves decisions about starting actions to 
applications built on top of it. 

In the following, we present our architecture for 
an application framework which provides predicted 
user context on the basis of historical data in real-
time. The remainder of this article is structured as 
follows: Section 2 defines our notions of proactivity 
and context. Section 3 lists related work and sets our 
work in relation to other projects. The main part of 
this article, section 4, explains the architecture 
including our contribution of adding proactivity to 
context awareness. In section 5, our implementation 
of this architecture in form of a cross-platform 
software framework is discussed and current results 
are presented in section 6. Finally, section 7 shortly 
summarizes our work and describes future aims. 

2. Definitions 

2.1 Proactivity 

The term proactivity has been used in computer 
science mostly for software agents, where one 
important difference between agent oriented 

programming and object oriented programming is the 
proactivity of software agents [40]. Formally, the 
difference between reactivity and proactivity lies in 
the dependence of the current system output on the 
system state trajectory. If interpreted as an abstract 
(Moore) state machine, the internal “state” of a 
system at time t  can be described as 

( )11, −−= ttt aqq δ , where tq  is the current state, 1−tq  
is the last state and 1−ta  is the input value at time 

1−t  (cf. [29]). In this definition, system inputs and 
state transitions are assumed at discrete time steps 

0Ν∈t . The system output depends on the state – 
this is how the difference between reactivity and 
proactivity is defined in the context of this article. In 
a reactive system, the output tb  at time t  only 
depends on the current and – implicitly – on past 
states: 

( )tt qb λ=  

In a proactive system, it can also depend on 
predicted future states: 

mttttt qqqqb +++= ,,,, 21 Kλ
 

The future states mttt qqq +++ ,,, 21 K  for m  

discrete time steps are predicted recursively  
by some arbitrarily complex process 

11 ,,, −+++ = itttit qqqpq K ; if only tq  is necessary 

for predicting any itq + , then p  can simply ignore the 

predicted states 11 ,, −++ itt qq K .  

2.2 Context 

Context has been defined by Dey [7] as 

any information that can be used to 
characterize the situation of an entity, where 
an entity can be a person, place, or a physical 
or computational object 

which we adopt in this article. A good overview 
on different definitions of context can be found in 
[34]. 
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Describing the situation in general, context can 
have many aspects, typically: 
• geographical 

• physical 

• organizational 

• social 

• user 

• task 

• action 

• technological 

• time 

As described in more detail in section 4.1, a 
single sensor does not seem to be appropriate to 
capture the different aspects of context. 

3. Related Work 

Context awareness is currently a highly active 
research topic [2], but most publications assume few 
but powerful sensors like video or infrastructure 
based location-tracking. Albrecht Schmidt, Hans-
Werner Gellersen and Kristof van Laerhoven have 
presented an architecture for recognizing context 
from multiple simple sensors[21][34][35][36] in the 
TEA and Smart-Its projects. Our work takes a 
comparable approach to context detection by using 
multiple diverse sensors, but extends it to also exploit 
qualitative, non-numerical features [24]. 
Additionally, our framework introduces the 
prediction of future context, which has not been 
considered in the TEA project. The ORESTEIA 
project is concerned with hybrid intelligent artifacts, 
but depends on a priori training of artifacts by a 
vendor in a special training phase and explicit 
retraining phases for adaptation [28]; we seek to 
avoid the distinction of operation and training phases 
so that a device can be fully operational at all times.  

Feature extraction from different types of 
sensors has also been described in various 
publications in the field of context awareness, e.g. [4] 
describes the use of K-Means clustering and HMM to 
obtain context from a microphone, while [3] 
describes the use of audio and video for context 
detection, and others [5][17][23].  Our notion of 
features is equal to “cues” in the TEA project or to 
“Contextual Information Providers” in CIS [19]. In 
the field of robotics, feature extraction and sensor 
fusion have been studied extensively, but with a 
different focus. For autonomous robots, the 
geometrical properties of the environment (e.g. 

surfaces, angles, edges, color, textures, etc.) are of 
utter importance and need to be determined 
accurately to avoid potential collisions. Sensor fusion 
provides an appropriate means of combining multiple 
different sensors to resolve ambiguities, increase 
robustness due to redundancy and determine different 
properties of the same real-world objects [1]. For 
context awareness in information appliances, sensor 
fusion is at the current state of research not 
appropriate, because the available sensors typically 
capture different, mostly orthogonal aspects of the 
user or device context. Fusing of sensors necessitates 
some level of redundancy and a common model, 
which is currently not available for context 
descriptions. A possibility for exploiting multiple 
similar sensors, which can obviously be fused, is to 
exchange raw sensor or feature vectors between 
devices in spatial proximity. If two or more devices 
have similar sensors, their samples can be merged to 
obtain a possibly more complete view on the 
environment. This has been proposed independently 
in [23], similar to our recommendation in section 4.1. 

