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Abstract. A framework is proposed for the segmentation of brain tumors from 
MRI. Instead of training on pathology, the proposed method trains exclusively 
on healthy tissue.  The algorithm attempts to recognize deviations from nor-
malcy in order to compute a fitness map over the image associated with the 
presence of pathology.  The resulting fitness map may then be used by conven-
tional image segmentation techniques for honing in on boundary delineation. 
Such an approach is applicable to structures that are too irregular, in both shape 
and texture, to permit construction of comprehensive training sets.  The tech-
nique is an extension of EM segmentation that considers information on five 
layers: voxel intensities, neighborhood coherence, intra-structure properties, in-
ter-structure relationships, and user input. Information flows between the layers 
via multi-level Markov random fields and Bayesian classification. A simple in-
stantiation of the framework has been implemented to perform preliminary ex-
periments on synthetic and MRI data. 

1   Introduction 

The literature is rich with techniques for segmenting healthy brains – a task simplified 
by the predictable appearance, size, and shape of healthy structures.  Many of these 
methods fail in the presence of pathology – the very focus of segmentation for image-
guided surgery [1].  Furthermore, the techniques that are intended for tumors leave 
significant room for increased automation and applicability. Specifically, we consider 
the task of segmenting large brain tumors such as gliomas, meningiomas, astrocy-
tomas, glioblastoma multiforme, cavernomas, and Arteriovenous Malformations 
(AVM).  In practice, segmentation of this class of tumors continues to rely on manual 
tracing and low-level computer vision tools such as thresholds, morphological opera-
tions, and connective component analysis. Automatic techniques tend to be either 
region- or contour-based.  

Region-based methods usually reduce operator interaction by automating some as-
pects of applying the low-level operations [2]. Threshold selection can be assisted 
through histogram analysis, and logic can be applied to the application of low-level 



vision techniques through a set of rules to form a knowledge-based system [3]. Since 
statistical classification alone may not allow differentiation between non-enhancing 
tumor and normal tissue, anatomic information derived from a digital atlas has been 
used to identify normal anatomic structures. Of these approaches, the most successful 
has been the iteration of statistical classification and template matching as developed 
in [4,5,6]. However, the use of morphological operations has the drawback of making 
assumptions about the radius parameter that are both application-dependent (anatomy) 
and scan-dependent (voxel size). Such operations destroy fine details and commit to 
irreversible decisions at too low of a level to benefit from all available information – 
thus violating Marr’s principle of least commitment. 

Contour-based methods evolve a curve based on internal forces (e.g.: curvature) 
and external forces (e.g.: image gradients) to delineate the boundary of a tumor.  Since 
they experience similar drawbacks as the region-based approaches, they tend to apply 
only to tumors that are easily separable from their surroundings [7,8]. Level-set based 
curve evolution [9, 10] has the advantage over region-based approaches in that the 
connectivity constraint is imposed implicitly rather than through morphological opera-
tions. However, 3D level-sets find limited use in medical practice due to their reliance 
on the operator to set the sensitive parameters that govern the evolution’s stopping 
criteria. The more heterogeneous the tumor, the more user interaction is required. 

Both region- and contour-based segmentation methods have largely ignored the 
bias field, or patient-specific, signal inhomogeneities present in MRI. The bias field is 
slowly varying, and therefore its computation from the regions of healthy tissue could 
be extrapolated over tumor tissue to provide some degree of benefit. Methods for 
segmenting healthy brains have incorporated the EM algorithm [11] to simultaneously 
arrive at both a bias field and segmentation into healthy tissue classes [12]. There have 
been several extensions, such as collecting all non-brain tissue into a single class [13], 
handling thermal noise with a Markov random field [14], using a mean-field solution 
to the Markov random field [15], incorporating geometric constraints [15], using a 
digital brain atlas as a spatially-varying prior [16], automating the determination of the 
tissue class parameters [17], and identifying MS lesions as hyper-intense outliers from 
white matter [18]. 

In contrast to existing methods for tumor segmentation, the hypothesis underlying 
our work is that we can segment brain tumors by focusing not on what typically repre-
sents tumor, but on what typically represents healthy tissue. Our method extends EM-
based segmentation to compute a fitness map over the image to be associated with the 
probability of pathology. In this paper, we present our proposed framework and the 
preliminary results that we achieved with a simple implementation. We hope that more 
detailed, future implementations of this framework will be able to address many of the 
drawbacks to the existing region- and contour-based methods.  

