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Abstract—Based on a study of the engagement process between
humans, we have developed and implemented an initial compu-
tational model for recognizing engagement between a human
and a humanoid robot. Our model contains recognizers for four
types of connection events involving gesture and speech: directed
gaze, mutual facial gaze, conversational adjacency pairs and
backchannels. To facilitate integrating and experimenting with
our model in a broad range of robot architectures, we have
packaged it as a node in the open-source Robot Operating System
(ROS) framework. We have conducted a preliminary validation of
our computational model and implementation in a simple human-
robot pointing game.

Keywords—dialogue, conversation, nonverbal communication

I. INTRODUCTION

Engagement is “the process by which two (or more) partici-

pants establish, maintain and end their perceived connection

during interactions they jointly undertake” [1] To elaborate,
...when people talk, they maintain conscientious psycho-
logical connection with each other and each will not let
the other person go. When one is finished speaking, there
is an acceptable pause and then the other must return
something. We have this set of unspoken rules that we all
know unconsciously but we all use in every interaction. If
there is an unacceptable pause, an unacceptable gaze into
space, an unacceptable gesture, the cooperating person will
change strategy and try to re-establish contact. Machines
do none of the above, and it will be a whole research
area when people get around to working on it. (Biermann,
invited talk at User Modeling Conference, 1999)

In the remainder of this paper, we first review the results of

a video study of the engagement process between two humans.

Based on this and prior studies, we have codified four types

of events involving gesture and speech that contribute to the

perceived connection between humans: directed gaze, mutual

facial gaze, conversational adjacency pairs and backchannels.

Next we analyze the relationship between engagement

recognition and other processes in a typical robot architecture,

such as vision, planning and control, with the goal of designing

a reusable human-robot engagement recognition module to

coordinate and monitor the engagement process. We then

describe our implementation of a Robot Operating System

(ROS, see ros.org) node based on this design and its validation

in a simple human-robot pointing game.

A. Motivation

We believe that engagement is a fundamental process that

underlies all human interaction and has common features

across a very wide range of interaction circumstances. At least

for humanoid robots, this implies that modeling engagement

is crucial for constructing robots that can interact effectively

with humans without special training.

This argument motivates the main goal of our research,

which is to develop an engagement module that can be reused

across different robots and applications. There is no reason

that every project should need to reimplement the engagement

process. Along with the creators of ROS and others, we share

the vision of increasing code reuse in the robotics research

and development community.

Closer to home, we recently experienced first-hand the

difference between simply implementing engagement behav-

iors in a human-robot interaction and having a reusable

implementation. The robot’s externally observable behavior

in the first version of the pointing game [2] is virtually

indistinguishable from our current demonstration (see Fig. 13).

However, internally the first version was implemented as

one big state machine in which the pointing game logic,

engagement behaviors and even some specifics of our robot

configuration were all mixed together. In order to make further

research progress, however, we needed to pull out a reusable

engagement recognition component, which caused us, among

other things, to go back and more carefully analyze our video

data. This paper is in essence a report of that work.

B. Related Work

In the area of human studies, Argyle and Cook [3] documented

that failure to attend to another person via gaze is evidence of

lack of interest and attention. Other researchers have offered

evidence of the role of gaze in coordinating talk between

speakers and listeners, in particular, how gestures direct gaze

to the face and why gestures might direct gaze away from the

face [4], [5], [6]. Nakano et al. [7]) reported on the use of the

listener’s gaze and the lack of negative feedback to determine

whether the listener has grounded [8] the speaker’s turn. We

rely upon the background of all of this work in the analysis

of our own empirical studies.

In terms of computational applications, the most closely

related work is that of Peters [9], which involves agents in

virtual environments, and Bohus and Horvitz [10], [11], which

involves a realistically rendered avatar head on a desktop

display. We share a similar theoretical framework with both



Fig. 1. Two camera views of participants in human engagement study (during directed gaze event).

of these efforts, but differ in dealing with a humanoid robot

and in our focus on building a reusable engagement module.

