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Abstract. This paper explores the use of local parametrized models of image motion for recovering and recognizing

the non-rigid and articulated motion of human faces. Parametric flow models (for example affine) are popular for

estimating motion in rigid scenes. We observe that within local regions in space and time, such models not

only accurately model non-rigid facial motions but also provide a concise description of the motion in terms of a

small number of parameters. These parameters are intuitively related to the motion of facial features during facial

expressions and we show how expressions such as anger, happiness, surprise, fear, disgust, and sadness can be

recognized from the local parametric motions in the presence of significant head motion. The motion tracking and

expression recognition approach performed with high accuracy in extensive laboratory experiments involving 40

subjects as well as in television and movie sequences.
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1. Introduction

The recognition of facial expressions in image se-

quences with significant head motion is a challenging

problem with many applications for human-computer

interaction. Yet, while the coincidence of head and

facial feature motion is prevalent in human behavior,

it has so far attracted only little attention as a motion

estimation problem. Previous work has typically fo-

cused on one part of the problem or the other: ei-

ther rigid head tracking (Azarbayejani et al., 1993a,

1993b) with no facial expressions or expression recog-

nition with either no motion at all (Yuille and Hallinan,

1992) or a roughly stationary head with a changing ex-

pression (Terzopoulos and Waters, 1993; Yacoob and

Davis, 1994). Here we propose a simple model of rigid

and non-rigid facial motion using a collection of local

parametric models. The image motions of the face,

mouth, eyebrows, and eyes are modeled using image

flow models with only a handful of parameters. The

motions of these regions are estimated over an image

sequence using a robust regression scheme (Black and

Anandan, 1996) which makes the recovered motion pa-

rameters stable under adverse conditions such as mo-

tion blur, saturation, loss of focus, etc. These recov-

ered parameters correspond simply and intuitively to

various facial expressions. We illustrate how the mo-

tion parameters can be used to recognize facial expres-

sions even in situations where the motion of the head is

large.
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Models used in recognizing facial expressions vary

in the amount of geometric information about head

shape and motion they contain. At one extreme are

approaches which employ physically-based models

of heads including skin and musculature (Essa and

Pentland, 1994; Terzopoulos and Waters, 1993). A

slightly weaker model uses deformable templates to

represent feature shapes in the image (Yuille and

Hallinan, 1992). At the other extreme is the work of

Yacoob and Davis (1994) in which they recognize fa-

cial expressions using statistical properties of the opti-

cal flow with only very weak models of facial shape.

In this paper we explore a middle ground between the

template-based approaches and the optical flow-based

approaches in which we represent rigid and deformable

facial motions using piecewise parametric models of

image motion. These models provide greater abstrac-

tion and robustness than the purely flow-based meth-

ods yet are weaker than models which incorporate de-

tailed information about shape. While parametric flow

models (for example affine) are popular for estimating

motion in rigid scenes (Bergen et al., 1992; Black and

Anandan, 1996; Black and Jepson, 1994), their applica-

tion to non-rigid motion is unconventional. However,

within local regions in space and time, such models not

only accurately model non-rigid facial motions but also

provide a concise description of the motion in terms of

a small number of parameters.

To model the rigid motion of a face in the image we

make the simple assumption that the majority of the

face can be modeled by a plane. More complex mod-

els can be employed (for example an ellipsoid) but the

planar model is particularly simple as the image mo-

tion of a plane can be described by eight parameters. A

face is neither planar nor strictly rigid but, when robust

Figure 1. Illustration showing the parametric motion models employed and an example of a face undergoing a looming motion while smiling.

estimation techniques are employed, the simple planar

model can be used in situations where there are out-

liers due to non-planarity or non-rigidity. This planar

model is sufficient for recovering qualitative informa-

tion about the motion of the head. More sophisticated

models could be used if accurate information about the

3D motion of the head is required.

The image motions of the facial features (eyes,

mouth and eyebrows) are modeled relative to the head

motion using different parametric models. For the eyes

a simple affine model is used. For the brows and mouth

an affine model is augmented with an additional curva-

ture parameter to account for the arching of the brows

and curvature of the mouth during smiling. Addition-

ally, the nose region can be tracked, if desired, using

an affine model. In this paper we do not address the

problem of initially locating the various facial features;

this topic has been addressed in (Chow and Li, 1993;

Yacoob and Davis, 1993; Yuille et al., 1989). Notice

that while the motion of the entire face can be quite

complicated, when it is broken down into parts, the

motion of each part can be modeled very simply.

