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Abstract

A circulant graph G of order n is a Cayley graph over the cyclic group Zn.
Equivalently, G is circulant iff its vertices can be ordered such that the cor-
responding adjacency matrix becomes a circulant matrix. To each circulant
graph we may associate a coherent configuration A and, in particular, a Schur
ring S isomorphic to A. A can be associated without knowing G to be circu-
lant. If n is prime, then by investigating the structure of A either we are able
to find an appropriate ordering of the vertices proving that G is circulant or
we are able to prove that a certain necessary condition for G being circulant
is violated. The algorithm we propose in this paper is a recognition algorithm
for cyclic association schemes. It runs in time polynomial in n.
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1 Introduction

The graphs considered in this paper are of the form (X, γ), where X is a finite set
and γ is a binary relation on X which is not necessarily symmetric.

Let G be a group and G = (X, γ) a graph with vertex set X = G and with adjacency
relation γ defined with the aid of some subset C ⊂ G by

γ = {(g, h) : g, h ∈ G ∧ gh−1 ∈ C}.

Then G is called Cayley graph over the group G.

Let Zn, n ∈ N, stand for a cyclic group of order n written additively. A circulant
graph G over Zn is a Cayley graph over this group. In this particular case, the
adjacency relation γ has the form

γ =
n−1⋃
i=0

{i} × {i+ γ(0)}

where γ(0) is the set of successors of the vertex 0. Evidently, the set of successors
γ(i) of an arbitrary vertex i satisfies γ(i) = i+ γ(0).

The set γ(0) is called the connection set of the circulant graph G. G is a simple
undirected graph if 0 6∈ γ(0) and j ∈ γ(0) implies −j ∈ γ(0).

There are different equivalent characterizations of circulant graphs. One of them is
this: A graph G is a circulant graph iff its vertex set can be numbered in such a
way that the resulting adjacency matrix A(G) is a circulant matrix. We call such
a numbering a Cayley numbering. Still another characterization is: G is a circulant
graph iff a cyclic permutation of its vertices exists which is an automorphism of G.

Cayley graphs, and in particular, circulant graphs have been studied intensively in
the literature. These graphs are easily seen to be vertex transitive. In the case of a
prime vertex number n circulant graphs are known to be the only vertex transitive
graphs. Because of their high symmetry, Cayley graphs are ideal models for commu-
nication networks. Routing and weight balancing is easily done on such graphs.

Assume that a graph G on the set V (G) = {0, . . . , n− 1} is given by its diagram or
by its adjacency matrix, or by some other data structure commonly used in dealing
with graphs. How can we decide whether G is a Cayley graph or not? In such a
generality, this decision problem seems to be far from beeing tractable efficiently. A
recognition algorithm for Cayley graphs would have to involve implicitly checking
all finite groups of order n. In the special case of circulant graphs, or in any other
case where the group G is given, we could recognize Cayley graphs by checking all
different numberings of the vertex set and comparing the corresponding adjacency
matrix with the group table of G. This ad hoc procedure is of course not efficient.
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To our knowledge the first result towards recognizing circulant graphs can be found
in [Pon92] where circulant tournaments have been considered. In the present paper
we shall settle the case of a prime number n of vertices, i.e. we shall propose a
still somewhat complicated, but nevertheless time-polynomial, method for recogniz-
ing arbitrary circulant graphs of prime order. Our method is based on the notions
of coherent configurations ([Hig70]), the Bose-Mesner algebra of which is a coherent
algebra ([Hig87]) (also called cellular algebra, [Wei76]), and Schur rings generated by
G and on the interrelations between these notions when G possesses a cyclic automor-
phism. Since the coherent configuration generated by G has the same automorphism
group as G, our method can be introduced as a method for recognizing coherent
configurations having a full cyclic automorphism. The properties of coherent con-
figurations and Schur rings we have to use in the construction of the recognition
algorithm are presented basically in earlier papers of the first author or can be found
in the literature. They have been exploited in joint work with the second author for
the purpose of this paper.

In order to make this paper self-contained and readable not only for insiders in the
theory of coherent configurations we start with a small collection of the basic notions
in this theory. This is done in Section 2. In Section 3 we relate cyclic configura-
tions to the corresponding Schur rings and list up the basic facts of these algebraic
structures which are used in the remaining sections. In Section 4 the recognition
algorithm for cyclic configurations of prime order is discussed. In Section 5 we give a
more formal description of our algorithm and a rough estimation of its time complex-
ity. We end up with some examples in order to demonstrate how our algorithm works.

2 Coherent configurations.

Let X be a finite set. We use small Greek letters for binary relations on X and capital
Greek letters for sets of such relations. A set Γ of binary relations on X is called a
coherent configuration [Hig87] if it satisfies the following axioms:

• (CC1) There exists a subset Π ⊂ Γ such that the identical relation εX =
{(x, x) | x ∈ X} is a union of π ∈ Π, εX =

⋃
π∈Π π.

• (CC2) The relations from Γ form a partition of X2;

• (CC3) ∀γ ∈ Γ, γt = {(x, y) | (y, x) ∈ γ} ∈ Γ;

• (CC4) For each triple α, β, γ ∈ Γ and a pair (x, y) ∈ γ the number

pγα,β = |{z ∈ X | (x, z) ∈ α, (z, y) ∈ β}|

does not depend on the choice of the pair (x, y) ∈ γ.
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The elements of Γ are called basic relations and their graphs are called basic graphs
of (X; Γ).

For arbitrary two relations γ, ρ ∈ Γ we define the product γρ by

γρ = {(x, y) | ∃z : (x, z) ∈ γ ∧ (z, y) ∈ ρ}.

We shall write γ2 for γγ.

For any relation γ ∈ Γ and a point x ∈ X we set

γ(x) = {y ∈ X | (x, y) ∈ γ}.

For Π ⊂ Γ, let Π(x) =
⋃
π∈Π π(x).

A coherent configuration (X; Γ) is called homogeneous if

• (CC5) ∀γ∈Γ∀x,y∈X(|γ(x)| = |γ(y)|).

In the case of (X; Γ) being homogeneous we write Γ∗ for Γ \ {εX}.

An adjacency matrix A(γ), γ ∈ Γ, is an X × X matrix whose (x, y)-entry is 1 if
(x, y) ∈ γ and 0 otherwise. Suppose that Γ = {γ0, γ1, . . . , γt} with γ0 = εX . The
matrix

Adj((X; Γ)) =
t∑
i=0

i ·A(γi)

is called the adjacency matrix of (X; Γ).

The complex vector subspace of MX(C) spanned by the adjacency matrices A(γ), γ ∈
Γ, is a complex matrix algebra of dimension |Γ| which is known as the Bose-Mesner
algebra of (X; Γ). The automorphism group Aut(X; Γ) is a subgroup of the symmetric
group Sym(X) defined as follows

Aut(X; Γ) = {g ∈ Sym(X) | ∀γ∈Γ(γg = γ) }.

We set Rel(Γ) = {
⋃
γ∈Π γ | Π ⊂ Γ}. In other words, Rel(Γ) is the set of all binary

relations that may be obtained as unions of those belonging to Γ. We say that a
coherent configuration (X; Π) is a fusion of a coherent configuration (X; Γ) (and
(X; Γ) is called a fission of (X; Π)) if Rel(Π) ⊂ Rel(Γ) (see [BaI84]). The relation
Rel(Π) ⊂ Rel(Γ) is a partial ordering on the set of all coherent configurations defined
on X.