Mutlu et al. [12] have studied the interaction of gaze and

turn-taking [15] using a humanoid robot. Flippo et al. [13]

have developed a similar architecture (see Section III) with

similar concerns of modularity and the fusion of verbal and

nonverbal behaviors, but for multimodal interfaces rather than

robots. Neither of these efforts, however use the concepts of

engagement or connection events.

II. HUMAN ENGAGEMENT STUDY

Holroyd [2] conducted a study of human engagement behavior

in which pairs of humans sat across an L-shaped table from

each other and prepared canapés together (see Fig. 1). Each

of four sessions involved an experimenter (confederate) and

two study participants and lasted about 15–20 minutes. In the

first half of each session, the experimenter instructed the study

participant in how to make several different kinds of canapés

using combinations of the different kinds of crackers, spreads

and toppings arrayed on the table. The experimenter then left

the room and was replaced by a second study participant,

who was then taught to make canapés by the first participant.1

The eight study participants consisted of six males and two

females, all college students at Worcester Polytechnic Institute

(WPI). All sessions were videotaped using two cameras.

In our current analysis of the videotapes, we only looked

at the engagement maintenance process. We did not analyze

the participants’ behaviors for initiating engagement (meeting,

greeting, sitting down, etc.) or terminating engagement (ending

the conversation, getting up from the table, leaving the room,

etc.) These portions of the videotapes will be fruitful for future

study.

During the periods of maintained engagement, we coded

where each person was looking at each moment (i.e., at the

other person’s face, at a specific object or group of objects on

the table, or “away”), when they pointed at a specific object

or objects on the table, and the beginning and end of each per-

son’s speaking turn. Based on this analysis and the literature on

1The second half of one of the sessions is missing due to camera failure.
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Fig. 2. Time line for directed gaze (numbers for reference in text).

engagement cited above, we have identified four types of what

we call connection events, namely directed gaze, mutual facial

gaze and adjacency pairs and backchannels. Our hypothesis is

that these events, occuring at some minimum frequency, are

the process mechanism for maintaining engagement.

A. Connection Event Types

Figures 2 through 5 shows the time lines for the four types

of connection events we have analyzed and TABLE I shows

some summary statistics. In our discussion of each event

type below, we will both describe the objectively observe-

able behavior components of the event type and hypothesize

regarding the accompanying intentions of the participants. It

is also important to note that the two gestural event types,

directed gaze and mutual facial gaze, can and often do overlap

with adjacency pairs, which involve speech, and backchannels

are by definition overlapping communications. Dotted lines

indicate optional behavior.

1) Directed Gaze: In directed gaze [4], one person (the

initiator) looks and optionally points at some object or group

of objects in the immediate environment, following which the

other person (the responder) looks at the same object(s). We

hypothesize that the initiator intends to bring the indicated

object(s) to the responder’s attention, i.e., to make the ob-

ject(s) more salient in the interaction. This event is often

synchronized with the initiator referring to the object(s) in

speech, as in “now spread the cream cheese on the cracker.”

By turning his gaze where directed, the responder intends to



!"!#$%&'()$*+(

'+,-&".+'()$*+(

!"#$%&& '()($#&

*$+,$#&-$."&&

/'"&&

0)$1)&&

/0

1

Fig. 3. Time line for mutual facial gaze (numbers for reference in text).

be cooperative and thereby signals his desire to continue the

interaction (maintain engagement).

In more detail (see Fig. 2), notice first that the pointing be-

havior (1), if it is present, begins after the initiator starts to look

(2) at the indicated object(s). This is likely because it is hard

to accurately point at something without looking to see where

it is located.2 Furthermore, we observed several different

configurations of the hand in pointing, such as extended first

finger, open hand (palm up or palm down—see Fig. 1), and

a circular waving motion (typically over a group of objects).

An interesting topic for future study (that will contribute to

robot generation of these behaviors) is to determine which of

these configurations are individual differences and which serve

different communicative functions.