The approach is summarized as follows (and is illus-

trated in Fig. 1). Given the location of the face, eyes,

brows, and mouth, estimate the rigid motion of the face

region (excluding the deformable features) between

two frames using a planar motion model. This esti-

mation is performed using a robust statistical approach

to cope with violations of the rigid plane assumption.

The motion of the face is used to register the images

via warping and then the relative motion of the fea-

ture regions is estimated in the coordinate frame of the

face using exactly the same robust estimation proce-

dure. The motion estimates of the face and features are

used to predict their locations in the next frame and the
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process is repeated. The estimated motion parameters

provide a simple abstraction of the underlying facial

motions and can be used to classify the type of rigid

head motion and the facial expression.

In the following section we review previous work on

facial feature tracking and expression recognition. Sec-

tion 3 presents the parametric motion models used for

the various facial features and describes the robust esti-

mation scheme used to recover the motion parameters.

These parameters are related to our mid- and high-level

representations of facial expressions in Section 4. Then

Section 5 discusses the results of tracking experiments

with various expressions and rigid head motions. The

results of extensive testing of the recognition method

are presented in Section 6 along with an analysis of the

approach.

2. Previous Work

2.1. Human Facial Tracking

Head tracking involves tracking the motion of a rigid

object performing rotations and translations while fa-

cial feature tracking involves tracking diverse non-rigid

deformations that are limited by the anatomy of the

head. There are two basic types of feature tracking:

feature boundary and feature region tracking. Feature

boundary tracking attempts to track and accurately de-

lineate the shapes of the facial features—e.g., to track

the contours of the lips and mouth opening (Kass et al.,

1987; Terzopoulos and Waters, 1993; Blake and Isard,

1994). Feature region tracking, on the other hand, ad-

dresses the simpler problem of tracking a region en-

compassing the face feature, paying little if any atten-

tion to the detailed shape of the feature. In this paper

we focus on the latter tracking approach, and show that

it allows us to capture and describe several aspects of

the rich repertoire of facial expressions.

Face features are subject to one or more of the fol-

lowing motions: rigid, articulated, and deformable mo-

tions. The rigid motion is due to the head’s translation or

rotation. The articulated motion includes the motion of

the lower jaw during speech and several facial expres-

sions (e.g., ‘surprise’ expression). Typical deformable

motions are due to muscle contractions and expansions

that accompany speech and facial expressions.

An approach for rigid head tracking and motion es-

timation by tracking points with high Hessian was pro-

posed in (Azarbayejani et al., 1993b). Several such

points are tracked over the head and the 3-D motion

parameters of the head are recovered by solving an

over-constrained set of motion equations. The ap-

proach does not deal with facial expressions.

Essa and Pentland (1994) proposed a 3-D model-

based approach for tracking facial features. They as-

sumed that a mesh was placed on the face and used

the optical flow field to displace the mesh vertices and

recover the location of points on the face during the fa-

cial deformation. Rigid head motion was not allowed

as there was no way to factor the optical flow into sep-

arate head and feature motions.

In a related approach Essa et al. (1994) used a

template-based strategy for recognizing facial expres-

sions. Such an approach lacks explicit information

about the motion of the features and may prove hard

to generalize to situations with significant head mo-

tion. Head motion causes the appearance of the fea-

tures to change thus requiring multiple templates to

recognize the same expression under different viewing

positions.

Li et al. (1993) proposed a model-based approach

that assumes that a 3-D mesh has been placed on the

face in the image, and that the depths of points on

the face have been recovered. They proposed algo-

rithms for recovering the rigid and non-rigid motions

of the face from the sequence of images, and reapplied

these motions to create an approximation to the ini-

tial sequence. Their model-based approach employed

knowledge about the anatomy of the face to constrain

the estimation of the non-rigid facial motion.

The facial feature tracking reported in Yacoob and

Davis (1994) is based on analysis of the magnitudes of

gradients of the intensity image and the optical flow

fields of the image sequence. The changes in these

values between consecutive images provided clues to

the spatial change of each facial feature. This ap-

proach dealt well with articulated and deformable mo-

tions, but was able to accommodate only limited rigid

motion.

The work reported in (Terzopoulos and Waters,

1993) assumes that eleven principal contours are ini-

tially located (in practice manually) on the face. These

contours are tracked throughout the sequence by ap-

plying an image force field that is computed from the

gradient of the intensity image. In addition to assum-

ing a frontal view, it was assumed that the projec-

tion is orthographic and that some facial make-up is

needed.

