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Recognizing complex patterns
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How the brain recognizes complex patterns in the environment is a central, but little understood
question in neuroscience. The problem is of great significance for a host of applications such as

biometric-based access control, autonomous robots and content-based information management.

Although some headway in these directions has been made, the current artificial systems do not
match the robustness and versatility of their biological counterparts. Here | examine recognition
tasks drawn from two different sensory modalities—face recognition and speaker/speech
recognition. The goal is to characterize the present state of artificial recognition technologies for
these tasks, the influence of neuroscience on the design of these systems and the key challenges
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they face.

The ability to recognize patterns in the environment is critical
for an organism’s survival. It is a pre-requisite for tasks includ-
ing foraging, danger avoidance, mate selection and, more gener-
ally, associating specific responses to particular events and objects.
Even putatively simple animals show remarkable recognition
prowess. Bees, for instance, can distinguish between complex
shapes in a cue-invariant fashion!, and pigeons seem capable of
learning visual concepts from small training sets?.

An improvement in our understanding of the processes
underlying recognition has numerous potential applications.
Many of the systems included in futuristic scenarios of science-fic-
tion authors and technology pundits are predicated on recogni-
tion technology. Be it the creation of better human—-machine
interfaces (machines that you can talk to, or that can log you in
just by looking at you), assistive devices (smart vehicles that can
automatically avoid pedestrians) or autonomous agents (robots
that can serve as household helpers), the key enabling technolo-
gy is recognition.

Artificial recognition systems have had the greatest success in
settings that correspond to a highly constrained recognition sce-
nario—matching a new image to very similar training instances.
Machine systems that implement this idea via simple variants of
template matching have proven effective for numerous inspec-
tion tasks, such as monitoring quality control of silicon wafers
and ensuring alignment of printed labels on medicine bottles. At
these tasks, machine-based systems outperform humans, both
in speed and stamina.

However, most tasks in the real world are not subject to such
constraints. The patterns that need to be recognized as being the
same often differ greatly from each other and may, in fact, be very
similar to ‘distracter’ patterns that they need to be distinguished
from. In such settings, humans hold a distinct edge over machines.
To make machines work in unconstrained settings, it may be fruit-
ful to complement purely engineering-based approaches with
insights regarding brain mechanisms of recognition.

Face recognition
The events of September 11, 2001, in the USA compellingly high-
lighted the need for systems that could identify passengers with
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known terrorist links. In rapid succession, three major interna-
tional airports, Fresno, St. Petersburg and Logan, began testing
face-recognition systems. Although such deployment raises com-
plicated issues of privacy invasion, of even greater immediate
concern is whether the technology is up to the task requirements.
The primary challenge in face recognition is that we do not
know how to quantify similarity between two facial images in a
perceptually meaningful manner. Images 1 and 3 in Fig. 1 show
the same individual from the front and oblique viewpoints,
whereas image 2 shows a different person from the front. Con-
ventional measures of image similarity (such as the Minkowski
metrics®) would rate images 1 and 2 to be more similar than
images 1 and 3. In other words, they fail to generalize across
important and commonplace transformations. Other transforms
that lead to similar difficulties include lighting variations, and
aging and expression changes. Clearly, similarity needs to be com-
puted over attributes more complex than raw pixel values.
Some computer-based recognition systems have used more
sophisticated face-matching metrics comprising sets of geomet-
ric and intensity-based attributes that seem intuitively impor-
tant. These features may include distances and angles between
eye, nose and mouth centroids and also local intensity patches
around these centroids*°. However, these systems do not per-
form very robustly in practice. This is partly because the reliable
extraction of facial features is, in itself, a major challenge.
Another popular class of face-recognition approaches is based
on projecting face images into lower-dimensional spaces by rep-
resenting them as linear combinations of a few prototypes’ or of
the principal component vectors. Turk and Pentland’s® use of this
idea for face recognition, a technique they christened ‘Eigenfaces’,
popularized the use of approaches based on principal compo-
nents analysis and linear discriminant analysis in the field®-11.
This work also forms the core of the technology used by one of
the major commercial face-recognition companies in the USA—
Viisage Technologies Inc. Although this and related techniques
are computationally elegant, they are limited in the number of
image variations they can generalize across!?. Even for simple
transformations such as spatial shifts and size scaling, they have
to resort to exhaustive searches through these parameter spaces.
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Fig. 1. An example that highlights the challenge inherent in the face
recognition task. Most conventional measures of image similarity would
declare images a and b to be more similar than images a and c, even
though both members of the latter pair, but not the former, are derived
from the same individual.