In [7], Anind K. Dey et.al. described a software 
infrastructure for context awareness, which depends 
on a server for aggregating context and is limited to 
discrete-valued types of sensors. An implementation 
of this infrastructure is the Context Toolkit [32]. This 
toolkit is not directly comparable to our work; we 
aim to implement context recognition and prediction 
locally on each device, without the need for 
infrastructure components, while the Context Toolkit 
intentionally is an infrastructure approach.  

Proactive adaptation of applications on the base 
of context has also been explored in [19]. The 
“Contextual Information Service” provides a 
lightweight interface for obtaining context 
information, but follows the approach of adapting the 
environment. We intend to autonomously adapt the 
device to a changing environment, which includes 
changing user behavior. 

Learning user’s habits has previously been 
explored by Michael C. Mozer in The Neural 
Network House [25], which is able to predict 
occupancy of rooms, hot water usage and likelihood 
that a zone is entered in the next few seconds using 
trained feedforward neural networks. Kidd et.al. 
reported [20] about the Aware House, which should 
also learn user’s habits, but was not finished at the 
time of the report. The MavHome project [6] by 
Diana J. Cook et.al. also utilizes prediction 
algorithms to forecast user actions, but parts of the 
prediction seem to rely on database support and batch 
training. 

Time series forecast has been explored in 
different areas, including distributed simulation [10], 
software agents [31], data value prediction in 
processors [33], data mining from health records [38] 
and theoretically for neural networks [37]. 



 
 

 

  

Utilizing different types of features for context 
recognition and the use of time series forecast 
methods for predicting future context on the level of 
aggregated context identifiers is, to the best of our 
knowledge, a new approach and has not been covered 
before by published research. 

4. Architecture 

Sensor readings are classified to detect common 
patterns in the input values. These patterns are 
interpreted as “states” of an abstract state machine 
that act as context identifiers. A user context is 
therefore abstracted to these states, whose internal 
data structures relate sensor readings to states. 
Although this interpretation makes it more 
complicated for applications to query for specific 
aspects of a context (e.g. location) instead of the 
context identifier, it allows to monitor and record the 
state trajectory of this abstract state machine. When a 
user advances from one context to another, sensor 
readings will change and another state will become 
active, reflecting the context change. Thus, 
interpreting the context changes as a state trajectory 
allows to forecast the future development of the 
trajectory, and therefore to predict the anticipated 
context. For clarity, we will only use the term context 
in the remainder of this article, which is similar to a 
state in our interpretation. 

 
 

It is important to note that context classification 
and prediction must be performed in real-time for any 
practical application; it is not feasible to log data and 
process it offline. For the vision described in  
section 1, an information appliance will have to be 
continuously running and always be able to provide 
services to the user. Therefore, our architecture is 
targeted towards embedded systems, running without 
user intervention for arbitrarily long periods.  
To derive knowledge about the device/user context 
from raw sensor data, the following steps are applied, 
which are depicted in Fig. 1: 

1. Sensor data acquisition: Sensors, e.g. 
brightness, microphone or IEEE802.15 
Bluetooth and IEEE802.11b Wireless LAN 
(WLAN) network interfaces, provide data 
streams (time series) of measurements. Usually 
some physical values like the incoming RF 
signals are the base for measurements, but more 
abstract sensors like the currently active 
application can also be utilized. In [34], sensors 
are classified as physical or logical, which we 
are not doing for a variety of reasons. Within 
our work, a sensor is any entity that can provide 
measurements of the environment a device is 
situated in. Values are sampled at discrete time 
steps 0Ν∈t , whose frequency should be set to 
the maximum desired sample frequency of the 
used sensors. As this is highly application 
specific, no general distance between sample 
time steps can be determined. 

tlsss ,...,, 21   → 

 
Input vector 
(Sensor vector) 

tnfff ,...,, 21   → 

 
Feature vector 

tmccc ,...,, 21   → 

 
Class vector 

∆+tmccc ,...,, 21  
 
Future class vector 

Fig. 1 Architecure for proactivity via predicted user context 
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A sensor vector lSSS ××× K21  defines sensor 

readings ltl SSSsss ×××∈ KK 2121 ,,,  for 

points in time t .  