Two related approaches that allow face pose and ex-

pression estimation, and face tracking in the image
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plane were reported in (Beymer et al., 1993; Toelg

and Pogio, 1994) respectively. The work reported in

(Beymer et al., 1993) provides a method for learn-

ing of associations between images and head pose and

facial expressions. This association can be used in

both analysis and synthesis of face images although it

does not explicitly capture facial deformation or pose

changes. Toelg and Poggio (1994) proposed a hier-

archical model-based representation to register faces.

They perform coarse-to-fine estimation of an affine

transformation for the face region between images. We

have observed that a planar model of the face provides a

better stabilization. Additionally, we separately model

the relative motions of the facial features and use this

motion information for expression recognition.

Mase (1991) approached facial expression recogni-

tion based on computing the motions of facial muscles

from the optical flow rather than the motions of facial

features. Four facial expressions were studied: sur-

prise, anger, happiness, and disgust. Optical flow is

computed within rectangles that include these muscle

units, which in turn were related to facial expression.

Feature vectors were defined over a 15-D space that is

based on the means and variances of the optical flow

and were used in expression classification.

Our objective is to develop a passive system that is

able to track a human head and primary facial features

in a dynamic environment and provide a rich descrip-

tion of the observed motions. The description we seek

will allow separation between different classes of mo-

tion so that reasoning about facial expression and head

gesture is feasible.

2.2. Expression Recognition

Research in psychology has indicated that at least six

emotions are universally associated with distinct facial

expressions (Ekman, 1992). Several other emotions,

and many combinations of emotions, have been studied

Figure 2. The cues for facial expression as suggested by Bassili.

but remain unconfirmed as universally distinguishable.

The six principal emotions are: happiness, sadness,

surprise, fear, anger, and disgust.

Most psychological research on facial expressions

has been conducted on “mug-shot” pictures that cap-

ture the subject’s expression at its peak (Young and

Ellis, 1989). These pictures allow one to detect the

presence of static cues (such as wrinkles) as well as the

position and shape of the facial features. Few studies

have directly investigated the influence of the motion

and deformation of facial features on the interpretation

of facial expressions. Bassili (1979) suggested that

motion in the image of a face would allow emotions

to be identified even with minimal information about

the spatial arrangement of features. The subjects of

his experiments viewed image sequences in which only

white dots on the dark surface of the face displaying the

emotion are visible. The reported results indicate that

facial expressions were more accurately recognized

from dynamic images than from a single static im-

age. Whereas all expressions were recognized at above

chance levels in dynamic images, only happiness and

sadness were recognized at above chance levels in static

images.

Figure 2 summarizes the observations of Bassili

(1979) on motion-based cues for facial expressions.

Recall that the experiments of Bassili were intended

to explore only the role of motion in facial expres-

sions; therefore the face features, texture and complex-

ion were unavailable to the subjects. As illustrated in

Fig. 2, Bassili identified principal facial motions that

provide powerful cues to the subjects to recognize fa-

cial expressions.

In developing our approach to expression recogni-

tion we rely on the psychology sources best represented

for static imagery by the work of Ekman and Friesen

(1975), and for motion images by the work of Bassili

(1979), as well as on the recent mid and high level

spatio-temporal representations proposed by Yacoob

and Davis (1994).
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Figure 3. The figure illustrates the motion captured by the various parameters used to represent the motion of the regions. The solid lines

indicate the deformed image region and the “−” and “+” indicate the sign of the quantity.

3. Estimating Facial Motions

This section introduces the parameterized optical flow

models and the robust estimation procedure used to

recover and track the rigid motion of the face and the

relative motions of the facial features.

3.1. Motion Models

The estimation of image motion requires the integra-

tion of information over some neighborhood of the im-

age under some assumptions about the variation of the

motion. Parameterized models of image motion make

explicit the assumptions about the motion and typically

assume that the image flow can be represented by a low-

order polynomial (Bergen et al., 1992). Within small

image regions the following affine model of image mo-

tion is often sufficient (Koenderink and van Doorn,

1975)

u(x, y) = a0 + a1x + a2 y (1)

v(x, y) = a3 + a4x + a5 y (2)

where the ai are constants, u(x) = [u(x, y), v(x, y)]T

are the horizontal and vertical components of the flow at

the image point x = (x, y), and the spatial positions x

are defined with respect to some image point (typically

the center of the region).