An equivalence relation τ ⊂ X2 is said to be non-trivial if the number of equiva-
lence classes is strictly greater than 1 and less than |X|. A homogeneous coherent
configuration (X; Γ) is called imprimitive if Rel(Γ) contains a non-trivial equivalence
relation. If Rel(Γ) does not contain such a relation, then (X; Γ) is said to be primitive.
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If Φ is any set of binary relations defined on X, then by (X; 〈Φ〉) we denote the
minimal coherent configuration (X; Γ) satisfying the property: Φ ∈ Rel(Γ). Such a
configuration is unique and may be found by the Weisfeiler-Leman algorithm in time
O(|X|3 log(|X|)) (see [BBLT97]). A version of this algorithm with much higher time-
complexity, but nevertheless very efficient in the range up to n = 1000, is presented
in [BCKP97].

For any Y ⊂ X and γ ∈ Γ we define ΓY = {γ ∩ (Y × Y ) | γ ∈ Γ}. Given a point
x ∈ X and γ ∈ Γ, one can consider the coherent configuration (γ(x); 〈Γγ(x)〉). In what
follows we shall denote this configuration as (γ(x); Γγ(x)).

We say that a coherent configuration (X; Γ) is cyclic if its automorphism group con-
tains a full cycle, i.e., a permutation of the form g = (x1, ..., xn), where n = |X|.
The cyclic group Cn generated by g acts transitively on X. Therefore, Aut(X; Γ) is
a transitive permutation group and (X; Γ) is homogeneous.

Note that a graph G = (X, γ) is a circulant graph iff the coherent configuration
(X; 〈{γ}〉) is cyclic. Therefore, the main question considered in this paper can be
reformulated in the following way:

Find an algorithm with time-complexity polynomial in |X| that answers the question:
Is a given homogenous coherent configuration cyclic?

To create such an algorithm one has first to study the properties of cyclic coherent
configurations.

3 Properties of cyclic coherent configurations.

Let (X; Γ) be a cyclic coherent configuration and g ∈ Aut(X; Γ) be a full cycle. Fix
an arbitrary point x ∈ X and consider the mapping

logg,x : Γ→ 2Zn

defined as follows:
logg,x(γ) = {k ∈ Zn | (x, xg

k

) ∈ γ}.

Proposition 3.1 The mapping logg,x does not depend on the choice of the point
x ∈ X.

Proof. Take an arbitrary relation γ ∈ Γ and two points x, y ∈ X. Clearly, y = xg
l

for a suitable l ∈ Zn. By definition

k ∈ logg,x(γ)⇔ (x, xg
k

) ∈ γ
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Since g ∈ Aut(X; Γ),

(x, xg
k

) ∈ γ ⇔ (xg
l

, xg
k+l

) ∈ γ ⇔ (y, yg
k

) ∈ γ ⇔ k ∈ logg,y(γ)

finishing the proof. ♦

Thus we shall write logg(γ) instead of logg,x(γ). An easy check shows that logg(εX) =
{0}, where εX is the identical relation on X.

It should be mentioned that in general logg(γ) depends on the choice of the full cycle
g ∈ Aut(X; Γ).

Given a subset T ⊂ Zn, we define a binary relation expg(T ) as follows:

expg(T ) = {(z, zg
k

) | k ∈ T, z ∈ X}.

The following proposition is easy to check.

Proposition 3.2 (i) expg(logg(γ)) = γ, logg(expg(T )) = T ;

(ii) Let γ 6= σ ∈ Γ be two arbitrary relations. Then logg(γ) ∩ logg(σ) = ∅;

(iii) For arbitrary γ ∈ Γ we have logg(γ
t) = −logg(γ);

(iv) If A(γ), γ ∈ Γ, is the adjacency matrix of γ ∈ Γ and Pg is the permutation
matrix of g, then A(γ) =

∑
k∈logg(γ) P

k
g ;

(v)
⋃
γ∈Γ logg(γ) = Zn;

(vi) γ ∈ Rel(Γ) is an equivalence relation if and only if logg(γ) is a subgroup of Zn.

The mapping logg assigns to a cyclic coherent configuration a certain partition of
Zn. To characterize all partitions obtainable in this way from coherent configurations
we need the notion of a Schur ring.

3.1 Schur rings.

Let H be a finite group written multiplicatively and with identity e. Let ZH be the
group algebra over the ring Z of integers. Given any subset T ⊂ H, we denote by T
the following element of ZH: T =

∑
t∈T t. According to [Wie64] we call such elements

simple quantities.

Definition.[Wie64] A Z-subalgebra S ⊂ ZH is called Schur ring (briefly S-ring) over
H if it satisfies the following conditions:

• (S1) There exists a basis of S consisting of simple quantities T 0, T 1, ..., T r;
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• (S2) T0 = {e} and ∪ri=0Ti = H;

• (S3) Ti ∩ Tj = ∅ if i 6= j;

• (S4) For each i ∈ {0, 1, ..., r} there exists i′ ∈ {0, 1, ..., r} such that Ti′ =
{t−1|t ∈ Ti}.

The basis T 0, ..., T r is called the standard basis and the simple quantities T i (resp. the
sets Ti) are called basic quantities (resp. basic sets) of S. The notation S = 〈T 0, ..., T r〉
means that T 0, ..., T r is the standard basis of S. We say that a subset R ⊂ Zn belongs
to an S-ring S if R ∈ S. It is clear that an S-ring S is closed under all set-theoretical
operations over the subsets belonging to S. An S-ring S ′ over the group H is an
S-subring of an S-ring S defined over the same group H if S ′ ⊂ S.

The connection between Schur rings and cyclic coherent configurations is given by
the following statement.

Lemma 3.3 Let g ∈ Sym(X) be an arbitrary full cycle and (X; Γ) be a g-invariant
coherent configuration. Then the map Γ 7→ logg(Γ) is a bijection between g-invariant
coherent configurations and Schur rings over Zn. Moreover, the map A(γ) 7→ logg(γ)
defines an isomorphism between the Bose-Mesner algebra of (X; Γ) and the Schur
ring 〈logg(γ)〉γ∈Γ.

Proof.
It follows from Proposition 3.2 that the sets logg(γ) form a partition of Zn. Thus we
have to check that the Z-module sp{logg(γ)}γ∈Γ is closed with respect to the group

algebra multiplication.

Let α, β, γ ∈ Γ be an arbitrary triple of basic relations. Take an arbitrary k ∈ logg(γ).
To each pair u ∈ logg(α), v ∈ logg(β) that satisfies u+v = k one can associate a triple

of points x, xg
u
, xg

k
. Clearly (x, xg

u
) ∈ α, (xg

u
, xg

k
) ∈ β and (x, xg

k
) ∈ γ. Thus the

number of solutions of the equation u+v = k where u ∈ logg(α), v ∈ logg(β) does not
depend on the choice of k ∈ logg(γ) and is equal to pγα,β. Therefore, sp{logg(γ)}γ∈Γ

is closed with respect to the group algebra multiplication and its structure constants
coincide with those of the Bose-Mesner algebra of Γ. Hence

A(γ) 7→ logg(γ)

induces an isomorphism between the algebras. ♦

As a first consequence of this claim we obtain the following property of cyclic coherent
configurations.

Proposition 3.4 If (X; Γ) is a cyclic coherent configuration, then its Bose-Mesner
algebra is commutative.
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A coherent configuration the Bose-Mesner algebra of which is commutative is known
as association scheme [BaI84]. For this reason we shall call a cyclic coherent config-
uration a cyclic association scheme.

Proposition 3.5 Let (X; Γ) be a non-trivial cyclic association scheme and let g ∈
Aut(Γ) be a full cycle. Then the following statements hold:

(i) (X; Γ) is primitive iff |X| is prime.

