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Abstract. It has been proved that for certain peculiar decom-

position spaces Y of euclidean 3-space E?, YXE1 is homeomorphic

to euclidean 4-space, El. In this paper we prove that if a decompo-

sition space Y of E? is generated by a trivial defining sequence

whose elements are cubes with handles, and this sequence can be

replaced by a toroidal defining sequence, then YXE1 is homeo-

morphic to E*.

For each natural number *, let Ai be a disjoint, locally finite set

of cubes with handles imbedded in E3; let A* = U {a|a£^4,}. The

components of X = f)A* are the nondegenerate elements of an upper

semicontinuous decomposition G = G({Ai}) of E3 and {Ai\ will be

called a defining sequence for G. If G({Bi}) —G({Ai}) we shall say

\Ai] can be replaced by {-S,-}. In [l] the authors conjectured that

if the defining sequence {Ai} is trivial, then E3/G is a factor of E4.

Theorem 2 below is a partial solution to that conjecture.

If each Ai is a set of solid tori, then we say {A,} is toroidal. It is

our contention that if the defining sequence {Ai} is trivial and can

be replaced by a toroidal defining sequence {5,}, then E3/G is a

factor of E4. The main distinction to be made here is that {5,} need

not be trivial. For related results see [2], [3], and [4].

A close examination of the proof of Theorem 2 of [l] will show

that the requirement that {-4;} be trivial, i.e., that each inclusion

j'.Ai+iCZAi be null homotopic could be replaced by the requirement

that for each i, j:XÇ_At be null homotopic. This is stated in the

following theorem.

Theorem 1. If {Ai} is a toroidal defining sequence for G, and for

each i, the inclusion j:XC^4i is null homotopic, then E3/G is a factor

ofE4.

It is easy to show that if a trivial defining sequence {Ai} can be

replaced by {-B,}> then for each *', the inclusion j'.XQB* is null

homotopic. This can be seen by observing that if TEBi, then

Tf~\XC. Int (T), TC\X is compact, and thus for some k there exists

a finite set {Si, • • • , Sm}(ZAk such that THiXC.VSi<ZT. Then
since X is null homotopic in At and the Si are components of At,
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TC\X is null homotopic in USj and hence in T. We therefore obtain

the main result.

Theorem 2. If {A{} is a trivial defining sequence for G and {Ai}

can be replaced by a toroidal defining sequence, then E3/G is a factor

Figure

If G is the decomposition generated by 2-holed solid tori, as in

the Figure, it can easily be seen that by filling in the holes of T\ with

3-cells, a solid torus containing T\ but contained in T can be con-

structed. Then the original defining sequence can be replaced by a

toroidal defining sequence which is not trivial. Nevertheless, by

Theorem 2, Ez/G is a factor of Ei.
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