The parameters ai have qualitative interpretations in

terms of image motion. For example, a0 and a3 rep-

resent horizontal and vertical translation respectively.

Additionally, we can express divergence (isotropic ex-

pansion), curl (rotation about the viewing direction),

and deformation (squashing or stretching) as combina-

tions of the ai (Cipolla and Blake, 1992; Koenderink

and van Doorn, 1975):

divergence = a1 + a5 = (ux + vy), (3)

curl = −a2 + a4 = −(u y − vx ), (4)

deformation = a1 − a5 = (ux − vy) (5)

where the subscripts x and y indicate partial derivatives

of the image velocity. Divergence, curl and the magni-

tude of the deformation have the convenient property

of being invariant to rotations of the image coordinate

frame (Cipolla and Blake, 1992). Translation, along

with divergence, curl, and deformation, will prove to

be useful for describing facial expressions and are il-

lustrated in Fig. 3. For example, when the motion of

the eye regions is modeled as being affine, eye blinking

can be detected as rapid deformation, divergence, and

vertical translation in the eye region.

The affine model is not sufficient to capture the image

motion of a human face when it occupies a significant

portion of the field of view. A more appropriate model

(which still provides a gross approximation to face mo-

tion) would assume that the face is a plane viewed under

perspective projection. For small motions, the image

motion of a rigid planar region of the scene can be de-

scribed by the following eight-parameter model (Adiv,

1985; Waxman et al., 1987):

u(x, y) = a0 + a1x + a2 y + p0x2 + p1xy, (6)

v(x, y) = a3 + a4x + a5 y + p0xy + p1 y2, (7)

where we have added two new terms p0 and p1 to

the affine model. These parameters roughly represent

“yaw” and “pitch” deformations in the image plane re-

spectively and are illustrated in Fig. 4. While we have

experimented with more complex models of rigid face

motion we have found that this planar assumption is

both simple and expressive enough to robustly rep-

resent qualitative rigid facial motions in a variety of

situations.

Non-rigid motions of facial features such as the eye-

brows and mouth however are not well captured by

the rigid affine or planar models. Deformable mod-

els such as snakes provide good tracking of these

regions (Terzopoulos and Waters, 1993) but their dis-

tributed nature does not admit simple, intuitive, char-

acterizations of the motions as we saw above but rather,

necessitates additional analysis to extract meaningful
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Figure 4. Additional parameters for planar motion and curvature.

descriptions of the motion. An alternative would be

to use parameterized curve models for tracking (Blake

and Isard, 1994). Deformable templates on the other

hand (Yuille and Hallinan, 1992) encode information

about shape but not motion. We wish to stay within the

paradigm of using parametric models of image motion

and so we augment the affine model to account for

the primary form of curvature seen in mouths and eye-

brows. We add a new parameter c to the affine model

u(x, y) = a0 + a1x + a2 y (8)

v(x, y) = a3 + a4x + a5 y + cx2 (9)

where c encodes curvature and is illustrated in Fig. 4.

As the experiments will demonstrate, this seven param-

eter model captures the essential image motion of the

mouth and eyebrows.

Unfortunately this new curvature parameter is not

invariant to head rotations. The curvature of the mouth

and eyebrows should roughly be oriented with the prin-

ciple axis of the face. To estimate the curvature with

respect to the coordinate frame of the face we com-

pute the orientation of the principle axis of the face and

transform the images and features into the coordinate

frame of the image plane. We then estimate the curva-

ture and transform the features back into the coordinate

frame of the face for the purpose of tracking.

3.2. Robust Regression

For convenience of notation we define

X(x) =
[

1 x y 0 0 0 x2 xy 0

0 0 0 1 x y xy y2 x2

]

(10)

A = [ a0 a1 a2 a3 a4 a5 0 0 0 ]T (11)

P = [ a0 a1 a2 a3 a4 a5 p0 p1 0 ]T (12)

C = [ a0 a1 a2 a3 a4 a5 0 0 c ]T (13)

such that u(x; A) = X(x)A, u(x; P) = X(x)P, and

u(x; C) = X(x)C represent, respectively, the affine,

planar, and affine + curvature flow models described

above.