(ii) Assume that (X; Γ) is imprimitive and let π ∈ Rel(Γ) be a non-trivial equiva-
lence relation. Then each equivalence class π(x), x ∈ X is an orbit of a subgroup
〈gn/d〉 where d = |π(x)|.

(iii) If (X; Γ) is an imprimitive cyclic scheme, then it has a unique non-trivial equiv-
alence relation τ ∈ Rel(Γ) with a maximal number of classes.

Proof. (i) follows from Theorem 25.3 of [Wie64]. (ii) π is an equivalence relation
invariant under Aut(X; Γ). Therefore, π is invariant under the action of Cn = 〈g〉
which acts regularly on X. Now the claim becomes evident. Part (iii) is a direct
consequence of the previous part. ♦

3.2 Cyclic association schemes of prime degree.

In this subsection we assume that |X| = p, where p is a prime. The structure of
all cyclic schemes of prime degree is well-known since 1978 (see [KliP78]). To de-
scribe it we identify X with a finite field Fp. We also assume that the full cycle
g = (0, 1, ..., p− 1) is an automorphism of our scheme. Clearly, xg = x+ 1, x ∈ Fp.

Fix an arbitrary subgroup M ≤ F∗p, |M | = d. Then F∗p is a union of M-cosets:

F∗p = Mt1 ∪ ... ∪Mtr, t1 = 1, r = (p− 1)/d.

For each Mti we set γi = {(x, y) | x− y ∈Mti}.

Theorem 3.1

(i) The set ΓM = {εX , γ1, ..., γr} of binary relations forms a cyclic association
scheme on Fp, g ∈ Aut(Fp; ΓM).

(ii) Aut(Fp; ΓM) = Aff(M,Fp), where Aff(M,Fp) is the group of all permutations
of the form f(x) = mx+ a,m ∈M,a ∈ Fp.

(iii) Every cyclic association scheme (Fp; Γ) with g ∈ Aut(Fp; Γ) coincides with
(Fp; ΓM) for a suitable M ≤ F∗p.

(iv) The graphs (Fp, γi), i = 1, ..., r are pairwise isomorphic.
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(v) The graph (Fp, γ1) is symmetric if and only if |M | is even.

(vi) (Fp; ΓM) is a fusion scheme of (Fp; ΓM ′) if and only if M ′ ≤M.

Proof.
(i) ΓM is the set of 2-orbits (= orbitals) of Aff(M,Fp).
(ii) See [McC63], [FarIK92].
(iii) This follows from the classifications of S-rings over Fp, see [FarIK92].
(iv) - (vi) These statements are trivial conclusions from (i) - (iii). ♦

The claim below contains the main properties of the association schemes (Fp; ΓM), M ≤
F∗p.

Lemma 3.6 Assume M ≤ F∗p, 1 < |M | < p− 1. For any x ∈ Fp and γ ∈ Γ∗M

(i) all coherent configurations (γ(x); (ΓM)γ(x)) are pairwise isomorphic and

(ii) if |M | > 2, then (γ(x); (ΓM)γ(x)) is a non-trivial cyclic association scheme.

Proof.
(i) Since Aut(Fp; ΓM) is transitive, (γ(x); (ΓM)γ(x)) and (γ(y); (ΓM)γ(y)) are isomor-
phic for any pair x, y ∈ Fp. Thus we have to show that

(γ1(0); (ΓM)γ1(0)) ∼= (γi(0); (ΓM)γi(0))

for each i = 1, ..., r. Take the permutation x→ xti. A direct check shows that γti1 = γi
and ∀γj∈Γ(γtij ∈ Γ). Therefore, (γ1(0); (ΓM)γ1(0))ti = (γi(0); (ΓM)γi(0)), as desired.

(ii) It is enough to prove this part only for γ = γ1 and x = 0. In this case γ1(0) = M
and (γ1(0); (ΓM)γ1(0)) = (M ; (ΓM)M). Let us write Γ0

M instead of (ΓM)M .

The point stabilizer (Aut(Fp; ΓM))0 is a subgroup of Aut(M ; Γ0
M ). It consists of all

permutations of the form x → mx,m ∈ M. Since (Aut(Fp; ΓM))0 acts regularly on
M, Aut(M ; Γ0

M ) contains a regular subgroup isomorphic to M. Since M is cyclic,
(M ; Γ0

M ) is a cyclic association scheme.

To finish the proof we have to show that (M ; Γ0
M) is non-trivial. Assume the contrary,

i.e., assume that (M ; Γ0
M) has only two basic relations: εM and M2 \εM . Take γi ∈ Γ∗

such that γi ∩M2 \ εM 6= ∅. Then, γi ∩M2 = M2 \ εM .

Take an arbitrary point m ∈M = γ1(0). Then (0,m) ∈ γ1. For each m′ ∈ γ1(0) such
that m′ 6= m we have that (0,m′) ∈ γ1 and (m′,m) ∈ γi. Therefore,

pγ1
γ1,γi

= |M | − 1.
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Since γi is of degree |M |, for each m ∈ M there is a zm 6∈ M such that γi(m) =
M \{m}∪{zm}. Fix m ∈M. From pγ1

γ1,γi
= |M |−1 it follows that for every a ∈ γt1(m)

there is a ya ∈ M \ {m} such that γ1(a) = M \ {ya} ∪ {zm}. Moreover, ya 6= ya′ for
a 6= a′ (for otherwise Fp would have a non-trivial subgroup). This implies that every
two elements m,m′ ∈M have exactly |M | − 1 joint predecessors with respect to γ1.

From this it follows
pγiγt1,γ1

= |M | − 1,

and

A(γt1)A(γ1) = |M |IX + (|M | − 1)A(γi) (1)

where IX is the unit matrix. Now the proof is completed by applying Theorem
2.3.10(i) from [FarKM94]. According to this theorem we have

|M | − 1 ≤
|M |

2

which is true only for |M | ≤ 2, a contradiction to our hypothesis.

4 How to recognize cyclic coherent configurations.

Let (X; Γ) be a homogeneous coherent configuration with |X| = p, p a prime. We
shall present a method for finding a full cyclic automorphism of (X; Γ), provided this
configuration is cyclic.

We set r := |Γ| − 1. If some relations have different valencies, then (X; Γ) is not
cyclic. Thus we may assume that |γ(x)| = d, d = (p − 1)/r for all γ ∈ Γ. The case
d = 1 is trivial. In this case each basic graph (X, γi) is a full cycle which defines a
full cyclic automorphism. Hence, assume 1 < d < p−1. There are two possible cases:
d is composite and d is prime.

4.1 Case of d being composite.

If (X; Γ) is a cyclic scheme corresponding to a subgroup M ≤ F∗p, then it is a fusion of
a cyclic scheme (X; Γ′) corresponding to some proper subgroup M ′ ≤M, 1 < |M ′| <
|M | which exists, since |M | is not prime.

The main idea is to build the fission (see [BaS93]) scheme (X; Γ′) by purely combi-
natorial methods and to apply the algorithm to a new scheme.

Step 1.
For each point x ∈ X and each γ ∈ Γ∗ we compute, using the WL-algorithm,
(γ(x); Γγ(x)). If (γ(x); Γγ(x)) is not homogeneous, then the initial scheme is not cyclic.
Thus we may assume that (γ(x); Γγ(x)) is homogeneous for all x ∈ X.
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If (X; Γ) is cyclic, then, by Lemma 3.6, (γ(x); Γγ(x)) is a non-trivial cyclic scheme.
Since |M | is composite, (γ(x); Γγ(x)) is imprimitive and, therefore, there exists a
unique equivalence relation τx,γ ∈ Rel(Γγ(x)) with a maximal number of classes
(Proposition 3.5(ii)). The schemes (γ(x); Γγ(x)), x ∈ X, γ ∈ Γ∗ should be pairwise
isomorphic. Therefore, the number of classes of τx,γ should not depend on the choice
of x ∈ X, γ ∈ Γ∗.