2. Feature Extraction: From raw sensor data, 
information can be extracted by domain-specific 
methods, yielding multiple data values per 
sensor, which are called features F  with 
samples Ff ∈  as a function of time. During 
feature extraction, the available data is 
deliberately simplified, transformed or even 
expanded, allowing it to be interpreted better. 
Usually, simple statistical parameters like the 

mean x , standard deviation σ  or higher 
moments are used as features for time series of 
numerical data. For nominal and ordinal data, 
alternative methods should be explored. 

The set of features is called a feature vector 
nFFF ××× K21 , which defines samples 

ntn FFFfff ×××∈ KK 2121 ,,,  for points in 

time t  in the multi-dimensional feature space. 

Although this definition does not allow for meta 
attributes on feature values, it might be 
advantageous to do so. In the CIS project [19], 
meta information like confidence or accuracy is 
added to feature values and can be used by 
applications. In the architecture presented in 
this article, a confidence value might be mapped 
to a weight in the classification step to 
adaptively weaken the influence of features with 
(currently) poor sampling quality. 

3. Classification: The task of classification is 
to find common patterns in the feature space, 
which are called classes or clusters. Because a 
feature vector should possibly be assigned to 
multiple classes with certain degrees of 
membership (the “probability” or “confidence” 
that the feature vector belongs to a class), soft 
classification / soft clustering approaches are 
utilized. These approaches map a feature vector 
of n  different features to degrees of 
membership Cc ∈  with [ ]1;0:=C  of m  

different classes: m
n CFFF →××× K21 . The 

classes ic  for mi K1=  are regarded as the 
detected user context and are identified by a 
simple index in the class vector. 

The class vector mC  defines class degrees of 
membership m

tm Cccc ∈,,, 21 K  for points in 

time t .  

4. Labeling: To ease the development of 
context-aware applications and for presenting 

detected context to the user, descriptive names 
should be assigned to single classes or 
combinations of classes (cf. [21]). Labeling 
maps class vectors to a set of names: NC m →  
where N  is a set of user-defined context names 
(strings). 

A context name or context label Nnt ∈  
describes the currently active context for points 
in time t . 

5. Prediction: To enable proactivity, our 
approach is to forecast future context. Thus, the 
prediction step generates anticipated future 
class vectors from current ones: 

mm CRRC →×× ++ . 

A (future) class vector defines degrees of 
membership for each class: 

( )stcccpccc
tmsm ,,,,,,,, 2121 KK =  for 

points in time t  and s  with ts > . 
 
The following sections describe these five 

blocks in more detail. 

4.1 Sensors 

Context awareness of information appliances 
premises that they can rely on context-relevant 
information gathered by sensors. The acquired 
information should be as close to the user’s world 
perception as possible [34]. Unlike sensing 
information in other domains (e.g. quality assurance, 
robotics, etc.), where the object of interest is 
explicitly investigated for the sake of accurate and 
highly reliable measurement reading, sensors for 
Pervasive Computing information appliances have to 
be less intrusive and ostensible. Furthermore, for 
collecting context information, varieties and events in 
the measured data are much more interesting than the 
actual sensor output; thus different techniques and 
methods are required [9]. Gellersen et.al. proposed 
the use of diverse simple sensors as an alternative to 
the integration of a single generic sensor. Presuming 
that current information appliances are already 
equipped with sensors that can be exploited for those 
means, this approach is more rational. The variety of 
different sensor types results in a better 
representation of the users context than a single 
generic sensor [13]. Examples of such sensors in a 
typical information appliance are listed in Table 1, 
while Table 2 lists additional sensors that might be 
useful for recognizing user context and can be easily 
added to current and future information appliances. 