Let f be the set of image points corresponding to

the face region (excluding the non-rigid features), and

P f the planar motion parameters of these points. The

brightness constancy assumption for the face states

I (x, t) = I (x − X(x)P f , t + 1), ∀x ∈ f, (14)

where I is the image brightness function and t repre-

sents time. Taking the Taylor series expansion of the

right hand side, simplifying, and dropping terms above

first order gives

∇ I · (X(x)P f ) + It = 0, ∀x ∈ f, (15)

where ∇ I = [Ix , Iy] and the subscripts indicate par-

tial derivatives of image brightness with respect to the

spatial dimensions and time.

To estimate the parameters P f we minimize

∑

x∈ f

ρ(∇ I · (X(x)P f ) + It , σ ), (16)

for some error norm ρ where σ is a scale parameter.

Since the face is neither a plane nor is it rigid it is

important to take ρ to be a robust error norm which can

cope with some percentage of gross errors or “outliers”

(Hampel et al., 1986). For the experiments in this paper

we take ρ to be

ρ(x, σ ) =
x2

σ 2 + x2
(17)

which is the robust error norm used by Geman-

McClure (1987). As the magnitudes of residuals

∇ I · (X(x)P f ) + It grow beyond a point their influ-

ence on the solution begins to decrease and the value

of ρ(·) approaches a constant. The value σ is a scale
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parameter that effects the point at which the influence

of outliers begins to decrease.

Equation (16) is minimized using a simple gradient

descent scheme with a continuation method that begins

with a high value for σ and lowers it during the min-

imization (see (Black and Anandan, 1993, 1996) for

details). The effect of this procedure is that initially

no data are rejected as outliers then gradually the influ-

ence of outliers is reduced. To cope with large motions

a coarse-to-fine strategy is used in which the motion is

estimated at a coarse level then, at the next finer level,

the image at time t + 1 is warped towards the image

at time t using the current motion estimate. The mo-

tion parameters are refined at this level and the process

continues until the finest level.

Once the face motion is estimated it is used to reg-

ister the image at time t + 1 with the image at time t

by warping the image at t + 1 back towards the image

at t . Since the face is neither planar nor rigid this reg-

istration does not completely stabilize the two images.

The residual motion is due either to the non-planar 3D

shape of the head (its curvature and the nose for exam-

ple) or the non-rigid motion of the facial features. We

have observed that the planar model does a very good

job of removing the rigid motion of the face and that the

dominant residual motion is due to the motion of the

facial features. The residual motion in the stabilized

sequence is estimated using the appropriate motion

model for that feature (i.e., affine or affine + curvature).

Thus stablizing the face with respect to the planar

approximation of its motion between two images al-

lows the relative motions of the facial features to be

estimated.

Note that the brightness constancy assumption used

to estimate the image motion is often violated in prac-

tice due to changes in lighting, specular reflections,

occlusion boundaries, etc. Robust regression has been

shown to provide accurate motion estimates in a va-

riety of situations in which the brightness constancy

assumption in violated (Black and Anandan, 1996).

When the brightness constancy assumption fails en-

tirely or, when the image motion is not related to the

true facial motion, a motion-based approach for facial

expression recognition is likely to fail.

3.3. Tracking Facial Features

The estimated parametric motion of the face and fa-

cial features estimated between two frames is used to

predict the location of the features in the next frame.

The face and the eyes are simple quadrilaterals which

are represented by the image locations of their four

corners. Since a line on a plane remains a line under

the planar motion P f these regions remain quadrilater-

als although the location of their four corners changes.

We update the location x of each of the four corners

of the face and eyes by applying the planar motion

to get X(x)P f + x. Then the relative motion of the

eyes locations is accounted for and the corners become

(X(x)P)Ale + x and (X(x)P)Are + x where le and re

stand for the motions of the left and right eyes respec-

tively. In updating the eye region we do not use the

full affine model since when the eye blinks this would

cause the tracked region to deform to the point where

the eye region could no longer be tracked. Instead only

the horizontal and vertical translation of the eye region

is used to update its location relative to the face motion.

The curvature of the mouth and brows means that

the simple updating of the corners is not sufficient for

tracking. In our current implementation we use im-

age masks to represent the regions of the image cor-

responding to the brows and the mouth. These masks

are updated by warping them first by the planar face

motion P f and then by the motion of the individual

features Cm , Clb and Crb which correspond the mouth

and the left and right brows respectively. This simple

updating scheme works well in practice.

To reduce noise in the parameters we use a simple

temporal filter. Let P+
f be the filtered parameters of

the face and P f be the current estimate of the face

parameters; then we update P+
f as follows

P+
f ←

1

2
(P+

f + P f ).