After some delay, the responder looks at the indicated

object(s) (4). The initiator usually maintains the pointing (1),

if it is present, at least until the responder starts looking at the

indicated object(s). However, the initiator may stop looking at

the indicated object(s) (2) before the responder starts looking

(4), especially when there is pointing. This is often because

the initiator looks at the responder’s face, assumedly to check

whether the responder has directed his gaze yet. (Such a

moment is captured in Fig. 1.)

Finally, there may be a period of shared gaze, i.e., a period

when both the initiator (3) and responder (4) are looking at

the same object(s). Shared gaze has been documented [14] as

an important component of human interaction.

2) Mutual Facial Gaze: Mutual facial gaze [3] has a time

line (see Fig. 3) similar to directed gaze, but simpler, since it

does not involve pointing. The event starts when the initiator

looks at the responder’s face (5). After a delay, the responder

looks at the initiator’s face, which starts the period of mutual

facial gaze (6,7). Notice that the delay can be zero, which

occurs when both parties simultaneously look at each other.

The intentions underlying mutual facial gaze are less clear

than those for directed gaze. We hypothesize that both the

initiator and responder in mutual facial gaze engage in this

behavior because they intend to maintain the engagement pro-

cess. Mutual facial gaze does however have other interaction

functions. For example, it is typical to establish mutual facial

gaze at the end of a speaking turn.

2Given the extreme flexibility of human behavior and the complexity of the
world, it is usually possible to creatively imagine an exception to almost any
rule such as this. For example, suppose a person is standing with his back to
a mountain range. One could imagine him quite naturally pointing over his
shoulder to “the mountains” without turning around to look at them. We will
not bother continuing to point out the possibility of such exceptions below.
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Fig. 4. Time line for adjacency pair (numbers for reference in text).
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Fig. 5. Time line for backchannel (numbers for reference in text).

Finally, what we are calling mutual facial gaze is often

referred to informally as “making eye contact.” This latter

term is a bit misleading since people do not normally stare

continously into each other’s eyes, but rather their gaze roams

around the other person’s face, coming back to the eyes from

time to time.

3) Adjacency Pair: In linguistics, an adjacency pair [15]

consists of two utterances by two speakers, with minimal

overlap or gap between them, such that the first utterance

provokes the second utterance. A question-answer pair is

a classic example of an adjacency pair. We generalize this

concept slightly to include both verbal (utterances) and non-

verbal communication acts. So for example, a nod could be

the answer to a question, instead of a spoken “yes.” Adjacency

pairs, of course, often overlap with the gestural connection

events, directed gaze and mutual facial gaze.

The simple time line for an adjacency pair is shown in

Fig. 4. First the initiator communicates what is called the first

turn (8). Then there is a delay, which could be zero if the

responder starts talking before the the initiator finishes (9).

Then the responder communicates what is called the second

turn (9,10). In some conversational circumstances, this could

also be followed by a third turn (11) in which the initiator,

for example, repairs the responder’s misunderstanding of his

original communication.

4) Backchannel: A backchannel [15] is an event (see Fig. 5)

in which one party (the responder) directs a brief verbal or

gestural communication (13) back to the initiator during the

primary communication (12) from the initiator to the respon-

der. Typical examples of backchannels are nods and/or saying

“uh, huh.” Backchannels are typically used to communicate the

responder’s comprehension of the initiator’s communication

(or lack thereof, e.g., a quizzical facial expression) and/or

desire for the initiator to continue. Unlike the other three

connection event types, the start of a backchannel event is

defined as the start of the responder’s behavior and this event

has no concept of delay.