Step 2.
For each x ∈ X and γ ∈ Γ∗ we find a nontrivial equivalence relation τx,γ ∈ Rel(Γγ(x))
with a maximal number of classes. If for some pair x, γ the scheme (γ(x); Γγ(x)) has
more than one such equivalence relation, then the initial scheme is not cyclic. If
there are two pairs (x, γ) 6= (x′, γ′) such that τx,γ and τx′,γ′ have different number of
classes, then (X; Γ) is not cyclic. So we may assume that τx,γ always has s classes of
cardinality d′, sd′ = d. Since τx,γ should be non-trivial, 1 < d′ < d.

Every τx,γ is an equivalence relation on γ(x). For each x ∈ X we define an equivalence
relation of X by setting

τx =
⋃
γ∈Γ∗

τx,γ ∪ {(x, x)}. (2)

It follows from the definition that each equivalence class of τx distinct from {x}
contains exactly d′ elements.

Proposition 4.1 Assume (X; Γ) ∼= (Fp; ΓM), |M | = d. Let M ′ < M be the unique
subgroup of order d′. Then for each x ∈ Fp the equivalence relation τx has the following
form:

τx =
⋃

γ′∈ΓM′

(γ′(x)× γ′(x)).

Proof. Since Aut(Fp; ΓM) is transitive, we may assume x = 0. Let (y, z) ∈ τ0 be an
arbitrary pair. Since the case y = z = 0 is trivial, we may assume that y 6= 0 6= z.
By definition of τx, there exists γ ∈ ΓM such that y, z ∈ γ(0) and (y, z) ∈ τ0,γ .
(Aut(X; Γ))0 is a cyclic subgroup of Aut(γ(0); Γγ(0)) of order d. Its generator g is a
product g1 · ... · gr of r = (p − 1)/d disjoint cycles of the same length d. Thus γ(0)
is an orbit of a suitable group 〈gi〉. WLOG we may assume that γ(0) is an orbit of
〈g1〉. Thus g1 is a full cyclic automorphism of (γ(0); Γγ(0)). According to Proposition

3.5(ii) each equivalence class of τ0,γ is an orbit of 〈gd/d
′

1 〉. Hence the equivalence classes

of τ0,γ are the orbits of 〈gd/d
′

1 〉, and, therefore, they are orbits of 〈gd/d
′
〉. Thus, each

equivalence class of τ0 is an orbit of 〈gd/d
′
〉. Since gd/d

′
is of order d′, it generates M ′.

But the orbits of M ′ on Fp are exactly the sets γ′(0), γ′ ∈ ΓM ′. ♦

Our next step is to show that the set {τx}x∈X defines the association scheme (Fp; ΓM ′)
uniquely.
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Lemma 4.2 Let (X; Ψ) be a primitive association scheme. Assume that all nontriv-
ial valencies of Ψ are strictly greater than 1.1 For each x ∈ X we define an equivalence
relation τx as follows

τx =
⋃
γ∈Ψ∗

(γ(x)× γ(x)).

Let Φ be a graph with node set X2 \ εX and with two nodes (x, y), (z, w) ∈ X2 \ εX
connected by an edge iff either x = z ∧ (y, w) ∈ τx or y = w ∧ (x, z) ∈ τy. Then the
set of connected components of Φ coincides with the set of relations Ψ∗.

Proof. Let (x, y) and (z, w) be two nodes connected by an edge in Φ, If x = z,
then y, w ∈ γ(x) for some γ ∈ Ψ∗, or, equivalently, (x, y), (z, w) ∈ γ. If w = y,
then x, z ∈ β(y) for some β ∈ Ψ∗ implying (x, y), (z, w) ∈ βt. Thus, any two nodes
(x, y), (z, w) connected by an edge in Φ lie at the same relation γ ∈ Ψ∗. Therefore,
each relation from Ψ∗ is a union of connected components of Φ.

Take now (x, y), (x′, y′) ∈ γ ∈ Ψ∗ and show that there exists a path in Φ starting in
(x, y) and finishing at (x′, y′).

Since γ is non-trivial of valency greater than 1, γγt is a non-identical symmetric
relation. Therefore γγt is connected and there exists a path x = x1, ..., xm+1 = x′

with (xi, xi+1) ∈ γγt, i = 1, ...,m. Since (xi, xi+1) ∈ γγt, there exists zi ∈ X such that
(xi, zi) ∈ γ, (xi+1, zi) ∈ γ. But now we have the following path in Φ :

x = x1

6

γ

y

�
�
�
�7

γ

z1

S
S
S
So

γ

x2
�
�
�
�7

γ

z2

S
S
S
So

γ

x3
. . .

xm
�
�
�
�7

γ

zm

S
S
S
So

γ

xm+1 = x′

6

γ

y′

♦

Step 3.
For each x ∈ X we build an equivalence relation according to formula (2). After that
we find connected components of the graph (X2 \ εX ; Φ) defined in Lemma 4.2. If
these components don’t form an association scheme on X, then (X; Γ) is not cyclic.
Otherwise we obtain a new association scheme (X; Γ′). If there is a relation γ′ ∈ Γ′

whose valency is not equal to d′, then (X; Γ) is not cyclic.

Suppose that all non-trivial relations of Γ′ are of valency d′. If d′ is composite, then
we go to Step 1. If d′ is prime, then we apply another method which is described in
the next subsection.

4.2 Case of d being prime.

If d = 2, then the graph of every γ ∈ Γ∗ should be a non-oriented p-cycle. So, if
some of these graphs has not this property, then the scheme is not cyclic. If all the

1A primitive association scheme that contains a basic relation of valency 1 is isomorphic to the
full cyclic scheme on a prime number of points.
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basic graphs are non-oriented cycles, then by orienting one of them we obtain the
automorphism we searched for. Thus we may assume that d is odd. In this case, by
Theorem 3.1(v), γ 6= γt for all γ ∈ Γ∗.

Proposition 4.3 Let M ≤ F∗p be a subgroup of odd order. Then for each a ∈ Fp

the mapping ia defined by xia = 2a− x, x ∈ Fp is the only involution from Sym(Fp)
satisfying

(i) aia = a;

(ii) ∀γ∈Γ(γia = γt);

Proof. By direct check we can see that ia really satisfies (i) and (ii). Let now
j ∈ S(Fp) be an involution that satisfies (i) and (ii). Then iaj is an automorphism of
(Fp; ΓM). Therefore, iaj ∈ Aff(M,Fp), implying j ∈ Aff(F∗p,Fp). That means there
exist b, c ∈ Fp, b 6= 0 such that xj = bx+ c, x ∈ Fp. Since j is an involution that fixes
a, we find b = −1, c = 2a. ♦

The main idea of the algorithm is to reconstruct the involution ia, a ∈ X by purely
combinatorial methods. After that we multiply ia with ib for some b 6= a. If the
product is a full cycle that belongs to Aut(X; Γ), then we are done. Otherwise (X; Γ)
is not a cyclic scheme.

Let now d be an odd prime and (X; Γ) be a homogeneous coherent configuration,
with |γ(x)| = d for all γ ∈ Γ∗ and x ∈ X. Since the order and the valency of each
γ ∈ Γ are odd, Γ does not contain symmetric relations. So γ 6= γt for all γ ∈ Γ∗. Fix
an arbitrary point a ∈ X and set γ(a) = γ(a) ∪ γt(a). For each β ∈ Γ∗ we define the
binary relation β̂ ⊂ (γ(a))2 as follows

β̂ = β ∩ (γ(a)× γt(a)).