Exactly the same treatment is applied to the relative

facial feature motions and these smoothed values are

used for expression recognition. A more sophisticated

Kalman filter could be used as in (Azarbayejani et al.,

1993b) but this averaging scheme works well in our

experiments and has the property of weighting current

estimates more heavily than previous ones. This is

an appropriate model for facial expressions which are

typically of short duration. The one-sided nature of the

filter causes a slight temporal shift in the parameters

which has no significant effect on recognition.

4. Expression Recognition

The deformation and motion parameters described in

the previous section can be used to derive mid- and
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Table 1. The mid-level predicates derived from defor-

mation and motion parameter estimates.

Parameter Threshold Derived predicates (mouth)

a0 >0.25 Rightward

<−0.25 Leftward

a3 <−0.1 Upward

>0.1 Downward

Div >0.02 Expansion

<−0.02 Contraction

Def >0.005 Horizontal deformation

<−0.005 Vertical deformation

Curl >0.005 Clockwise rotation

<−0.005 Counter clockwise rotation

c <−0.0001 Curving upward (‘U’ like)

>0.0001 Curving downward

high-level descriptions of facial actions; this section

discusses these representations.

4.1. Mid-Level Representations

The parameters (such as translation and divergence)

estimated for each feature are used to derive mid-level

predicates that characterize the motion of the feature.

The parameter values are first thresholded to filter out

most of the small and noisy estimates. The mid-level

representation describes the observed facial changes

at each frame. Table 1 provides an example of the

predicates for the ‘mouth.’ Similar tables were devel-

oped for the eyebrows and eyes using the same thresh-

olds. These values are mainly dependent on the face

size in the image (since it determines the image-motion

measurement) and were set empirically from a few se-

quences.

The mid-level representation that describes the head

motions is given in Table 2. The planar model of facial

motion is primarily used to stabilize the head motion

so that the relative motion of the features may be esti-

mated. The motion of this plane also provides a quali-

tative description of the head motion. For example, we

can qualitatively recover when the head is rotating or

translating. To accurately recover the true 3D motion

of the head would require a model more general than

the planar assumption.

4.2. High-Level Representations

The high-level representation of facial actions (i.e.,

the facial expression recognition procedure) considers

Table 2. The mid-level predicates derived from defor-

mation and motion parameter estimates as applied to head

motion.

Parameter Threshold Derived predicates (head)

a0 >0.5 Rightward

<−0.5 Leftward

a3 <−0.5 Upward

>0.5 Downward

Div >0.01 Expansion

<−0.01 Contraction

Def >0.01 Horizontal deformation

<−0.01 Vertical deformation

Curl >0.005 Clockwise rotation

<−0.005 Counter clockwise rotation

p0 <−0.00005 Rotate right about neck

>0.00005 Rotate left about neck

p1 <−0.00005 Rotate forward

>0.00005 Rotate backward

the temporal consistency of the mid-level predicates to

minimize the effects of noise and inaccuracies in the

motion and deformation models.

Following the temporal approach for recognition

proposed in (Yacoob and Davis, 1994), we divide each

facial expression into three temporal segments: the be-

ginning, apex and ending. Figure 5 illustrates qualita-

tively the different aspects of detecting and segmenting

a “smile.” In this figure the horizontal axis represents

the time dimension (i.e., the image sequence), the axis

perpendicular to the page represents each one of the

parameters relevant to a ‘smile’ (i.e., a3, Div, Def ,

and c) and the vertical axis represents the values of

these parameters. This diagram is an abstraction to the

progression of a smile, therefore the parameter values

are not provided. Notice that Fig. 5 indicates that the

change in parameter values might not occur at the same

frames at either the beginning or ending of actions, but

it is required that a significant overlap be detectable

to label a set of frames with a “beginning of a smile”

label, while the motions must terminate before a frame

is labeled as an “apex” or an “ending”.

The detailed development of the smile model is as

follows. The upward-outward motion of the mouth

corners results in a negative curvature of the mouth

(i.e., the curvature parameter c is negative). The hori-

zontal and overall vertical stretching are manifested by

positive divergence (Div) and deformation (Def). Fi-

nally, some overall upward translation is caused by the

raising of the lower and upper lips due to the stretch-

ing of the mouth (a3 is negative). Reversal of these
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Figure 5. The temporal model of the “smile” expression.

motion parameters is observed during the ending of

the expression.

