
Recognizing Exponential
Inter-Contact Time in VANETs

Hongzi Zhu∗†, Luoyi Fu∗, Guangtao Xue∗, Yanmin Zhu∗, Minglu Li∗ and Lionel M. Ni∗†
∗Shanghai Jiao Tong University

†Hong Kong University of Science and Technology
{hongzi, yiluofu, gt xue, yzhu, mlli}@sjtu.edu.cn, ni@cse.ust.hk

Abstract—Inter-contact time between moving vehicles is one
of the key metrics in vehicular ad hoc networks (VANETs) and
central to forwarding algorithms and the end-to-end delay. Due
to prohibitive costs, little work has conducted experimental study
on inter-contact time in urban vehicular environments. In this
paper, we carry out an extensive experiment involving thousands
of operational taxies in Shanghai city. Studying the taxi trace
data on the frequency and duration of transfer opportunities
between taxies, we observe that the tail distribution of the inter-
contact time, that is the time gap separating two contacts of
the same pair of taxies, exhibits a light tail such as one of
an exponential distribution, over a large range of timescale.
This observation is in sharp contrast to recent empirical data
studies based on human mobility, in which the distribution of
the inter-contact time obeys a power law. By performing a least
squares fit, we establish an exponential model that can accurately
depict the tail behavior of the inter-contact time in VANETs.
Our results thus provide fundamental guidelines on design of
new vehicular mobility models in urban scenarios, new data
forwarding protocols and their performance analysis.

Index Terms—vehicular ad-hoc networks; inter-contact time
distribution; exponential tail; empirical data analysis

I. INTRODUCTION

Vehicular ad hoc networks (VANETs) are recognized as
an important component in the next generation of intelli-
gent transportation systems, to improve safety, security and
efficiency of transportation systems and enable new mobile
services to the public. In VANETs, vehicles equipped with
wireless communication devices can transfer data with each
other (vehicle-to-vehicle communications) as well as with the
roadside infrastructure (vehicle-to-roadside communications).
In order to successfully transfer data from a vehicle to another,
the vehicle needs to first wait until it geographically meets
other vehicles (within the communication range of each other)
for data-relay. Applications based on this type of data transfer
will strongly depend on vehicular mobility characteristics,
especially on how often such communication opportunities
take place and on how long they last.In this paper, we focus
on studying the metric called inter-contact time [1], [13],
[14], which denotes the time elapsed between two successive
contacts of the same two vehicles. Since data transfer arises
in a store-carry-forward fashion, the inter-contact time of the
two vehicles is a major component of the end-to-end delay, as
it presents how long it takes to encounter the other mobile
vehicle to have any chances to forward/relay the data for
communications. Larger inter-contact time results in larger

end-to-end delay.
In the literature, there have been many studies on the char-

acteristics of the inter-contact time in delay tolerant networks
(DTNs) and mobile ad hoc networks (MANETs). Most of
these results focus on theoretical models such as random walk
mobility models (RWM) [2]–[4], random waypoint mobility
models (RWP) [6]–[8] and random direction mobility models
(RDM) [9]. For example, numerical simulations [4], [10], [11]
based on RWP models show that the inter-contact time is
exponentially distributed. Further, authors in [12] rigorously
prove that a finite domain is one of the key aspects in
creating the exponential inter-contact time tail distribution.
This is because finite boundaries actually force mobile node
to move only within a certain region and hence increase the
meeting opportunities between nodes. While theoretical mo-
bility models facilitate problem analysis, they are far beyond
reality and not practical in designing networking protocols for
real systems and their performance analysis. Recently, some
empirical results [1], [13], [14] based on human mobility show
that the tail distribution of the inter-contact time is far from
being exponential, but can be approximated or lower bounded
by a power law. In order to have a better understanding of
practical constraints in opportunistic data transfer between
vehicles, experiments involving thousands of vehicles over a
long time span of months are in pressing demand. However,
due to vast deployment costs, there is no existing work, to the
best of our knowledge, studying vehicular inter-contact time
distribution in urban settings based on real experiments.

In this paper, we collect real motion traces from about 2,100
operational taxies for over one month in Shanghai city, the
biggest metropolis in China. We then check contacts between
each pair of taxies using a sliding time window. By analyzing
the large volume of trace data, we surprisingly find that the tail
distribution of the inter-contact time between taxies follows an
exponential distribution on a large range of timescale, other
than a power law exhibited in human mobility [1], [13], [14].
This implies that, to some extent, taxies can frequently meet
with each other. Thus, data delivery would experience smaller
end-to-end delay. We further perform a least squares fit to
establish the accurate model capturing the tail behavior of
the inter-contact time in VANETs. Our findings thus provide
fundamental guidelines on design of new vehicular mobility
models in urban scenarios, new data forwarding protocols and
their performance analysis.