Real-world tests of automated face-recognition systems have
not yielded encouraging results. For instance, the Palm Beach
International Airport recently evaluated face recognition soft-
ware from Visionics Inc. (now Identix). Using fifteen volunteers
and a database of 250 pictures, the system had a success rate of
less than fifty per cent and nearly fifty false alarms per five thou-
sand passengers (translating to two to three false alarms per hour
per checkpoint). Having to respond to a terror alarm every twen-
ty minutes would, of course, be very disruptive for airport oper-
ations. Furthermore, variations such as eyeglasses, small facial
rotations and lighting changes proved problematic for the sys-
tem. Tests of Viisage technology at Logan airport, Boston, yield-
ed similar results. Clearly, a vast gulf remains between the
performance of these systems and human observers.

How strong is the relationship between neuroscience and cur-
rent machine systems for face-recognition? Neuroscience has
influenced research on artificial systems in two ways. First, stud-
ies of the limits of human face recognition abilities have provid-
ed benchmarks against which to evaluate machine systems.
Second, studies characterizing the response properties of neu-
rons in the early stages of the visual pathway have guided strate-
gies for image pre-processing in the front-ends of machine
systems. For instance, many systems use a wavelet representation
of the image that corresponds to the multi-scale gabor-like recep-
tive fields found in the primary visual cortex'®14. However,
beyond these early stages, it is difficult to discern any direct con-
nections between biological and artificial systems. This is per-
haps due to the difficulty in translating psychological findings
into concrete computational prescriptions.

A case in point is an idea that several psychologists have
emphasized—that facial configuration is important in human
judgments of identity!>16. However, the experiments so far have
not yielded a precise specification of what is meant by ‘configu-
ration’ beyond the general notion that it refers to the relative
placement of the different facial features. This makes it difficult to
adopt this idea in the computational arena, especially when the
option of using individual facial features such as eyes, noses and
mouths is so much easier to describe and implement. Thus, sev-
eral current systems for face recognition, and also for the relat-
ed task of facial composite generation (creating a likeness from
a witness description), are based on a piecemeal approach.

As an illustration of the problems associated with the piece-
meal approach, consider the facial composite generation task.
The dominant protocol for having a witness describe a suspect’s
face to a police officer involves having him/her pick out the best-
matching features from a large collection of images of disem-
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Fig. 2. Four facial composites generated by an IdentiKit operator at the
author’s request. The individuals depicted are all famous celebrities. The
operator was given photographs of the celebrities and was asked to cre-
ate the best likenesses using the kit of features in the system. Most
observers are unable to recognize the people depicted, highlighting the
problems of using a piecemeal approach in constructing and recognizing
faces. The celebrities shown are, from left to right, Bill Cosby, Tom
Cruise, Ronald Reagan and Michael Jordan.

bodied features. Putting these together yields a putative likeness
of the suspect. The mismatch between this piecemeal strategy
and the more holistic facial encoding scheme that may actually
be used by the brain can lead to problems in the quality of recon-
structions (Fig. 2).

A parts-based strategy is also limited in its ability to handle
degradations that reduce feature details. For instance, Fig. 3 shows
a few famous faces at very low resolutions. Whereas human
observers are able to perform well even with such impoverished
images'”~?2, the performance of machine vision systems breaks
down dramatically. The ability to interpret such inputs is of great
utility in recognizing people at large distances from the camera.

Another challenge for improving recognition performance is
to incorporate information from as many facial cues as possible.
Current machine-based systems focus primarily on the internal
features (eyes, nose and mouth) because the external features
(hair and jawline) are considered too variable and too difficult
to extract reliably from images. Studies of human vision, how-
ever, point to a profound significance of the external features?>-2°.
Figure 4 shows an illusion that illustrates this point?”-?8. Under-
standing how to represent external features in a stable manner
and how to integrate them into an analysis of the overall facial
structure can help devise more robust machine-based systems.

Yet another question that deserves attention is how to use
prior knowledge about faces to intelligently compensate for some
of the degradations in the input image. Figure 5 shows results
from one system that attempts to use ‘top-down’ processing to
undo image degradations”-*°. Although it serves as a good proof
of concept, this system can handle relatively modest degrees of
degradation and is limited in its inability to distinguish between
what is an unusual but genuine facial characteristic that should be
preserved and what is a degradation that ought to be removed.
However, more powerful versions of this basic idea could prove to
be of great practical importance.