TABLE I
SUMMARY STATISTICS FOR HUMAN ENGAGEMENT STUDY

count delay (sec)
min mean max

directed gaze succeed 13 0 0.3 2.0
fail 1 1.5 1.5 1.5

mutual facial gaze succeed 11 0 0.7 1.5
fail 13 0.3 0.6 1.8

adjacency pair succeed 30 0 0.4 1.1
fail 14 0.1 1.2 7.4

backchannel 15 n/a n/a n/a

mean time between connection events (MTBCE) = 5.7 sec
max time between connection events = 70 sec

B. Summary Statistics

Summary statistics from a detailed quantitive analysis of

approximately nine minutes of engagement maintenance time

are shown in TABLE I. The time between connection events

is defined as the time between the start of successive events,

which properly models overlapping events. We hypothesize

that the mean time between connection events (MTBCE)

captures something of what is informally called the “pace”

of an interaction [16]:

pace ∝

1

MTBCE

In other words, the faster the pace, the less the time between

connection events. Furthermore, our initial implementation of

an engagement recognition module (see Section IV) calculates

the MTBCE on a sliding window and considers an increase

as evidence for the weakening of engagement.

Two surprising observations in TABLE I are the relatively

large proportion of failed mutual facial gaze (13/24) and

adjacency pair (15/45) events and the 70 second maximum

time between connection events. Since we do not believe that

engagement was seriously breaking down anywhere during

the middle of our sessions, we take these observations as an

indication of missing factors in our model of engagement. In

fact, reviewing the specific time intervals involved, what we

found was that in each case the (non-)responder was busy with

a detailed task on the table in front of him.

III. HUMAN-ROBOT ARCHITECTURE

In general in software development, the key to making a

reusable component is careful attention to the setting in which

it will be used and the “division of labor” between the

component and the rest of the computational environment in

which it is embedded.

A. Human-Robot Setting

Fig. 6 shows the setting of our current architecture and

implementation, which mirrors the setting of the human en-

gagement study, namely a human and a humanoid robot with

a table of objects between them. Either the robot or the human

can be the initiator (or responder) in the connection event time

lines shown in the previous section.

Like the engagement maintenance part of the human study,

mobility is not part of this setting. Unlike the human study,

we are not dealing here with manipulation of the objects
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Fig. 6. Setting of human-robot interaction.

or changes in stance (e.g., turning the body to point to or

manipulate objects on the side part of the L-shaped table).

Both the human and the robot can perform the following

behaviors and observe them in the other:

• look at the other’s face, objects on the table or “away”

• point at objects on the table

• nod the head (up and down)

• shake the head (side to side)

The robot can generate speech that is understood by the

human. However, since our demonstration system (see Section

IV) does not include natural languge understanding, the robot

can only detect the beginning and end of the human’s speech.

B. Information Flow

Fig. 7 shows the information flow between the engagement

recognition module and rest of the software that operates

the robot. In ROS, this information flow is implemented via

message passing, as described in the next section. The next

section also specifies the state machine for recognizing each

connection event type.

Notice first in Fig. 7 that the rest of the robot architecture,

not including the engagement recognition module, is shown as

a big cloud. This vagueness is intentional in order to maximize

the reusability of the engagement module. This cloud typically

contains sensor processing, such as computer vision and

speech recognition, cognition, including planning and natural

language understanding, and actuators that control the robot’s

arms, head, eyes, etc. However, the exact organization of

these components does not matter to the engagement module.

Instead we focus on the solid arrows in the diagram, which

specify what information the rest of the robot architecture must

supply to the engagement module.

Starting with arrow (1), the engagement module needs to

receive information about where the human is looking and

pointing in order to recognize human-initiated directed gaze

and mutual facial gaze events. It also needs to be notified of

the human’s head nods and shakes in order to recognize human

backchannel events and human gestural turns in adjacency pair

events.

The engagement module also needs to be notified (2)

of where the robot is looking (in order to recognize the

completion of a human-initiated directed gaze or mutual facial
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Fig. 7. Information flow between engagement recognition and the rest of robot architecture (numbers for reference in text).

gaze), pointing and when the robot nods or shakes. This may

seem a bit counterintuitive at first. For example, would not the

engagement module be more useful if it took responsibility

for making the robot automatically look where the human

directs it to look? The problem with this potential modularity

is that the decision of where to look can depend on a deep

understanding of the current task context. You may sometimes

ignore an attempt to direct your gaze—suppose you are in the

midst of a very delicate manipulation on the table in front

of you when your partner points and says “look over here.”