The rules for detecting the beginning and ending of

expressions are given in Table 3. These rules are ap-

plied to the predicates of the mid-level representation.

Generally, a beginning/ending has to be detectable con-

tinuously over at least four consecutive frames for

Table 3. The rules for classifying facial expressions (B = beginning, E = ending).

Expr. B/E Satisfactory actions

Anger B Inward lowering of brows and mouth contraction

Anger E Outward raising of brows and mouth expansion

Disgust B Mouth horizontal expansion and lowering of brows

Disgust E Mouth contraction and raising of brows

Happiness B Upward curving of mouth and expansion or horizontal deformation

Happiness E Downward curving of mouth and contraction or horizontal deformation

Surprise B Raising brows and vertical expansion of mouth

Surprise E Lowering brows and vertical contraction of mouth

Sadness B Downward curving of mouth and upward-inward motion in inner parts of brows

Sadness E Upward curving of mouth and downward-outward motion in inner parts of brows

Fear B Expansion of mouth and raising-inwards inner parts of brows

Fear E Contraction of mouth and lowering inner parts of brows

the action to be recognized. This temporal duration

was determined empirically based on a video rate of

30 frames/second.

The high-level representation of head motion is cur-

rently limited to detecting backward and forward mo-

tions, right and left rotations around the neck and

looming. These recognized motions are illustrated
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in the experimental results found in the following

sections along with the facial expressions that are

detected.

4.3. Resolving Conflicts between Expressions

The system is designed to identify and recognize facial

expressions from long video clips (i.e., clips including

3-6 expressions). We simplified the behavioral model

of our subjects by asking them to display one emo-

tion at a time, and include a short neutral state between

expressions (we allowed, however, co-occurrences of

‘smile’ and ‘surprise’ since these were often displayed

by our subjects). Since the six expression classifiers

operate on the whole sequence independently, the sys-

tem may create conflicting hypotheses.

Conflicts may arise when an ending of an expres-

sion is mistaken as the beginning of another expression.

For example, the ‘anger’ recognition module may con-

sider the lowering of the eyebrows during the ending

of a ‘surprise’ expression as a beginning of an ‘anger’

expression. To resolve such conflicts, we employ a

memory-based process that gives preference to the ex-

pression that started earlier.

5. Motion Estimation Results

The experiments in this section illustrate the rigid and

non-rigid motion tracking while highlighting the infor-

mation contained in the motion parameters that can be

used for expression recognition. The first four exper-

Figure 6. Smile experiment: facial expression tracking.

iments illustrate the relationship between the motion

parameters and specific facial expressions (Happiness,

Anger, Surprise, and Blinking) in the simple situation

where the head is relatively stable. These experiments

are followed by longer experiments on sequences of

100 or more images in which there is rigid head mo-

tion combined with the non-rigid motion of the facial

expressions. The reader is referred to Figs. 3 and 4 in

Section 3 to aid in understanding the parameters plotted

in this section.

All parameters settings used in the motion estima-

tion algorithm were exactly the same in all the experi-

ments. In particular, for each pair of images, a Gaussian

pyramid was constructed and 15 iterations of gradient

descent were used at each level of the four levels in

the coarse-to-fine strategy. The motion at one level

is used to register the images before refining the es-

timate at the next finer level. The value of σ began

at 15.0
√

3, was lowered by a factor of 0.95 after each

iteration, and was reset at each level in the pyramid.

The initial regions for the head and the features were

selected by hand and were automatically tracked there-

after. The initial segmentation need not be precise but

the segmented regions should bound the features of

interest.

5.1. Smile Experiment

The facial features tracked through the ‘smile’ image

sequence are shown in Fig. 6. The figure shows the

image regions corresponding to each of the features at

a particular frame. As the ‘smile’ begins the curvature
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Figure 7. The smile mouth parameters. For translation, solid and dashed lines indicate horizontal and vertical motion respectively.

of the mouth is clearly visible; then this curvature is

followed by an elongation of the mouth.