By Φ(a, γ) we denote the following set of binary relations on γ(a) :

Φ(a, γ) = {εγ(a), (γ(a))2 ∪ (γt(a))2} ∪ {β̂ ∪ (β̂)t}β∈Γ∗.

Proposition 4.4 If (X; Γ) ∼= (Fp; ΓM), |M | = d, d is odd, then the coherent config-
uration (γ(a); 〈Φ(a, γ)〉) is cyclic.

Proof. The stabilizer Ga := (Aut(Fp; ΓM))a consists of all permutations of the form
x 7→ m(x − a) + a,m ∈ M, and, therefore is a cyclic group of odd order d. Since
ia centralizes Ga, the group 〈Ga, ia〉 is cyclic of order 2d. Note that, if m̄ ∈ M is a
generator of M , then the mapping x→ −m̄(x−a) + a is a generator of 〈Ga, ia〉. The
orbits on Fp \ {a} of this group coincides with the sets γ(a), γ ∈ Γ∗.

We claim that every relation from Φ(a, γ) is invariant under the group 〈Ga, ia〉. In-
deed, the invariance under Ga follows immediately from the definition of the set
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Φ(a, γ).

Since γ(a) is ia-invariant, εiaγ(a) = εγ(a). By Proposition 4.3 γia = γt, therefore

((γ(a))2∪ (γt(a))2)ia = ((γ(a))2∪ (γt(a))2). All other relations from Φ(a, γ) are of the
form β̂ ∪ β̂t, where β̂ = β ∩ (γ(a)× γt(a)). Therefore

β̂ia = βia ∩ (γ(a)× γt(a))ia = βt ∩ (γt(a)× γ(a)) = (β̂)t,

implying that β̂ ∪ β̂t is ia-invariant.

Thus we have shown that all relations from Φ(a, γ) are invariant under the action of
the cyclic group 〈Ga, ia〉. Since the latter group acts transitively on the set γ(a), the
coherent configuration (γ(a); 〈Φ(a, γ)〉) is cyclic. ♦

The algorithm for the case of d being prime is based on the following claim.

Theorem 4.1 If (X; Γ) ∼= (Fp; ΓM), |M | = d, d an odd prime, then for any a ∈ Fp

and any γ ∈ Γ∗ the relation
πa,γ = ia ∩ (γ(a))2

(where ia is viewed as {(x, xia) | x ∈ Fp}) is the unique basic relation ρ of the coherent
configuration (γ(a); 〈Φ(a, γ)〉) that satisfies the equality ρ2 = εγ(a).

In order to prove this result we need two additional statements.

Proposition 4.5 Let (Fp; ΓM), M ≤ F∗p, |M | > 1 be a non-trivial cyclic association
scheme. Then for each point a ∈ Fp and any pair of non-trivial relations α, β ∈ ΓM
(α(a)× β(a)) 6⊂ γ for every γ ∈ ΓM .

Proof. Assume the contrary, i.e., (α(a)× β(a)) ⊂ γ for some a ∈ Fp and α, β, γ ∈
ΓM . Then pβα,γ = d, implying A(α)A(γ) = dA(β). According to Lemma 2.3.8 of
[FarKM94] the scheme (Fp; ΓM) should be imprimitive in this case, a contradiction.
♦

Proposition 4.5 follows also from a more general statement in [EvdP98], Lemma 5.8.

Proposition 4.6 Let S = 〈T 0, ..., T r〉 be an S-ring over Z2d with d an odd prime.
Let H = 2Z2d and assume that H ∈ S and Z2d \ H is not a basic set of S. Then
{d} ∈ S.

Proof. Let T be a basic set that contains the element d ∈ Z2d. Since d is odd we
have T \H 6= ∅. This implies T ∩H = ∅. Further, we have m ·d = d for each m ∈ Z∗2d.
Therefore mT ∩ T 6= ∅ for all m ∈ Z∗2d. By Theorem 23.9 of [Wie64], mT is a basic
set of S. Hence mT = T for every m ∈ Z∗2d. Note that Z2d \H = Z∗2d ∪{d}. It follows
that 1 ∈ T would imply T = Z2d\H, which contradicts our assumption. Thus, 1 6∈ T.
However, x ∈ T, x 6= d implies x ∈ Z∗2d, and therefore xl ∈ T for arbitrary l. This
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contradicts 1 6∈ T. Thus, T = {d}, as desired. ♦

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. According to Proposition 4.4, (γ(a); 〈Φ(a, γ)〉) is a cyclic
coherent configuration on 2d points. Let g be a generator of the cyclic group 〈Ga, ia〉
(here − means the restriction on the subset γ(a)) and let S = logg(〈Φ(a, γ)〉) be
the corresponding S-ring over Z2d. Since 〈Φ(a, γ)〉 contains the equivalence relation
(γ(a))2 ∪ (γt(a))2, the equivalence classes of which have size d, the subgroup 2Z2d of
Z2d is in S.

We claim that Z2d \ 2Z2d cannot be a basic set of S. Indeed, if Z2d \ 2Z2d is a basic
set of S, then

expg(Z2d \ 2Z2d) = (γ(a))2 \
(
(γ(a))2 ∪ (γt(a))2

)
= (γ(a)× γt(a)) ∪ (γt(a)× γ(a))

is a basic relation of 〈Φ(a, γ)〉. Take any pair (x, y) ∈ γ(a)×γt(a). Let α ∈ Γ∗M be the
basic relation that contains (x, y). Then (x, y) ∈ α ∩ (γ(a)× γt(a)) = α̂. But α̂ ∪ α̂t

is a union of basic relations from 〈Φ(a, γ)〉. Since (x, y) belongs to the basic relation
(γ(a)× γt(a)) ∪ (γt(a)× γ(a)), we have

(γ(a)× γt(a)) ∪ (γt(a)× γ(a)) ⊂ α̂ ∪ α̂t =(
α ∩ (γ(a)× γt(a))

)
∪
(
αt ∩ (γt(a)× γ(a))

)
.

The latter inclusion implies γ(a)× γt(a) ⊂ α contrary to Proposition 4.5.

Thus, we have shown that 2Z2d ∈ S and Z2d \ 2Z2d is not a basic set of S. By Propo-
sition 4.6 {d} is a basic set of S. Therefore {(x, xg

d
) | x ∈ γ(a)} is a basic relation

〈Φ(a, γ)〉. However, this set equals πa,γ . The remaining part of the proof follows from
the fact that {d} is the unique basic set T of S that satisfies T 2 = {0}. ♦

Now we can formulate how to proceed in the case of d being prime. First, for each
a ∈ X and γ ∈ Γ we use the WL-algorithm in order to find the set of basic relations of
the coherent configuration (γ(a); 〈Φ(a, γ)〉). If this configuration is not homogeneous,
then the scheme (X; Γ) is not cyclic.

If (γ(a); 〈Φ(a, γ)〉) is homogeneous, then we find all basic relations ρ ⊂ (γ(a))2 that
satisfies the equality ρ2 = εγ(a). If for some a ∈ X and γ ∈ Γ the number of such
relations is different from 1, then (X; Γ) is not cyclic.

Thus we may assume that for each a ∈ X and every γ ∈ Γ there exists a unique in-
volution ρa,γ(a) ∈ Sym(γ(a)) with ρa,γ(a) ∈ 〈Φ(a, γ)〉. Write Γ = {εX , γ1, γ

t
1, ..., γl, γ

t
l}.