 
 
 
 
 



 
 

 

  

Table 1 Typical sensors 
available in a mobile device 

time 

microphone 

brightness 

Bluetooth 

Wireless LAN 

(un)docked 

logged on(pff 

application 
manager  

Table 2 Additional sensors for 
a mobile device 

GPS 

GSM 

compass 

accelerometer 

tilt sensor 

temperature sensor 

pressure sensor 

various bio-
medical sensors  

 

 

Fig. 2 Feature extraction on a typical PDA with a mobile phone as 
additional sensor 

 

Fig. 3 Feature extraction on a typical PDA with a mobile phone as 
additional sensor: example values 

To improve the quality of context recognition, 
information appliances can share their perceptions to 
create a more complete model of the current context. 
This is accomplished by mutually granting access to 
the raw sensor data of devices in the neighborhood in 
a peer-to-peer manner. Own sensor data can be 
correlated with the data of sensors in range, 
increasing the accuracy. Nevertheless, context 
information can only be shared within a close range 
to ensure that the recognized context is still local and 
distinct and not a global representation of different 
neighboring situations. By this means, the list of 
sensors is easily extensible by equipping the user 
with smart sensors that expose their information to a 
close, interested (and authorized) device. E.g., a 
biological sensor could measure the user’s pulse and 
transmit it to the information appliance via Bluetooth 
or similar ad-hoc communication methods. Fig. 2 
shows an example of using a mobile phone for 
retrieving GSM sensor data via Bluetooth. The list of 
processed sensor information is only limited by 
processing capabilities and memory of the 
information appliance. 

4.2 Feature Extraction 

Although feature extraction and classification 
are well-known fields of research, most publications 
only cover numerical, continuous features. Recently 
we introduced a model for utilizing heterogeneous 
features (e.g. a list of Bluetooth or WLAN devices in 
range in combination with the time stamp) in a 
common classification step [24]. 

The feature vector nfff ,,, 21 K  formed by 

an arbitrary combination of these features is highly 
heterogeneous; therefore, it is necessary to find a way 
to cope with the different types and semantics of the 
feature space dimensions in the classification step. In 
our concept, a feature type is defined by the feature 
extractor that does the actual transformation of raw 
sensor data into the more relevant exposition of the 
data. Therefore, these transformations can be done 
independently for each feature and are completely 
domain specific; each feature type can implement its 
operators needed for classification differently. This 
abstraction virtually maps different kinds of sensor 
data and their respective feature types to a unified 
multidimensional, homogeneous feature space that 
can be classified by commonly used algorithms. 

 
Feature types can be categorized as one of the 

following (a similar, albeit not identical taxonomy 
has been used in [26]): 
• nominal (categorical, qualitative): The feature 

takes on values of a set on which no order 
relation has been or can be defined. A special 
case are binary features with { }1,0=F . 
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• ordinal (rank): The feature takes on a values of 
a set with a defined order relation FF ×<: . 

• numerical (quantitative): The feature takes on 
values of an ordered set with defined +  and •  
operations (an algebraic field). It can be further 
distinguished according to the density of values 
in the set: 

o discrete: ZF ∈  

o continuous: RF ∈  

• interval: The feature takes on intervals instead 
of single values, e.g. ( )RPotF ⊆ . 

A preliminary comparison of different 
classification methods, ranging from clustering 
algorithms to neural networks, showed that only two 
operations are necessary on an abstract feature F : a 
distance metric and an adaptation operator [24]. With 
these two operations, supervised and unsupervised 
classifiers like the Kohonen Self-Organizing Map 
(SOM), K-Means clustering or Lifelong GNG [16] 
can be easily applied to any feature which defines 
them. In Fig. 3, an example list of features in a 
typical mobile scenario is shown on the PDA screen, 
including lists of Bluetooth and WLAN devices in 
range, the current GSM cell (queried from a mobile 
phone via Bluetooth) and specific audio features 
from the microphone. Each of these features has been 
implemented with appropriate distance and 
modification operators. 

4.3 Classification 

The classification step is used to find similarities 
in and learn recurring patterns from its input data. It 
serves the input for the labeling and the prediction 
steps in form of a probability vector containing the 
probability of activity for each learned class. 

A classification algorithm has to fulfill several 
requirements to be applicable for classifying sensor 
data and recognizing context: 
• On-line learning: There is no dedicated training 

phase, learning has to be done unsupervised and 
continuously. 

• Adaptivity: Learning must never stop; as user’s 
habits will change over time, classes must 
always adapt to new input data. This prevents 
the use of a continuously decreasing learning 
rate as used in many methods (e.g. some neural 
networks). 

• Variable topology: Because the number of 
classes can not be determined a priori for the 
general case, the internal topology must be able 
to adapt dynamically. 

• Soft classification: Context classes are not 
mutually exclusive, more than one context can 
be active at the same time (e.g. ’at home’ and 
’sleeping’). 