Fig. 1. A taxi with a commercial GPS device installed, the highlight area
in the inset shows a device consisting of a commercial GPS receiver and a
GPRS wireless communication module.

The rest of this paper is structured as follows. Section
II is dedicated to related work. We describe the empirical
data analysis in Section III. In Section IV, we present the
exponential model that can perfectly depict the tail behavior of
the inter-contact time. Finally, concluding remarks and outline
the directions for future work are described in Section V.

II. RELATED WORK

In VANETs, to perform data transfer, two vehicles have to
wait until they are within each other’s communication range.
This type of data transfer paradigm is much related to both
delay-tolerant networking and mobile ad hoc networking. In
the literature, bunches of studies have made their effort on
revealing the relationship between the underlying mobility
models of nodes and the consequent characteristics of the
inter-contact time in MANETs. In general, these studies can
be classified into two categories: theoretical mobility models
based and empirical trace based.

A majority of research results have uncovered a common
property of many theoretical mobility models that the tail of
the inter-contact distribution decays exponentially. In other
words, for these models, the inter-contact time is light tailed.
For example, authors in [4], [10], [11] draw this conclusion
through numerical simulations based on RWP mobility mod-
els. Furthermore, some theoretical results show that the first
and second moments of the inter-contact time are bounded
above under Brownian motion model on a sphere. In particular,
authors in [12] prove that a finite boundary is a major
factor that causes the exponential tail behavior under any
RWP mobility model and any RWM mobility model. While
using theoretical mobility models simplifies problem analysis,
they are inconsistent with the reality and thus impractical in
designing networking protocols for real systems.

In recent years, there has emerged more research work
taking experimental study on the characteristics of the inter-
contact time. For example, authors in [1], [13], [14] find that
the tail behavior of the inter-contact time based on human mo-
bility is far from being exponential but is close to a power law
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Fig. 2. The geometry of destinations of all taxi deliveries on Shanghai
map during February of 2007. Every colored dot presents the average number
of destinations per taxi per day located in a corresponding 300m × 300m
square area on the map. The inset shows aggregated GPS report distribution
(destinations not involved).

instead. These results are based on real traces such as human
contacts while at conferences [14], campus WiFi login records
[13], [15] and a Bluetooth network containing hundreds of
people in an office [14]. It is apparent that the mobility of
vehicles is significantly different from that of human beings
in terms of speed, constraints of road transportation systems
and travel distance. Although these empirical results based on
human mobility depict another scene of the inter-contact time
distribution, the situation in vehicular environments is still left
unknown.

DieselNet [16] at UMass consisting of 40 buses studies the
aggregated inter-contact time distribution at a granularity of
bus route and find a clear periodic structure in the inter-contact
times between two bus routes. For the lack of enough contact
samples between two individual buses, the bus trace data are
not sufficient for studying the distribution of the inter-contact
time between two individual buses. In the RAPID routing
protocol [17], it is assumed that the distribution of bus inter-
contact times is exponential to make their problem tractable.

III. EMPIRICAL DATA ANALYSIS

In order to investigate the frequency and duration of con-
tacts between vehicles in urban environments, it is of great
importance to study real trace data involving a large number of
mobile vehicles. In this section, we first give a brief description
of the taxi trace data collected in the SG project [18], [19]. We
then present the inter-contact time characteristics embedded
in the trace data. Finally, we discuss the possible reasons
behind our key observation on the vehicular inter-contact time
distribution.

A. Collecting Vehicular Trace Data

To study realistic vehicular mobility in urban scenarios, an
experiment which involves a large number of vehicles and
covers a sufficiently long time period is essential.
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Fig. 3. Extract contacts from GPS reports of vehicle v1 and v2. Boxes in
dotted line denote sliding time windows of different granularities used to check
contacts. Individual GPS reports are presented by short arrow line segments.

For this purpose, we collect motion trace data from 2,100
taxies in Shanghai city during the whole month of February in
2007 (available at http://www.cse.ust.hk/dcrg). The geometry
of destinations of all taxi deliveries on Shanghai map is shown
in Fig. 2. A commuting taxi equipped with a commercial
GPS receiver and a GPRS wireless communication module
is shown in Fig. 1. As a taxi runs along the roads in the
city, it periodically sends a report back to a data center via
a GPRS channel. Due to the GPRS communication cost for
data transmission, reports are sent at a time interval of one
minute reports are sent at a time interval of one minute when
a taxi is loaded and of about 15 seconds when it is vacant.
The information contained in such a report includes: the taxi’s
ID, the longitude and latitude coordinates of the taxi’s current
location, report timestamp, the instant speed and heading angle
of the taxi and the status of the taxi (i.e., whether the taxi has
passengers onboard).