For each point a ∈ X define ia ∈ Sym(X) as follows aia = a and bia = ρa,γj(a)(b), b 6= a
where γj is defined by the inclusion b ∈ (γj(a) ∩ γtj(a)). Now we take the product
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g = iaib for some a, b ∈ X, a 6= b. If g is a full cycle and is an automorphism of
(X; Γ), then we are done, otherwise (X; Γ) is not cyclic.

Note that in the case where d is prime the final step has to be performed only for
two different vertices a and b.

5 The algorithm.

In this section we first give a compact description of the recognition algorithm for
circulant graphs of prime order p which is based on the method developed in the last
section. Afterwards we shall estimate the time complexity of the algorithm.

Algorithm CGR

Input: The adjacency matrix A of a graph G on the vertex set {0, . . . , p− 1}.

Step 1. (Initialization)

1.1 Apply the WL-algorithm to A and find the basic relations of the coherent
configuration (X; Γ) generated by G;

1.2 If this configuration is not homogeneous, then goto Step 4 else let B =
{εX , γ1, . . . , γr} be the set of basic relations;

1.3 Define d = |γ1(0)|; If |γi(0)| 6= d for some i > 1, then goto Step 4;

1.4 If d is prime, then goto Step 3;

Step 2.1

2.1.1 Apply the WL-algorithm to (γ1(0); Γγ1(0)) and find the basic relations of the
coherent configuration (γ1(0); Γγ1(0));

2.1.2 If this configuration is not homogeneous, then goto Step 4 else let Bγ1(0) =
{εγ1(0), β1, . . . , βs} be the set of basic relations;

2.1.3 Find the connected components C1, . . . , Cq of (γ1(0), β1 ∪ βt1);
If some of these components have different size then goto Step 4 else define
Cγ1(0) = {C1, . . . , Cq};

2.1.4 For α ∈ Bγ1(0) \ {εγ1(0), β1} do
begin
Find the connected components Cα,1, . . . , Cα,qα of (γ1(0), α ∪ αt);
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If some of these components are of different size, then goto Step 4 else do
begin
If qα > |Cγ1(0)| then Cγ1(0) = {C1, . . . , Cqα};
If qα = |Cγ1(0)| and Cγ1(0) 6= {C1, . . . , Cqα} then goto Step 4;
end;

end;

Step 2.2

For x ∈ X and γ ∈ B \ {εX} do
if (x, γ) 6= (0, γ1) then
begin

2.2.1 Apply the WL-algorithm to (γ(x); Γγ(x)) and find the basic relations of the
coherent configuration (γ(x); Γγ(x));

2.2.2 If this configuration is not homogeneous, then goto Step 4 else let Bγ(x) =
{εγ(x), β1, . . . , βs} be the set of basic relations;

2.2.3 Find the connected components C1, . . . , Cq of (γ(x), β1 ∪ βt1);
If some of these components have different size, then goto Step 4 else define
Cγ(x) = {C1, . . . , Cq};

2.2.4 For α ∈ Bγ(x) \ {εγ(x), β1} do
begin
Find the connected components C1, . . . , Cqα of (γ(x), α ∪ αt);
If some of these components are of different size, then goto Step 4

else do
begin
If qα > |Cγ(x)|, then Cγ(x) = {C1, . . . , Cqα};
If qα = |Cγ(x)| and Cγ(x) 6= {C1, . . . , Cqα} then goto Step 4;
end;

end;
If |Cγ(x)| 6= |Cγ1(0)|, then goto Step 4;
end;

Step 2.3

2.3.1 For x ∈ X define
τx =

⋃
γ∈Γ∗

⋃
C∈Cγ(x)

C × C;

2.3.2 Find the components φ1, . . . , φs of the relation Φ on X2 \εX defined in Lemma
4.2;
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2.3.3 If B′ = {εX , φ1, . . . , φs} is not the basis of an association scheme then goto
Step 4;

2.3.4 Define B = B′ and goto Step 1.3;

Step 3

For a ∈ {0, 1} do
begin

3.1 For γ ∈ B do
begin

3.1.1 Define

γ(a) = γ(a) ∪ γt(a);

W (a, γ) = γ(a)× γt(a);

Γ(a, γ) = {β ∩W (a, γ) | β ∈ Γ};

Γ̂(a, γ) = {β ∪ βt |β ∈ Γ(a, γ) ∧ β 6= ∅};

Φ(a, γ) = {εγ(a), (γ(a))2 ∪ (γt(a))2} ∪ Γ̂(a, γ);

3.1.2 Apply the WL-algorithm to (γ(a),Φ(a, γ)) in order to find the set of basic
relations B(a, γ) for (γ(a), 〈Φ(a, γ)〉)

3.1.3 If this configuration is not homogeneous, then goto Step 4;

3.1.4 Find all basic relations ρ ∈ B(a, γ) with the property ρ2 = εγ(a);
If there is more than one or no such relation, then goto Step 4;

3.1.5 Let {(y, ρa,γ(y)) : y ∈ γ(a)} be the unique relation found in the last step;

end;

3.2 Define the involution ia by xia =

 a if x = a

ρa,γ(x) if x ∈ γ(a);

end;
Goto Step 5;

Step 4

Stop; Comment: ’G is not a circulant graph’;

Step 5
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Compute the permutation g = i0i1 of X;
If g is not a cyclic automorphism, then goto Step 4;
Output (0, 0g, . . . , 0g

n−1
);

Stop;

Remarks:

The mapping 0g
k
→ k, 0 ≤ k ≤ p−1 defines a Cayley numbering of the input graph.

Note that the steps 2.1 to 2.3 correspond to Step 1 to Step 3 in Subsection 4.1. The
most time consuming step in Algorithm CGR is Step 2 which is the iteration step.
Its complexity is O(p5 ln(p)). Since d decreases to at least d

2
in each iteration the

overall worst case time complexity of the algorithm is at most O(p5 ln(p)2).

6 Examples

To see how the algorithm works let us discuss some examples.

12
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Example 1: Consider the graph in Figure 1. Its coherent configuration has adja-
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cency matrix

Adj(A) =



0 4 3 1 2 2 1 6 5 5 6 3 4
4 0 2 5 3 2 6 3 1 4 1 6 5
3 2 0 3 5 4 5 4 1 2 6 1 6
1 5 3 0 1 6 2 2 3 4 4 5 6
2 3 5 1 0 4 6 1 3 6 5 4 2
2 2 4 6 4 0 1 5 6 3 1 5 3
1 6 5 2 6 1 0 4 4 3 2 3 5
6 3 4 2 1 5 4 0 5 2 3 6 1
5 1 1 3 3 6 4 5 0 6 2 2 4
5 4 2 4 6 3 3 2 6 0 5 1 1
6 1 6 4 5 1 2 3 2 5 0 4 3
3 6 1 5 4 5 3 6 2 1 4 0 2
4 5 6 6 2 3 5 1 4 1 3 2 0



.

Since the diagonal is uniformly colored, the coherent configuration is homogeneous.
We have six non-trivial symmetric basic relations. Each of the corresponding basic
graphs has degree 2. Consider the first basic relation γ1. It is the union of two
antiparallel cycles

(0, 3, 4, 7, 12, 9, 11, 2, 8, 1, 10, 5, 6), (0, 6, 5, 10, 1, 8, 2, 11, 9, 12, 7, 4, 3).