• Noise resistance: When working with real-
world data, the algorithms have to cope with the 
intrinsic noise that is sampled with all signals. 

• Limited resources: The algorithm has to work 
within the capability constraints of an 
information appliance (small RAM, little 
processing power, etc.). 

• Simplicity: In our case, the algorithm should 
perform as few distinct operations on the feature 
vector as possible. As the feature extractors 
have to provide the necessary operators (see 
feature extraction), a multitude of operators 
drastically complicates the implementation. 

Ideally, a classification algorithm must be on-
line and thus unsupervised and must have a variable 
network topology to cope with changing feature 
vector dimensionality (changing sensor 
configurations). The classification algorithm must not 
be hard competitive to allow multiple active contexts 
and it has to be designed for life long learning to not 
forget or overwrite already learned clusters over time 
(which is known as the plasticity-stability dilemma 
[15] in neural networks and clustering literature). 
Table 3 shows a comparison of the most common on-
line clustering algorithms and serves as a base for 
selecting the most appropriate one. K-Means, Leader, 
G K-Means and IDBSCAN segregate themselves due 
to their hard competitive classification strategies. 
SOM and RSOM tend to forget their previously 
learned classes very quickly due to their learning 
strategy and fixed network topology. Although this 
can be circumvented by combining the SOM with K-
Means clustering [21], GNG [11] still seems to 
provide more flexibility in environments with 
changing configurations. 

In [16], Hamker proposed modifications to the 
original GNG algorithm to cope with continuously 
changing environments and life-long learning 
(LLGNG). These modifications prevent the GNG 
from growing permanently by introducing a learning 
rate with a locality criteria. This results in a locally 
converging but globally still adaptive learning 
algorithm. New classes will always be learned but 
changes in already learned classes are only applied if 
the cluster representing this class does not match the 
new input vector properties to a reasonable extent. 
Due to these modifications, the algorithm also 
performs better in environments with small memory 
because a new cluster always represents a new 
context and is never redundant. Therefore, LLGNG 
can forget the oldest and most erroneous cluster when 



 
 

 

  

the memory boundaries are reached; this ensures that 
memory is always available for learning new classes. 
The basic rule behind learning and insertion in the 
LLGNG is that “organisms only learn when events 
violate their expectations”, previously assumed by 
[30]. Tests and performance evaluations are in work 
and will be presented in more detail in future 
publications. 

Table 3 General overview of algorithms for unsupervised 
clustering of sensor data, based on [21]: 1 

On-line 
Algorithm 

Network 
Topology 

Topology 
Preserving Competitive 

SOM fixed yes soft 

RSOM fixed yes soft 

K-Means fixed no hard 

Leader variable no hard 

G K-Means variable no hard 

Neural Gas variable no soft 

NG+CHL variable yes soft 

GNG variable yes soft 

IDBSCAN variable no hard 

4.4 Labeling 

Applications will generally be unaware of 
classes and their current degrees of membership. In 
real world scenarios, it would be virtually impossible 
to design applications to work with these class 
vectors, because they are learned in an unsupervised 
way and will therefore differ from one device to 
another; class vectors depend on the order in which 
those classes were detected first. Therefore, the 
indices of the currently active classes need to be 
mapped to more meaningful values. In our 
architecture, simple strings are used as context labels 
allowing users to enter them. This is the only step 
where user interaction is necessary and even in this 
case, it can be non-obtrusive. Approaches for such an 
interface include a discreet icon in one corner of the 
device screen which blinks when a still unlabeled 
context class has been active for some period of time, 
allowing a user to assign a name for the current 
context. Another option is to display an automatically 
created context log in form of a diary, which allows 
the user to label formerly detected context classes.  

                                                           
1  Kohonen Self-Organizing Map (SOM), the 
Recurrent Self-Organizing Map (RSOM), K-Means 
clustering, Hartigan’s sequential leader clustering, 
growing K-means clustering, neural gas, neural gas 
with competitive Hebbian learning (NG+CHL), 
growing neural gas (GNG) and incremental 
DBSCAN (IDBSCAN). Unlike Van Laerhoven we 
rate NG+CHL and GNG as topology preserving [12]. 