Such decisions need to be made in the cognitive components of

the robot. Similarly, only the cognitive components can decide

when the robot should point and whether it should backchannel

comprehension (nod) or the lack thereof (shake).

Robot engagement goals (3) trigger the engagement recog-

nition module to start waiting for the human response in all

robot-initiated event types, except backchannel (which does

not have a delay structure). For example, suppose the (cog-

nitive component of the) robot decides to direct the human’s

gaze to a particular object. After appropriately controlling the

robot’s gaze and point, a directed-gaze engagement goal is

then sent to the engagement component.

The floor in a conversational interaction simply refers to

who is the (primary) person currently speaking (communi-

cating). Floor change information (3) is needed to support

recognition of adjacency pair events. In natural spoken con-

versation, people signal that they are done with their turn via

a combination of intonation (dropping tone), gesture (mutual

facial gaze) and utterance semantics (e.g., a question). The

engagement module thus relies on the rest of the robot

architecture, such as speech recognition and natural language

understanding, to decide when the human is beginning and

ending his/her turn. Similarly, only the cognitive component

of the robot can decide when/whether to take and/or give up

the robot’s turn.

Arrow (4) summarizes the information that the engagement

recognition module provides to the rest of the robot archi-

tecture to coordinate and monitor the engagement process.

First, the module provides notification of the start of human-

initiated connection events, so that the robot can respond. The
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Fig. 8. Internal architecture of engagement recognition module.

module also provides real-time feedback on the successful or

unsuccessful completion of robot-initiated connection events

(engagement goals). For example, if the robot directs the

user’s gaze to an object and the user does not look, the

engagement module notifies the rest of the architecture, so that

the robot can try again, if necessary. Finally, the engagement

module provides various ongoing statistics, similar to those in

TABLE I, which the robot can use to gauge the health of the

engagement process and decide, for example, to initiate more

connection events.

C. Engagement Recognition Module

Fig. 8 shows the internal architecture of the engagement

recognition module, which consists of four parallel recognizers

that feed information to an integrator process. More than

one recognizer may be active at one time (i.e., overlapping

connection events), but only one event of each type may

be in progress at any time. As shown in the figure, each

recognizer responds to a subset of the information coming into

the recognition module. The state machine for each recognizer

is shown in the next section.

Each recognizer reports its start time, end time and, except

for backchannel, its delay duration and whether it successfully
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Fig. 9. Recognizer for directed gaze (see Fig. 2).
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Fig. 10. Recognizer for mutual facial gaze (see Fig. 3).

completed its time line or failed (typically because the delay

exceeded a threshold).

The integrator process incrementally calculates the mean

and maximum time between connection events, the mean and

maximum delay times and the number of failed events per

unit time, over both a recent time window and the whole

interaction (baseline). All of these statistics are available to the

rest of the robot architecture to provide an adaptive estimate of

the current strength of engagement. For example, increases in

recent versus baseline time between connection events, delay

time and/or failure rate may indicate the human’s desire to

disengage. Exactly how to weigh these factors along with

other information, such as the content of what the human says,

is beyond the scope of the engagement recognition module.

Future experimentation with the system may yield further

insight into this issue.

IV. HUMAN-ROBOT IMPLEMENTATION

To implement the architecture described in the preceding

section, we chose the ROS framework, because it offered the

highest likelihood that our work could be easily shared with

other robot researchers and developers. Each of the recognizers

in Fig. 8 is implemented as a finite state machine which

follows the time line of the corresponding connection event

type. These recognizers, together with code implementing the
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Fig. 12. Recognizer for backchannel (see Fig. 5).

statistics described above are then packaged into what is called

a node in ROS.