Renumbering the vertices according to

0 −→ 0, 3 −→ 1, 4 −→ 2, 7 −→ 3, 12 −→ 4, 9 −→ 5, 11 −→ 6, 2 −→ 7,

8 −→ 8, 1 −→ 9, 10 −→ 10, 5 −→ 11, 6 −→ 12

and rearranging the vertices along a cycle changes the graph in Figure 1 into the
graph in Figure 2. Note that each of the other basic graphs defines a full cyclic au-
tomorphism, too.
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Example 2: The graph in Figure 3 is the same as in Figure 1, however, some
of its edges are oriented. The remaining non-oriented edges are considered to be
pairs of anti-parallel oriented edges. The adjacency matrix of the associated coherent
configuration is

Adj(A) =



0 5 7 1 2 3 11 12 8 9 10 6 4
4 0 3 9 6 2 12 7 11 5 1 10 8
6 2 0 7 8 4 9 5 1 3 12 11 10
11 8 6 0 1 10 3 2 7 4 5 9 12
3 7 9 11 0 5 10 1 6 12 8 4 2
2 3 5 12 4 0 1 9 10 7 11 8 6
1 10 8 2 12 11 0 4 5 6 3 7 9
10 6 4 3 11 8 5 0 9 2 7 12 1
9 1 11 6 7 12 4 8 0 10 2 3 5
8 4 2 5 10 6 7 3 12 0 9 1 11
12 11 10 4 9 1 2 6 3 8 0 5 7
7 12 1 8 5 9 6 10 2 11 4 0 3
5 9 12 10 3 7 8 11 4 1 6 2 0



.

Obviously, the configuration is homogeneous. All basic relations are full cycles. Take
for instance γ7. The corresponding cycle is

(0, 2, 3, 8, 4, 1, 7, 10, 12, 5, 9, 6, 11).

Renumbering the vertices according to

0 −→ 0, 2 −→ 1, 3 −→ 2, 8 −→ 3, 4 −→ 4, 1 −→ 5, 7 −→ 6,

10 −→ 7, 12 −→ 8, 5 −→ 9, 9 −→ 10, 6 −→ 11, 11 −→ 12,

and rearranging the vertices along a cycle changes the graph of Figure 3 into the
graph of Figure 4.
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Example 3: Consider the digraph in Figure 5. It looks like a circulant graph. What
is the appropriate numbering of the vertices?

The adjacency matrix of the corresponding coherent configuration is given below.
The configuration is homogeneous. Each basic graph has outdegree 3. Hence, we
are in the case where d is a prime. Therefore, we have to perform Step 3 of the
algorithm. We have γ3 = γt1 and γ4 = γt2. Further,

γ1(0) = {1, 3, 7} ∪ {6, 10, 12}, γ2(0) = {4, 9, 11} ∪ {2, 5, 8}

γ1(1) = {6, 9, 10} ∪ {0, 8, 11}, γ2(1) = {3, 4, 5} ∪ {2, 7, 12}.

Adj(A) =



0 1 4 1 2 4 3 1 4 2 3 2 3
3 0 4 2 2 2 1 4 3 1 1 3 4
2 2 0 4 4 3 2 1 1 4 1 3 3
3 4 2 0 1 3 4 2 4 3 1 2 1
4 4 2 3 0 1 3 1 2 1 4 3 2
2 4 1 1 3 0 1 2 3 4 3 4 2
1 3 4 2 1 3 0 3 1 2 4 4 2
3 2 3 4 3 4 1 0 2 2 4 1 1
2 1 3 2 4 1 3 4 0 3 2 4 1
4 3 2 1 3 2 4 4 1 0 2 1 3
1 3 3 3 2 1 2 2 4 4 0 1 4
4 1 1 4 1 2 2 3 2 3 3 0 4
1 2 1 3 4 4 4 3 3 1 2 2 0



.

The adjaceny matrices A(a, j) of the configurations generated by the sets of relations
〈Φ(a, γj)〉, a ∈ {0, 1}, j ∈ {1, 2} are

A(0, 1) =



0 3 3 1 1 2
3 0 3 2 1 1
3 3 0 1 2 1
1 2 1 0 3 3
1 1 2 3 0 3
2 1 1 3 3 0


, A(0, 2) =



0 3 3 2 1 2
3 0 3 2 2 1
3 3 0 1 2 2
2 2 1 0 3 3
1 2 2 3 0 3
2 1 2 3 3 0


,

A(1, 1) =



0 3 3 1 1 2
3 0 3 2 1 1
3 3 0 1 2 1
1 2 1 0 3 3
1 1 2 3 0 3
2 1 1 3 3 0


, A(1, 2) =



0 3 3 2 2 1
3 0 3 2 1 2
3 3 0 1 2 2
2 2 1 0 3 3
2 1 2 3 0 3
1 2 2 3 3 0


.

We find the following involutions:

i0 : (1, 12)(3, 6)(7, 10)(4, 5)(9, 8)(11, 2),
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i1 : (6, 11)(9, 0)(10, 8)(3, 12)(4, 7)(5, 2).

Thus, i0i1 gives the cyclic permutation

(0, 8, 7, 5, 11, 3, 1, 12, 6, 2, 4, 10, 9).
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Renumbering the vertices according to

0 −→ 0, 8 −→ 1, 7 −→ 2, 5 −→ 3, 11 −→ 4, 3 −→ 5, 1 −→ 6,

12 −→ 7, 6 −→ 8, 2 −→ 9, 4 −→ 10, 10 −→ 11, 9 −→ 12

changes the graph in Figure 5 to the graph in Figure 6.

Example 4: Consider the graph in Figure 7. Its associated coherent configuration
has adjacency matrix

Adj(A) =



0 1 2 3 3 2 1 1 3 2 3 2 1
1 0 2 1 3 1 3 2 2 3 3 1 2
2 2 0 1 2 1 1 1 3 3 2 3 3
3 1 1 0 2 2 3 2 1 3 1 2 3
3 3 2 2 0 1 1 3 1 2 1 3 2
2 1 1 2 1 0 2 3 2 3 3 3 1
1 3 1 3 1 2 0 2 3 1 2 3 2
1 2 1 2 3 3 2 0 3 2 1 1 3
3 2 3 1 1 2 3 3 0 2 2 1 1
2 3 3 3 2 3 1 2 2 0 1 1 1
3 3 2 1 1 3 2 1 2 1 0 2 3
2 1 3 2 3 3 3 1 1 1 2 0 2
1 2 3 3 2 1 2 3 1 1 3 2 0



.
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The configuration is homogeneous. There are three symmetric non-trivial basic re-
lations γ1, γ2 and γ3, each of non-prime degree 4. Let us perform Step 2 of the
algorithm. The first table below shows the sets γi(a):

γ1 γ2 γ3

0 1,6,7,12 2,5,9,11 3,4,8,10
1 0,3,5,11 2,7,8,12 4,6,9,10
2 3,5,6,7 0,1,4,10 8,9,11,12
3 1,2,8,10 4,5,7,11 0,6,9,12
4 5,6,8,10 2,3,9,12 0,1,7,11
5 1,2,4,12 0,3,6,8 7,9,10,11
6 0,2,4,9 5,7,10,12 1,3,8,11
7 0,2,10,11 1,3,6,9 4,5,8,12
8 3,4,11,12 1,5,9,10 0,2,6,7
9 6,10,11,12 0,4,7,8 1,2,3,5

10 3,4,7,9 2,6,8,11 0,1,5,12
11 1,7,8,9 0,3,10,12 2,4,5,6
12 0,5,8,9 1,4,6,11 2,3,7,10