The complexity necessary for this step mostly 
depends on the quality of the classification step. If 
classes are long-term stable, i.e. previously learned 
classed are not overwritten by different new ones, 
then a simple 1-to-1 mapping of classes to labels 
might be enough. However, if the used classification 
algorithm overwrites older classes in order to learn 
new context, then the degrees of membership of all 
classes will need to mapped to labels. In [21], a 
simple K-Means clustering algorithm is used as a 
second step after clustering. For each class, 
represented by a winner neuron of the Kohonen SOM 
clustering, K-Means is applied to the input vectors of 
the SOM (which correspond to feature vectors in our 
architecture) to avoid overwriting of labels. This 
added complexity is necessary because of the 
shortcomings of the SOM, and one of the reasons for 
selecting GNG for our first experiments. 

 

 

Fig. 4 GUI prototype: Allowing the user to assign descriptive 
labels 

 

Fig. 5 GUI prototype: non-obtrusive display of current context 

The first implementation is based on a direct 1-
to-1 mapping and provides the user a non-obtrusive 
way to assign a label to a class. The prototype 
labelling application is currently realized 
independently from the framework to permit 
autonomous development and testing. The 
communication between the labelling application and 
the classification framework occurs via a simple 
SOAP protocol (a DCOM interface on windows is 
also available), not being restricted to a single 
platform. Fig. 4 shows the dialog used to assign 
labels to the classes found by the classification 
algorithm, Fig. 5 shows how the application signals 
the user the currently active context. It is also 
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possible to view the context history to assist the 
labelling of new contexts. 

It is still an open issue if the classification 
quality will facilitate the use of a simple 1-to-1 
mapping or if a more complex n-to-1 mapping from 
the whole class vector to labels will perform better. 
When an appropriate solution has been found for a 
wide range of application areas, the labeling will be 
incorporated directly into the framework. Thus, the 
labeling application will only be responsible for the 
naming of recognized contexts, but not for storing the 
associations or the context history. 

4.5 Prediction 

Prediction is the main novelty in our 
architecture and the focus of our current research. As 
prediction should again be performed without user 
interaction, it is not necessary to work with labeled 
context. Instead, the prediction step in our 
architecture builds upon the class vector generated by 
the classification step. This allows to predict more 
than a single future “best matching” context by 
exploiting the class degrees of membership (which 
would be impossible if the prediction would take the 
single “best matching”, labeled context as input). 

The aim is to generate class vectors for future 
points in time, which have the same meaning as the 
current class vector provided by the classification 
step. This allows to feed the predicted class vectors 
into the labeling step to provide predicted context 
labels for use in proactive applications (cf. Fig. 1). 
Before going into more detail, it is generally good to 
first analyze the requirements for a prediction 
algorithm in this sense. 
• Unsupervised model estimation: Model 

topology and parameters need to be estimated 
automatically without user interaction or 
explicit definition of input/output behavior. 

• On-line learning: For embedded devices in real-
world scenarios, it is infeasible to switch 
between artificially separated training and 
prediction phases or even to store enough 
history for a batch training. Therefore, the 
algorithm has to continuously adapt its 
parameters during normal operation, 
incorporating new class vectors as soon as they 
arrive.  

• An exception to this is to store only the recent 
history in detail, which could be used to 
optimize 

• and/or evaluate the quality of the predictions 
(by splitting the history in a training and a test 
set). 

• Incremental model growing: When new classes 
are detected in the classification step during 

run-time, new dimensions will be added to class 
vectors. The prediction algorithm must be able 
to incrementally increase its internal model 
topology without requiring a complete 
retraining, e.g. by initializing new dimensions 
with default values. It is currently unclear if 
shrinking of class vectors during run-time is 
also necessary or if “dead classes” could simply 
receive a minimum probability. 

• Confidence estimation: The algorithm should be 
able to compute an estimation of the correctness 
of the forecasted context along with the forecast 
itself. This estimation can be used by the 
application as a confidence measure to 
determine if the prediction should be relied on 
for certain actions. 

• Automatic feedback: The prediction engine 
should continuously estimate the next class 
vectors and evaluate its estimations by 
comparing with the real class vectors when they 
are available. 

• Manual feedback: If some action that has been 
carried out automatically due to a forecast is 
reverted/canceled by the user, this forecast 
should receive a penalty to make it less likely 
the next time (this is known as reinforcement 
learning in machine learning) . 

• Long-term vs. short-term: The used method 
should ideally be suitable (e.g. parameterizable) 
for different forecasting horizons, i.e. predicting 
context in the near future with high confidence, 
but also being able to predict later context, most 
probably with lower confidence. 