A. Recognizers

Figures 9 through 12 show pseudocode-level state machine

diagrams for recognizing each of the four connection event

types described by the corresponding time lines in Figures

2 through 5. Notice that the time lines, because they are

descriptions from an outside observer’s point of view, are

symmetric when applied to human-robot interaction, i.e., either

the human or the robot can be the initiator or responder for

a particular event occurrence. The state machines, however,

because they are computations from the point of view of the

robot, are asymmetric, i.e., they follow different state transition

paths for human-initiated versus robot-initiated events.

Each state machine starts in the state labeled Start and

terminates in either a Succeed or Fail state, at which point

the relevant statistics for the event occurrence are provided

to the statistics process (see Fig. 8). State transitions occur in

response to messages coming into the engagement recognition

module. Some anomalous transitions have been suppressed for

readability, but are included in the ROS documentation.

1) Directed Gaze: In Fig. 9, recognition of a human-

initiated directed gaze event is triggered by the human looking

and optionally pointing at an object. After transitioning to the



Human Waiting state, the recognizer waits until either the

robot decides to respond by looking at the same object (in

which case the Shared Gaze state is entered), or time runs

out, or the robot decides it wants to make eye contact or

direct the human’s gaze to another object instead (in which

case the event fails). The Shared Gaze state always transitions

to Succeed, which occurs when either the human or robot stops

looking at the directed object.

The state transition path for recognizing a robot-initiated

directed gaze event is similar, except that the directed gaze

goal (robot intention) triggers the transition from Start to

Robot Waiting. At this point, the robot is supposed to already

be looking and optionally pointing at the directed object. As

before, the recognizer waits, in this case until the human looks

at the directed object, before entering the Shared Gaze state.

If time runs out or the robot decides to make eye contact and

is not also pointing, then the event fails.

2) Mutual Facial Gaze: Fig. 10 has a similar state structure

to directed gaze, with a Mutual Facial Gaze state instead

of Shared Gaze. The Mutual Facial Gaze state transitions

to Succeed when either the robot or the human breaks eye

contact. As in directed gaze, the Human Waiting and Robot

Waiting states correspond to the recognition of human-initiated

and robot-initiated events, respectively, and each of these states

may lead to failure due to timeout. Also, at the point that the

mutual facial gaze goal message arrives, the robot is supposed

to already be looking at the human’s face. Finally, if the robot

decides to look at another object (directed gaze goal) during

either the Human Waiting or Robot Waiting state, the event

fails (because the robot cannot both make eye contact and look

at an object at the same time).

3) Adjacency Pair: The state machine in Fig. 11 for rec-

ognizing adjacency pair events also has Human Waiting and

Robot Waiting states (with timeouts to failure), on the human-

initiated and robot-initiated recognition paths, respectively. All

the other transitions in this recognizer depend on floor change

messages, which come in two forms: taking the floor and

giving up the floor. Unlike the previous two recognizers, this

state machine could in fact be written more compactly in

terms of an initiator and responder, but for consistency of

understanding we have expanded out separate paths for the

human and robot.

We have not yet implemented the handling of third turns

or barge-in (when one party starts taking a turn—not just a

backchannel—without the other party first yielding the floor).

4) Backchannel: The state machine in Fig. 12 has no delays

or failure states. Basically, the machine keeps track of who has

the floor so that it can recognize a backchannel nod or shake

by the other party.

B. ROS Node

ROS is a distributed framework of processes (called nodes)

that communicate via message passing. Nodes are grouped into

packages, which can be easily shared and distributed. We have

contributed a package called “engagement,” which currently

Fig. 13. The pointing game.

TABLE II
SUMMARY STATISTICS FOR HUMAN-ROBOT DEMONSTRATION

count delay (sec)
min mean max

directed gaze succeed 19 0 0.4 2.3
fail 50 0 1.6 3.0

mutual facial gaze succeed 43 0 0.3 1.6
fail 36 0.1 0.7 1.8

adjacency pair succeed 21 0 1.0 2.4
fail 12 3.1 3.1 3.1

mean time between connection events (MTBCE) = 3.0 sec
max time between connection events = 9.9 sec

contains a single node called “recognition.” (We eventually

expect to add a “generation” node—see Future Work.)