B. Computing Inter-Contact Times

In this paper, we are interested in how often transfer
opportunities can occur between vehicle pairs since it is the
key factor that impacts the end-to-end delay for data delivery
in VANETs.

1) Contact Extraction from Trace Data: Ideally, all connec-
tion opportunities encountered twenty-four hours a day, with a
granularity measured in seconds should be recorded in the data
for study. Since we collect GPS reports in discrete time, we
use a sliding time window to check contacts between a pair of
taxies. Here we make the assumption that two vehicles would
be able to communicate (called a contact) if their locations
reported within the time window are within the communication
range. For the example in Fig. 3, suppose we have two real
contacts C1 and C2 happening between vehicle v1 and v2.
As v1 and v2 keep sending reports, given a communication
range, we can slide a time window along the time axis to
check contacts.

The above assumption, though, can introduce inaccuracies
in the following two cases.

First, if a relatively large time window is used, we may
introduce false contacts into consideration. This is because
two taxies may have already run far away from their reported
locations. Therefore, the retrieved contact may never really
exist. For example, in Fig. 3, we may get a false contact C ′

3

if a large time window t2 is used even though there is no real
contact at all. The consequence of introducing false contacts
is that it increases the weight of small values of inter-contact
times in the distribution since these false contacts cut large
inter-contact times into small pieces.

Second, if a small time window is used, we may omit
real connection opportunities. This is because two taxies
might indeed have a contact but did not send out reports
simultaneously. In this case, we may not capture this contact
due to the small size of the time window. This is the case of
contact C2 as shown in Fig. 3. The consequence of omitting
real contacts is that it causes large values of inter-contact times
since two real small inter-contact times are now considered as
a single huge one. Moreover, using small time windows to
check contacts can add the weight of small values into the
inter-contact times distribution. For example, in Fig. 3, we
will get C ′

1 and C ′
2 rather than the real one, C1, when we

take t1 to check contacts. To eliminate this effect of using a
small time window, we calculate the correlation between two
contacts with a small inter-contact time. Specifically, given the
reported locations and speeds of each taxi, we calculate the
remaining contact time of the first contact as the time these
two taxies move along the same directions and at the same
speeds before they are out of the communication range. If
the second contact is contained within the remaining contact
time of the first contact, we make a decision that these two
contacts should be merged into one. Vice versa, we can infer
when the second contact started and further check whether the
first contact can be merged.

Despite these inaccuracies, the taxi GPS trace data are very
valuable to study vehicular mobility models since they cover
thousands of vehicles and last for one month. In addition, as
most of the GPS reports are sent at a relatively small period (48
seconds on average), the deviation of the computed distance
of two reported locations within such a small time window
from the actual distance between two taxies is small.

2) Inter-Contact Time Computation: We refer to inter-
contact time as the time elapsed between two successive
contacts of the same vehicles as defined in [1], [13], [14].
Specifically, the inter-contact time is computed at the end of
each contact, as the time period between the end of this contact
and the start of the next contact between the same two vehicles.
It should be noted we do not take into consideration the inter-
contact starting after the last contacts.

IV. MODELING INTER-CONTACT TIME

The distribution of inter-contact times is computed among
all pairs of 2,109 taxies during the whole February in 2007.
We get six different sets of inter-contact times by combining
different communication ranges and time window sizes used in
the contact extraction. The time windows are set to one second,
thirty seconds and one minute, respectively, accompanied with
two communication ranges of 50 meters and 100 meters [20].
We plot the inter-contact time distribution for the selected trace
data in Fig. 4.
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Fig. 4. Tail distribution of the inter-contact time : data collected from 2,109
taxies in Shanghai city during the whole February of 2007. Contacts are
collected under three different time windows of one second, thirty seconds
and one minute and two communication ranges of 50 meters and 100 meters.

A. Identifying Exponential Inter-Contact Time Tail

All plots in Fig. 4 describe the tail distribution function,
i.e., P{X > t}, in linear-log scale.The most interesting part
in Fig. 4 is that all plots exhibit a very clear exponential tail,
i.e., P{X > t} ∼ e−βt. This can be indicated by the fact that
all plots are almost straight lines with different negative slopes
in linear-log scale, from the very beginning of time and over
a large range of timescale.