We have currently not selected a specific 
algorithm for the prediction step because our 
architecture is open for arbitrary algorithms that can 
be adapted to suit our interface. However, after first 
research on possible candidates, Markov predictors  
seem to be generally suited well. Active LeZi [14] 
has already been implemented as predictor plug-in 
within the framework and is currently used for initial 
experiments on real-world data. Although prediction 
accuracy on simple artificial data sets looks 
promising, the results with real-world data suggest 
further research. Another special form of Markov 
predictors, the Variable Duration Hidden Markov 
Models (VDHMM) also seem to be applicable for 
predicting context trajectories. They explicitly model 
the duration distributions and are thus capable of 
predicting for different forecasting horizons and, as 
for nearly all variants of HMMs, there exist mature 
methods for learning model parameters. It might be 
necessary to use multiple different predictor plug-ins 
concurrently and fuse their results to generate a 



 
 

 

  

reasonable forecast of the context trajectory. A single 
prediction method is usually unable to respect trends 
and periodic patterns in the context history as well as 
performing sequential Prediction by Partial Match 
(PPM). For combining the results of different 
predictors, it is important that a confidence 
estimation is generated by the method. 

5. Implementation 

The described architecture has been 
implemented in form of a cross-platform framework 
which is freely available under an open source 
license. Interfaces provided by the framework are 
implemented by adhering to standardised protocols 
like SOAP and DCOM to guarantee most flexibility 
when developing context aware third party 
applications.  

Currently it runs under Windows 2000 or XP, 
Linux on IA32 and ARM processor platforms, 
Windows CE 3.0 and, with restrictions, under 
Symbian OS 7.0. 

6. Experiments and Evaluation 

We have evaluated our framework for context 
recognition and prediction on two real-world data 
sets. The first data set has been gathered over 3 
weeks on one of the servers for our smart room and 
includes the list and number of Bluetooth devices in 
the room and the list and number of Wireless LAN 
clients in the room. For the second data set, a broader 
range of sensors has been used. On a standard 
notebook computer, which is used for daily work, the 
following features were recorded over a period of 
about 2 months with over 100000 samples: weekday, 
active window (i.e. active application), mean 
environmental loudness, plugged into charger, 
WLAN ESSID, WLAN mode, WLAN signal level, 
WLAN access point MAC address, Bluetooth peers 
in range, number of Bluetooth peers in range and the 
GSM cell ID of the mobile phone (which was 
connected via Bluetooth). Fig. 6 shows the trajectory 
of 6 out of these 11 feature values over the whole 
recording period – the other features are not shown 
because they either yield non-atomic values or do not 
contribute significantly to context recognition. 

Fig. 6 Feature value trajectories of the complete data set 
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In Fig. 7, a part of the data set over roughly 2 
weeks is shown in more detail. The first 6 plots 
depict the feature values, while the last one shows the 
respective context ID with highest activation after the 
classification step. As can be seen, the classification 
algorithm selected 3 different contexts during this 
time frame. 

7. Conclusions and Future Work 

We have presented an architecture to recognize 
and predict user context by utilizing multiple 
heterogeneous sensors. This architecture consists of 
four steps: feature extraction (to generate a more 
relevant representation of sensor data, exploiting 
domain-specific knowledge), classification (to find 
similarities and common patterns in the input data), 
labeling (to assign simple context names to 
recognized classes) and prediction (to forecast future 
user context based on past behaviors). The novelties 
in this approach are the prediction of possible user 
actions via context forecast and the abstraction of 

feature types to allow heterogeneous features to be 
combined in a single classification step. To 
accomplish this, all feature types independently 
define the operations necessary for classification. 

We have already implemented feature extraction 
for various sensors available on typical information 
appliances, including microphone, Bluetooth, 
Wireless LAN and additional, external sensors like a 
mobile phone accessible via Bluetooth. A next step in 
research will include gathering real-world data in an 
empirical study and evaluating classification and 
prediction algorithms based on this data. 

Proactivity in applications can support users by 
allowing information appliances to adapt to the user 
instead of forcing the user to learn specifics of the 
interface. When equipped with multiple sensors and 
using those sensors to detect and predict context, an 
information appliance can become smarter and more 
intuitive to use, fostering a wider acceptance of 
information appliances in everyday life. 

Fig. 7 Recognized context identifiers 
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