2   Method 

Inherent ambiguity necessitates the incorporation of contextual information into the 
brain segmentation process. Consider the example of non-enhancing tumor tissue that 



garners the same intensity classification of healthy gray matter, but is too thick to be 
gray matter. An algorithm’s low-level computer vision techniques could first classify 
the tissue as gray matter, and a higher-level stage – through its broader understanding 
of context -- could correct the classifications of the first-pass. This example motivates 
the introduction of hierarchical context into the segmentation process. A voxel’s clas-
sification could be considered on several levels: the voxel itself, the voxel’s immediate 
(Markov) neighborhood, the voxel’s region (entire connected structure), the global 
setting (position of the voxel’s structure relative to other structures), and user guid-
ance. Just as a voxel-wise classification must be computed prior to a neighborhood-
wise refinement, a voxel’s region must be classified before features regarding the size 
and shape (or other intrinsic properties) of that region can be computed.  

One way to approach the above example would be to employ a combination of 
morphological operations and a high-level expert system (such as [3]) to simultane-
ously switch the classification of every voxel in the mistaken connected mass from 
gray matter to tumor. However, in keeping with our goal of adhering to the principle 
of least commitment, we propose an alternative approach where voxels toward the 
center of the mass could be first classified as tumor based on their unusually high 
distance from their structure’s boundary. This tumor classification would subsequently 
flow outward throughout the mass over several iterations in a probabilistic flow. The 
flow is driven by our introduction of novel multi-layer Markov random fields. A given 
voxel would change its high-level classification in the evolving presence of tumor if 
the attributes of lower-level layers shared strong similarities. 

Table 1. The Layered Vision framework features no decisions made by certain layers that 
permanently (and perhaps adversely) affect other layers. Information flows between the layers 
(bidirectionally depending on implementation details) while converging toward a final solution 

# Layer Definition Computation 
5 User 

(oracle) 
Spatially specific points clicked 
on by the user either at initializa-
tion, or on the fly between itera-
tions as a corrective action. 

Quickly and 
crudely drawn line 
during initializa-
tion. 

4 Inter-structure 
(global) 

Relative position of a voxel’s 
structure to other structures. 

Distance from scalp 

3 Intra-structure 
(region) 

Relative position of a voxel within 
its own structure. 

Distance from 
boundary.  
Multi-layer  MRF. 

2 Neighborhood 
(local) 

Classification of a voxel’s imme-
diate neighbors. 

Mean Field MRF 

1 Voxel 
(point) 

Classification based on voxel’s 
intensity. 

EM, ML or MAP 

 
Table 1 combines these observations into our proposed hierarchy of five processing 

layers. The rightmost column describes each layer’s computation for initial experi-
ments, allowing for more elaborate implementations in the near future. The key to the 
algorithm’s novelty is the third layer. Observe that some of the existing segmentation 
algorithms employ the following combinations of layers:  



Wells96: 1 
Held97: 1, 2 
Kapur99: 1, 2, 4 
Kaus01: 1, 4, 5 (and 2 by pre-processing) 

2.2   Layer 1:  EM Segmentation 

EM segmentation models the image intensities as visible variables, Y, tissue classifi-
cations as hidden variables, Γ, and the bias field as governed by model parameters, β. 
We would like to choose the parameters that maximize the log likelihood of the data, 
log p(Y, Γ|β), but we do not know this likelihood because Γ’s invisibility renders   
p(Y, Γ|β) to be a random variable. Thus, although we cannot maximize it, we can 
maximize its expectation. This results in the following two iterative steps until conver-
gence to a local minimum. In our implementation, we followed [12]. 

 
E-Step: Compute the expectation ΣΓp(Γ|Y,β)log p(Γ,Y|β) using the current β. 
 
M-Step: Find new β(t+1) to maximize the expectation, assuming p(Γ|Y,βt) is correct. 

2.2 Layer 2:  Spatial Coherence with Markov Random Field 

Following [15], the prior knowledge of spatial coherence over a configuration, W, of 
segmented voxels is modeled with a Gibbs distribution, P(W). The energy function, 
U(W) is an Ising model generalized to the case of discrete, multi-valued labels [19]: 
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Given M possible label values, let Ws be an M-length binary vector of classification at 
the voxel indexed by s. Let Ns be the set of voxels in the neighborhood of s (which, in 
our case, are the 6 closest voxels in 3D). Let the superscripts refer to the layer of proc-
essing from Table 1. 
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Then V1 is the clique potential of all cliques of size 1. In other words, V1 encodes our 
prior knowledge about an isolated voxel prior to viewing the image data (the tissue 
class prior probability). V2 is the potential over all cliques of size 2, and represents the 
tendency of two classified voxels to be neighbors. That tendency is encoded in the 
MxM Class Interaction Matrix, J2, and is computed from a segmented scan offered as 
training data. 
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For tractable computation, our implementation follows the Mean-Field approximation 
as derived in [15]. Thus, Layer 2 effectively relaxes Layer 1’s E-Step weights. 