Vertex Classes
0 {0}, {1, 6}, {2, 5}, {3, 4}, {7, 12}, {8, 10}, {9, 11}
1 {1}, {0, 3}, {2, 7}, {4, 9}, {5, 11}, {6, 10}, {8, 12}
2 {2}, {0, 1}, {3, 6}, {4, 10}, {5, 7}, {8, 9}, {11, 12}
3 {3}, {0, 9}, {1, 10}, {2, 8}, {4, 5}, {6, 12}, {7, 11}
4 {4}, {0, 11}, {1, 7}, {2, 3}, {5, 10}, {6, 8}, {9, 12}
5 {5}, {0, 6}, {1, 4}, {2, 12}, {3, 8}, {7, 9}, {10, 11}
6 {6}, {0, 4}, {1, 8}, {2, 9}, {3, 11}, {5, 12}, {7, 10}
7 {7}, {0, 10}, {1, 3}, {2, 11}, {4, 12}, {5, 8}, {6, 9}
8 {8}, {0, 2}, {1, 5}, {3, 12}, {4, 11}, {6, 7}, {9, 10}
9 {9}, {0, 7}, {1, 2}, {3, 5}, {4, 8}, {6, 11}, {10, 12}
10 {10}, {0, 5}, {1, 12}, {2, 6}, {3, 9}, {4, 7}, {8, 11}
11 {11}, {0, 12}, {1, 9}, {2, 4}, {3, 10}, {5, 6}, {7, 8}
12 {12}, {0, 8}, {1, 11}, {2, 10}, {3, 7}, {4, 6}, {5, 9}

For a matrix A and a set W of indices write AW for the submatrix of A consisting of
all rows and columns index with elements of W . It is easy to see by inspection that
each of the blocks Adj(A)γi(a) is of one of the following forms

0 x y y

x 0 y y
y y 0 x
y y x 0

 ,


0 x y x

x 0 x y
y x 0 x
x y x 0

 ,


0 x x y

x 0 y x
x y 0 x
y x x 0

 ,
where x, y ∈ {1, 2, 3}, x 6= y. Using this we find the equivalence relations given in
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the second table above. Now, this table at hand, determining the components of
Φ according to Lemma 4.2 is straight-forward. We get 6 components, which are
represented by the following joint adjacency matrix:

0 1 3 5 5 3 1 2 6 4 6 4 2
1 0 3 1 6 2 5 3 4 6 5 2 4
3 3 0 2 4 1 2 1 6 6 4 5 5
5 1 2 0 4 4 6 3 2 5 1 3 6
5 6 4 4 0 2 1 6 1 3 2 5 3
3 2 1 4 2 0 3 5 4 5 6 6 1
1 5 2 6 1 3 0 4 5 2 4 6 3
2 3 1 3 6 5 4 0 5 4 2 1 6
6 4 6 2 1 4 5 5 0 3 3 1 2
4 6 6 5 3 5 2 4 3 0 1 2 1
6 5 4 1 2 6 4 2 3 1 0 3 5
4 2 5 3 5 6 6 1 1 2 3 0 4
2 4 5 6 3 1 3 6 2 1 5 4 0



.

In addition, this matrix is already the adjacency matrix of the coherent configuration
generated by the components of Φ. The configuration is homogeneous. We have six
non-trivial basic relations of degree d = 2 each. Each of them defines an undirected
cycle, i.e. a full cycle and its inverse. For instance, γ1 defines the cycle

(0, 1, 3, 10, 9, 12, 5, 2, 7, 11, 8, 4, 6).

Renumbering the vertices of the graph according to

0 −→ 0, 1 −→ 1, 3 −→ 2, 10 −→ 3, 9 −→ 4, 12 −→ 5, 5 −→ 6,

2 −→ 7, 7 −→ 8, 11 −→ 9, 8 −→ 10, 4 −→ 11, 6 −→ 12

changes the picture of the graph in Figure 7 to the one in Figure 8.

Example 5: Not every association scheme on a prime number of vertices is cyclic.
To have an example consider the adjacency matrix below. It is the adjacency matrix
of a homogeneous and commutative coherent configuration generated by an antisym-
metric strongly regular graph Γ on 23 vertices. However, the automorphism group
of this scheme is not transitive. Changing the first diagonal entry from 0 to 3 and
applying the WL-algorithm to the resulting matrix yields a coherent configuration
with 17 basic relations, while changing the second diagonal entry from 0 to 3 and
applying the WL-algorithm yields 113 basic relations. This proves that 0 and 1 are
not in the same orbit. Our algorithm, applied to the above matrix, will perform Step
1 and afterwards turn to Step 3. It will decide that the input is not cyclic at the first
arrival at 3.1.4.
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0 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1
1 0 2 1 2 2 2 1 1 1 2 1 2 1 2 1 1 1 2 2 2 1 2
1 1 0 2 1 2 2 2 1 1 1 2 2 2 1 2 1 1 1 2 2 2 1
1 2 1 0 2 1 2 2 2 1 1 1 1 2 2 1 2 1 1 1 2 2 2
1 1 2 1 0 2 1 2 2 2 1 1 2 1 2 2 1 2 1 1 1 2 2
1 1 1 2 1 0 2 1 2 2 2 1 2 2 1 2 2 1 2 1 1 1 2
1 1 1 1 2 1 0 2 1 2 2 2 2 2 2 1 2 2 1 2 1 1 1
1 2 1 1 1 2 1 0 2 1 2 2 1 2 2 2 1 2 2 1 2 1 1
1 2 2 1 1 1 2 1 0 2 1 2 1 1 2 2 2 1 2 2 1 2 1
1 2 2 2 1 1 1 2 1 0 2 1 1 1 1 2 2 2 1 2 2 1 2
1 1 2 2 2 1 1 1 2 1 0 2 2 1 1 1 2 2 2 1 2 2 1
1 2 1 2 2 2 1 1 1 2 1 0 1 2 1 1 1 2 2 2 1 2 2
2 1 1 2 1 1 1 2 2 2 1 2 0 1 2 1 1 1 2 2 2 1 2
2 2 1 1 2 1 1 1 2 2 2 1 2 0 1 2 1 1 1 2 2 2 1
2 1 2 1 1 2 1 1 1 2 2 2 1 2 0 1 2 1 1 1 2 2 2
2 2 1 2 1 1 2 1 1 1 2 2 2 1 2 0 1 2 1 1 1 2 2
2 2 2 1 2 1 1 2 1 1 1 2 2 2 1 2 0 1 2 1 1 1 2
2 2 2 2 1 2 1 1 2 1 1 1 2 2 2 1 2 0 1 2 1 1 1
2 1 2 2 2 1 2 1 1 2 1 1 1 2 2 2 1 2 0 1 2 1 1
2 1 1 2 2 2 1 2 1 1 2 1 1 1 2 2 2 1 2 0 1 2 1
2 1 1 1 2 2 2 1 2 1 1 2 1 1 1 2 2 2 1 2 0 1 2
2 2 1 1 1 2 2 2 1 2 1 1 2 1 1 1 2 2 2 1 2 0 1
2 1 2 1 1 1 2 2 2 1 2 1 1 2 1 1 1 2 2 2 1 2 0



.

The example considered here is from an infinite series of examples of non-cyclic asso-
ciation schemes. It is found by the so-called doubling method described in [FarKM94],
Theorem 2.6.6. A different way to arrive at this example is by using the one-to-one
correspondence between skew-symmetric Hadamard matrices of order 4n and associ-
ation schemes with two non-symmetric classes on 4n-1 points (regular tournaments)
described in [Ito84].

7 Concluding remarks.

The described algorithm is based on the fact that the automorphism group of any
circulant association scheme on p points is a Frobenius group. There is a more general
class of association schemes the automorphism group of which is a Frobenius group,
namely: the cyclotomic schemes on pn points. So one can try to modify the algorithm
in order to recognize this class of schemes. Results in this direction will be published
in a forthcoming paper.
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[FarKM94] I. A. Faradžev, M. H. Klin, M. E. Muzychuk, Cellular rings and
groups of automorphisms of graphs. In: Faradžev I.A. et al. (eds.):
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