Information flows into and out of an ROS node via messages

(called topics) and services. Services are a higher-level abstrac-

tion that uses messages to implement return values (similar to

remote procedure call). Each type of information flowing into

the engagement recognition node (see Fig. 7), except for the

robot engagement goals, is a separate ROS topic (message

type).

C. Preliminary Validation

As a preliminary validation of our computational model and

implementation, we developed a simple human-robot demon-

stration, which we call the “pointing game” (see Fig. 13),

that naturally includes the three main engagement behaviors

we are studying (no backchannels). Our humanoid robot was

built by Michaud et al. at U. Sherbrooke (Canada). We used

Morency’s Watson system [17] for face and gaze tracking and

detecting head nods and shakes, and OpenCV to implement

plate and hand tracking. Since the focus of our research is on

engagement and collaboration, we have simplified the robot’s

vision problem as much as possible. We used Collagen [18]

for the cognitive component of the robot.

In the pointing game, several plates of different colors are

place randomly on the table between the human and robot.

The robot starts the game by saying “Please point at a plate.”

The human is then expected to respond by pointing at any

plate. The robot identifies the chosen plate by pointing to it

and saying, for example, “You pointed at the red plate.” If the



human does not respond within a certain amount of time, the

robot asks “Do you want to stop now?” If the human nods

yes, the robot says “Thank you for playing”; if he shakes no,

then the robot repeats its last request.

Our first step was to choose values for the single ad-

justable parameter of each state machine in Figures 9 through

12, namely the delay timeout. We did this subjectively by

testing different values starting with the minimum, mean

and maximum delays observed in the human study for the

corresponding failed event types (see TABLE I). For this

testing, we used a simple programming loop in which the

robot repeatedly initiated the same event type over and over

and waited for the human to respond. The subjectively best

delay timeout values were 3.0 sec. for directed gaze, 1.8 sec.

for mutual facial gaze and 3.1 sec for adjacency pair. When

the timeouts were less than these values, the robot tended to

go on before we had time to react; when the timeouts were

greater, it felt like we were waiting for the robot a lot.

Next we had three WPI students play the pointing game

and collected the aggregated statistics shown in TABLE II.

Comparing this data overall with the human data in TABLE I

provides a positive preliminary validation. In more detail, no-

tice that the overall pace (MTBCE) was faster in the pointing

game than in the human study. We believe this is because the

task content in the human study (making canapés) required

more thinking time compared to the trivial pointing game.

Also, the anomalous (less than timeout) values for minimum

delay in failed directed gaze and mutual facial gaze events are

due to the fact that, in the current pointing game generation

code, the robot sometimes proceeds without responding to

human-initiated connection events.

V. FUTURE WORK

The most immediate future work is a larger, controlled human-

robot study to further validate the engagement recognition

model and implementation, using a collaborative task that is

more similar in complexity to making canapés. The study

should compare conditions in which the delay timeouts are

more systematically varied and in which various parts of

the recognizer state machines are disabled. Comparisons will

include objective measures, such as time and quality of task

completion, and subjective post-study questions to the partic-

ipants about the robot, such as how attentive it seemed, how

easy it was to collaborate with, etc.

We have also started working on the problem of how to

factor the generation of engagement behaviors into a separate

reusable module with abstract interfaces to the rest of a generic

robot architecture. The decisions in this module concern when

the robot should initiate connection events and when/whether

it should respond to human-initiated events.

Finally, as mentioned in Section II, we do not believe

that the current taxonomy of connection events provides a

complete account of the engagement process, particularly as

we move beyond the maintenance phase to formalize the

initiation and termination of engagement. For example, the

effect on engagement of many kinds of nonverbal social

and emotional transactions between people, such as laughing,

smiling, waving, fidgeting in your seat, etc., need to be studied

(even though it may be a while until robotic technology is ca-

pable of recognizing or producing all of these). Also, although

Bohus and Horvitz [10] have started to model engagement

in multiperson interactions, further development of detailed

behavioral models, such as those in this paper, is needed.
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