2.3 Layer 3:  Region Properties Propagated with a Multi-Level MRF 

We now derive our simple implementation of Layer 3 where the feature computed 
over the output of Layer 2 is the radius to each structure’s own boundary. The per-
class probability distributions, p(r|Γ) are readily computed from a sample segmented 
scan presented as training data. We perform a Maximum A Posteriori (MAP) classifi-
cation of the features (just radius at present) computed over Layer 2’s output. Recall 
that the EM algorithm of Layer 1 must compute p(Γ|Y,β) at each E-Step. It can be 
shown that p(Γ|Y,β,r) can be computed with the same update equation except for an 
extra multiplicative term, p(r|Γ). Therefore, the posterior probabilities for the Layer 3 
MAP classification are equal to the relaxed weights of Layer 2 multiplied by this new 
likelihood. That is, the Layer 2 weights provide the spatially varying prior for the 
Layer 3 MAP classification. 

Next, we desire the MAP result (corrections to Layer 2’s classifications) to propa-
gate over regions that are homogenous at Layer 2, as demonstrated in Figure 2. We 
introduce a multi-level Markov random field, and define the Gibb’s energy function to 
encode our prior knowledge of its behavior. Compare equations 5-7 with their Layer 2 
counterparts: 
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The MxM square similarity matrix, J3 is chosen to drive voxels classified to structures 
with large radii to propagate over voxels associated with structures with small radii. 
The bar over W denotes the Mean Field approximation, thus a vector of probabilities. 
2.4 Layer 4:  Global, Inter-structure Relationships 

Broader context regarding relationships between structures can be incorporated in 
several ways.  The stationary prior used in the calculation of the posterior probabilities 
by Layer 1 can be replaced by a spatially varying prior. [15] uses joint distances from 
ventricles and skin, while [16-18] use a rigidly registered digital atlas. Another ap-
proach, experimented with in Figure 1, is to associate a probability distribution in a 
similar manner as the distance to structure boundaries in Layer 3. 



2.5 Layer 5:  User Interaction 

User time (such as in [6]) can be spent either initializing the segmentation, or correct-
ing it to resolve ambiguities reached by the algorithm. Moreover, very small tumors in 
early stages of growth may require input from the 5th Layer (oracle) to disambiguate 
them from their surroundings. For our initial experiments, we have used Layer 5 for 
quick initialization of the Gaussian models for healthy tissue classes. 

2.6 Expressing Tumors as Deviations from Normalcy 

While the algorithm employs models of healthy tissue classes, pathology is only mod-
eled by its deviation from normalcy. The degree to which each voxel belongs is its 
minimum class distance expressed in standard deviations, which is commonly known 
as the Mahalanobis-distance.  Besides providing the basis for the fitness map, this 
computation also weights the evaluation of the bias field in Layer 1.  
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3   Preliminary Experiments 

Figure 1 depicts results of determining outliers with respect to each layer separately, 
and in total combination. Observe that a single layer is insufficient for recognition. 
Figure 2 explores a “toy” example to clearly illustrate the effects of layered vision.  

Fig. 1. From left to right: Input MRI, Map of outliers based on intensity only, Map of outliers 
based on structure size only, Map of outliers based on relative position only, Combined map of 
outliers based on voxel intensity, structural size, and relative position to other structures. (Note: 
neck structures become removed upon rigid registration to a digital atlas.) 

 
 



Fig. 2. The “toy” volume consists of 2 small, dark spheres and 2 large bright ones corrupted 
with Gaussian noise. The top, somewhat dark, and large sphere is ambiguous, and it is classi-
fied incorrectly by the lower-level layers of MAP and MRF. The 3rd layer then identifies that 
the center voxels are too distant from the boundary, and corrects their classification. The multi-
level MRF propagates this information across the structure because its lower-level segmenta-
tion is mostly homogenous. From left to right: Original, Result after Layer 2, Result after 15 
iterations of Layer 3’s multi-level MRF, Result after 50 iterations of Layer 3’s multi-level 
MRF. 

 
 

4   Discussion 

The contributions of this paper are two-fold. First, we proposed segmenting large 
brain tumors by training exclusively on healthy brains to recognize deviations from 
normalcy. Second, we designed a framework for layered vision that incorporates con-
text at various levels. We extended EM-based segmentation with region-level proper-
ties, and we derived the novel multi-level MRF. While preliminary experiments are 
encouraging, there is future development to be performed before a clinical validation 
can be run. We are now investigating how to handle image noise and partial volume 
artifacts. Layer 3 is sensitive to noise in the lower layers, which is why the algorithm 
depends on the MRF relaxation of Layer 2. Additionally, voxels that contain tissue 
belonging to more than one tissue class display an intensity value along the linear 
combination of the classes’ distributions. While partial volume artifacts always pre-
sent somewhat of an obstacle to segmentation, their effect becomes much more pro-
nounced in our algorithm because the entire interface between structures incorrectly 
appears abnormal. We believe these issues can be solved, and that this approach, in 
general, represents a step in a new direction towards automated tumor segmentation. 
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