Face recognition is one of the most active and exciting areas in
neuroscience, psychology and computer vision. Although sig-
nificant progress has been made on the issue of low-level image
representation, the fundamental question of how to encode over-
all facial structure remains largely open. Machine-based systems
stand to benefit from well-designed perceptual studies that can
allow precise inferences to be drawn about the encoding schemes
used by the human visual system, both for single snapshots and
video sequences of faces. Also of use might be an analysis of the
work of minimalist portrait artists, especially caricaturists, who
are able to capture vivid likenesses using very few strokes. Ana-
lyzing which facial cues are preserved or enhanced in such sim-
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identity theft. Someone could surreptitiously
record an individual uttering the ‘pass phrase’
and use the recording later as a surrogate.
Secure voiceprint analysis requires the use
of ‘nonces’—random phrases generated at the
time of user authentication. Comparisons for
matching are made not at the level of the wave-

Fig. 3. Unlike current machine-based systems, human observers are able to handle significant  fy.1¢ themselves. but rather between certain

degradations in face images. For instance, subjects are able to recognize more than half of all
famous faces shown to them at the resolution depicted here. The individuals shown are, from
left to right, Prince Charles, Woody Allen, Bill Clinton, Saddam Hussein, Richard Nixon and

Princess Diana.

features abstracted from the voiceprints. The
features typically used are based on modeling
how specific vocal tract shapes alter the fre-
quency content of an acoustic wave. Charac-

plified depictions can yield valuable insights about the signifi-
cance of different facial attributes.

Speaker and speech recognition

Like face recognition, the tasks of speaker identification and
speech recognition have many potential practical applications.
An obvious use of voiceprint analysis lies in identifying individ-
uals. Using voiceprints as biometric cues is economically very
attractive because it does not require the development of new
hardware infrastructure. Given the existing telephone networks
and microphones included with computers, all that is needed to
deploy a voiceprint-based system is the recognition software.
During recent years, several such systems have been introduced by
companies including ITT, Veritel, T-NETIX and Sprint.

A speaker identification (SI) system needs to be robust against
variations in the input audio signal caused by changes in a micro-
phone’s frequency response, room acoustics and background
noise. Simultaneously, the system has to be capable of detecting
deliberate deceit via voice impersonation. In the simplest SI sce-
nario, a user is authenticated by having him/her speak a fixed
sentence. The resulting waveform is compared with the stored
one to determine if the two match. Although this idea seems
straightforward, it presents two problems. First, factors such as
a cold, vocal cord injury or stress can dramatically change a voice-
print, leading to mismatches with the reference. Second, the use
of a fixed sentence for authentication opens up the possibility of

Fig. 4. At first glance, the image shown above seems to depict an ordi-
nary shot of the current US president and vice-president. Closer exami-
nation reveals that the internal features of the vice-president have been
supplanted by the president’s features. The fact that most observers fail
to notice this manipulation points to the significance of the external facial
features—the hair and jawline. This illusion also highlights the impor-
tance of context. Most current machine-vision systems do not make use
of either of these two sources of identity information. (From ref. 28)
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teristics of the spectral shape of the acoustic
signal (such as formant locations and spectral tilt) can help esti-
mate the shape of the vocal tract and, thereby, the identity of the
speaker. Several techniques have been explored for computing
match scores between a novel acoustic feature vector and models
of speakers’ voices. These include both template models, possi-
bly augmented with dynamic time warping®3!, and stochastic
models such as the hidden Markov model®2. A popular scheme
for representing acoustic signals is the ‘mel-warped cepstrum’2.
Motivated by perceptual experiments, this representation warps
the speech spectrum to provide greater weight to the lower fre-
quencies (less than 1.5 kHz). The frequency warping is broadly
consistent with the spatial frequency organization of the audito-
ry system.

This perceptually motivated acoustic signal representation
scheme, coupled with relatively standard pattern-matching and
classification back-ends, yields encouraging performance on the
task of speaker identification?. However, these results are typi-
cally obtained on pre-recorded databases**3°. These corpora often
do not capture the degradations and variabilities imposed on a
voice signal in real settings. Therefore, more rigorous testing of
current SI schemes is needed to assess their strengths and limi-
tations and how well they mimic human abilities on this task.

We now turn to the related task of automatic speech recogni-
tion (ASR). In recent years, several companies including AT&T,
IBM, Lucent, Microsoft, Philips and Speechworks have launched
ASR systems. The key challenges these ASR systems face include
variations in pronunciation across speakers, background acoustic
noise and changes in microphone frequency characteristics. The
most direct way in which studies of auditory function in biolog-
ical systems have influenced ASR system design is by suggesting
representation schemes that provide some stability against vari-
ations of the acoustic signal. The mel-cepstral representation
mentioned above is one such scheme. Another is perceptual lin-
ear prediction (PLP)—a form of amplitude compression moti-
vated by studies of human loudness perception®. Both schemes
effectively smooth the spectral envelope to reflect the limited fre-
quency resolution of the auditory system.