Besides the exponential parts, we also notice that, gradually,
all six distributions start to deviate from the exponential decay
and drop faster till the end. This rapid cutoff is caused by
the limited duration of the trace data, i.e., one month in our
experiment. The reason is that inter-contact times that last
longer than the duration of the trace data cannot be observed
and those ones with very large values close to the duration
are less likely to be found. Consequently, the weight of large
values of inter-contact times in the distribution is biased. It
should be noted that the cutoff part of data should not be
used for regression as they can be considered as artifacts to
the tail distribution. The effect of limited observation duration
has also been noted in Augustin Chaintreau et al’s study based
on human mobility [1].

B. Establishing Model Parameters

To identify the exponent constant β, we perform the least-
square regression analysis to the extracted inter-contact time.
More specifically, we separate the whole regression processing
into two steps.

First, we need to identify the divide point from which
the tail distribution function stops exponential decay. This
can be achieved by seeking for the divide point from which
the second derivatives (decay acceleration) of the log-scaled
P{X > t} are nonzero. The physical meaning of using the
second derivatives is clear since a nonzero second derivatives
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Fig. 5. Tail distribution of the inter-contact time under the time window
of one minute and the communication range of 100 meters is very well
approximated by an exponential-like distribution y = e-?t with = 3.7110-
6. We omit artifact part in the observed data by examining the nonzero decay
acceleration in the tail distribution plot.

of a plot indicates the plot is nonlinear. In practice, we take a
small positive value ε = 0.1 to determine the divide point.

Second, we apply polynomial regression to the log-scaled
P{X > t} over the range from the first point to the divide
point. The significance of the regression is measured by the

coefficient of determination r2 = 1 −
∑

i
(yi−ȳ)2∑

i
(yi−mi)2

, where yi

denotes the sample value with mean ȳ whereas mi is the
modeled value.

For example, we apply this exercise to the lowest plot in Fig.
4. Fig. 5 shows the regression result where the tail distribution
of inter-contact time is very well approximated (r2 > 0.98) by
an exponential distribution P{X > t} = e−3.71×10−6t when
time is counted in seconds.

The surprising finding of the exponential decay on the
inter-contact time tail distribution is thus in a sharp contrast
to several recent empirical results on the inter-contact time
based on extensive human mobility traces [1], [13], [14].
These results indicate that the tail behavior of the inter-contact
time can be approximated or lower bounded by a power law,
i.e., P{X > t} ∼ t−α, for some constant α > 0. More
spectacularly, it was shown that the power law exponent α is
normally less than one, making the expected end-to-end delay
tend to be infinite, independent of any forwarding algorithm,
if the network only contains a finite number of devices. In this
paper, we claim that the tail distribution of the inter-contact
time based on vehicular mobility satisfies an exponential decay
or a light tail. An exponential decay means the tail distribution
function decreases rapidly over this range. For example, in the
lowest plot in Fig. 4, about 45% of inter-contact times are
greater than one day, and only 5% are greater than one week.
This discrepancy calls for the design of new vehicular mobility
models in urban scenarios, new data forwarding protocols and
their performance analysis.



V. CONCLUSION AND FUTURE WORK

In this paper we collected real GPS trace data of about
two thousand operational taxies for one month. We checked
possible contacts between each pair of taxies upon discrete
location information. By analyzing all contacts between any
pair of taxies, we surprisingly found that the tail distribution
of the inter-contact time between taxies follows an exponential
distribution on a large range of timescale as opposed to
a power low distribution as discovered by previous work.
Our results thus provide fundamental guidelines on design
of new vehicular mobility models in urban scenarios, new
data forwarding protocols and their performance analysis in
VANETs.

There are still many aspects for us to investigate in the
future. For example, we will investigate what are the key
factors that generate exponential tail distributions of inter-
contact time in VANETs. Theoretical models depicting these
key factors should also be created and the soundness of
these models should be checked with different vehicles and
in different environments. Moreover, it is often assumed in
the literature that data transfers can be done instantaneously
as soon as two vehicles have a chance to meet. It is definitely
not the case in reality where link quality shows very high
dynamics. The situation is even worse when consider the same
problem in vehicular environments because contacts between
vehicles are usually quite short due to high moving speeds
and limited communication range. Thus, we will investigate
the ultimate end-to-end delay since it can be caused not only
by inter-contact times but also by retransmissions if the data
transfer fails in a contact.
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