It seems valid to conclude that studies of biological auditory
processing have influenced the ‘front-ends’ of ASR systems. The
connections between the two fields are less direct in moving
beyond the early stages of signal processing. However, some broad
similarities can be discerned. ASR systems, consistent with con-
ceptualizations of human speech processing, use both a language-
model (LM) that provides top-down constraints, and ‘bottom-up’
phonetic classification. However, the LMs used, typically word-
pair statistics, are likely to be too crude to represent the top-down
influences at work in the human brain. Additionally, it is not clear
how to weight the LM relative to phonetic classification. The
weights are usually skewed heavily in favor of the LM. However,
this seems inconsistent with human data. For instance, many
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Fig. 5. Compensating for image degradations in a top-down manner.
Knowing what faces look like (based on a training set), the system is able
to ignore extraneous features and fill in missing information. From left
to right, input images, the program’s output line-drawing, the line-draw-
ing overlaid on the original images for comparison, and outputs of a
purely bottom-up approach to edge-detection (here the Canny edge
operator). (From ref. 7).

hearing-impaired people, who experience little trouble in under-
standing speech in quiet conditions, are much worse in the pres-
ence of noise than would be predicted by the weights used by the
ASR systems. It appears that this weighting is driven largely by
the difficulty of ASR systems in reliably classifying phonetic seg-
ments due to the problems of co-articulation and lack of clean
segmentation boundaries between the phonemes. Indeed, it is
not entirely clear whether phonemes are the units of organiza-
tion used by the brain for processing spoken language or whether
other alternatives, such as syllables, might prove more appropri-
ate’”. These fundamental issues await further experimental inves-
tigations of human speech perception.

Conclusion

I have broadly reviewed the issues involved in complex pattern
recognition for two sensory modalities. A few common themes
emerge. First, understanding the mechanisms underlying the
recognition abilities of biological systems in each of the modali-
ties has tremendous practical applicability. Second, the problems
machine-based recognition systems face deal primarily with the
need to robustly handle variations in the raw stimulus under dif-
ferent observing conditions. Current systems can function ade-
quately only under highly controlled conditions that restrict the
possible variations in input patterns. Third, the impact of studies
in neuroscience has been most evident in the design of the front-
ends of machine-based systems. In contrast, pattern-matching
and classification stages are based largely on conventional statis-
tical techniques without regard to neural plausibility.

The second and third themes are intimately related. With the
accumulation of further insights about high-level signal repre-
sentation and matching strategies used by biological systems, we
can expect to see greater influence of neuroscience on machine
perception endeavors. Simultaneously, these new insights will
likely help alleviate the problems of artificial systems in general-
izing across various stimulus transformations.

The third theme suggests that for neuroscience to have an
impact on the design of machine-based systems, experimental
findings have to be sufficiently specific to allow a formal imple-
mentation. Many findings about perceptual front-ends in bio-
logical systems had this characteristic—the level of description
was just right to permit their translation into programs. For
processes beyond the early stages, although many hypotheses and
conjectures have gathered over the years, they are perhaps not
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defined in specific enough detail, and are not sufficiently mutu-
ally consistent, to allow a formal implementation. The challenge
for neuroscientists, then, is to synthesize the body of data and
hypotheses regarding recognition into realizable prescriptions
for system design and also to conduct additional experiments
that can lead to strong inferences about the nature of mecha-
nisms involved in high-level perception. In this context, it is worth
discussing a concern that is sometimes voiced by machine per-
ception researchers regarding some neuroscience experiments.
How do data showing a few cells or areas that respond to specif-
ic complex patterns (say, faces), help us in understanding the
mechanisms underlying recognition? In other words, how does
understanding the ‘where’ issue help us with the ‘how” issue? The
answer to this question lies in realizing that findings of functional
localization are not merely modern-day phrenology. Rather, they
open up the doors to two kinds of investigations that will even-
tually help answer the ‘how” question. First, through a systemat-
ic probing of response properties in different parts of the brain,
we may be able to infer a functional architecture that specifies
how the sensory signal undergoes successive transformations
leading up to recognition. Second, after identifying pattern-selec-
tive neurons, we can probe how variations in the stimulus struc-
ture change responses. Through such experiments, we can begin
to infer the nature of internal representations for complex pat-
terns in the environment.

Although experiments and hypotheses in neuroscience can
profoundly facilitate progress on machine-based systems, the
converse is true as well. In the process of implementing these
hypotheses in artificial systems, the problems encountered and
the patterns of errors obtained will suggest revisions to our con-
ceptions regarding neural function and also ideas for experiments
to help clarify previously unanticipated ambiguities.
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