Figure 7 plots some of the parameters of the mouth

motion. Note that the parameters represent image mo-

tion between frames not absolute motion. So, for exam-

ple a plot of mouth “curvature” is a plot of the changing

curvature between frames not the absolute “curvature”

of the mouth. The left graph in Fig. 7 shows the hori-

zontal (solid line) and vertical (dashed line) translation

of the mouth. The negative vertical translation indi-

cates that the mouth rises relative to the face during

the initial phase of the ‘smile’ expression. The mid-

dle graph plots curvature of the mouth (parameter c)

and clearly shows the negative curvature corresponding

to an upwards bending motion at the initiation of the

Figure 8. Anger Experiment: facial expression tracking. Features every 15 frames.

smile. The other significant cue to perceiving a ‘smile’

expression is a deformation of the mouth which resem-

bles stretching in the horizontal direction; this is clearly

visible in the plot of the mouth deformation (a1 − a5)

on the right in the figure.

5.2. Anger Experiment

An image sequence of an anger expression is shown

in Fig. 8. The anger expression (Fig. 9) is charac-

terized by an initial pursing (or flattening) of the lips

then, in this case, a long slow downward curvature

which ends abruptly around frame 150, after which the

mouth curves and deforms back to the relaxed position.

In addition to the mouth motion, the eyes and brows
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Figure 10. Surprise experiment: facial expression tracking. Features every 10 frames.

can play a significant role. Figure 9 shows how the

brows move together and down while becoming flatter

(negative curvature) during the initiation of the expres-

sion. The nasal edges of the brows also dip downwards

causing opposite curl for the two brows. These motions

are reversed on cessation of the expression.

5.3. Surprise Experiment

Features tracked during a “surprise” expression are

shown in Fig. 10 and the significant parameters charac-

terizing the expression are plotted in Fig. 11. During the

initiation of the expression the mouth translates down,

diverges, and deforms significantly. Simultaneously,

the brows and eyes move upwards, the brows arch,

and the eyes deform as they widen. The ending phase

in this example shows a more gradual reversal of these

parameters returning the face to the resting position.

5.4. Blinking Experiment

Figure 12 shows an image sequence in which the sub-

ject blinks twice. When the motion of the blinking eye

is modeled as affine between two frames, the blinking is

readily apparent in the plots of vertical translation, di-

vergence, and deformation. Figure 13 shows the rapid

onset of a blink around frame 245. The blink subsides

more gradually than it began and then another blink

begins around frame 260 and likewise reverses more

gradually. Notice that the tracked eye regions are not

affected by the blinking action.

5.5. Looming Experiment

The image sequence in Fig. 14 illustrates facial ex-

pressions (smiling and surprise) in conjunction with

rigid head motion (in this case looming). The figure

plots the regions corresponding to the face and the fa-

cial features tracked across the image sequence. The

parameters describing the planar motion of the face

are plotted in Fig. 15 where the divergence due to

the looming motion of the head is clearly visible in

the plot of divergence. Analyzing the plots of the fa-

cial features in Fig. 16 reveals that a smile expression

begins around frame 125 with an increase in mouth cur-

vature followed by a deformation of the mouth. The

curvature decreases between frames 175 and 185 and
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Figure 12. Blinking experiment: facial feature tracking. Features every 4 frames.

Figure 13. The blinking experiment; motion parameters for the eyes. Left eye = solid line. Right eye = dashed line.

then a surprise expression begins around frame 220

with vertical eyebrow motion, brow arching, and mouth

deformation.

5.6. Rotation Experiment

Figure 17 illustrates a sequence with more complex

rigid face motion due to rapid head rotations. In addi-

tion to the rapid motion, the sequence contains sections

of motion blur, loss of focus, and saturation. Despite

the low quality of the sequence the tracking of the head

and features is robust.

In Fig. 18 the plot of curl shows that the face rotates

clockwise in the image plane then rotates counterclock-

wise, pauses briefly, and continues the counterclock-

wise motion. The plot of p0 (solid line) indicates

that the head is rotating about the neck axis roughly

in conjunction with the curl. To a lesser degree the

head pitches fore and aft (p1—dashed line) and looms

forwards and back.

The facial features are consistently tracked despite

the large image motions and the recovered param-

eters in Fig. 19 indicate that two surprise expres-

sions take place during the sequence as character-

ized by the eyebrow motion and mouth deformation

(see the surprise example with a static head for com-

parison.)

6. Recognition Results

We carried out a large set of experiments to verify

and evaluate the performance of the recognition proce-

dure proposed in this paper. The first set of exper-

iments focuses on the expressions of forty subjects

who were asked to perform expressions in front of a

video-camera. The second set of experiments involved
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Figure 14. Looming experiment. Facial expression tracking with rigid head motion (every 24 frames).

digitizing video-clips from television and movies. In

the rest of this section we discuss the methodology used

in acquiring the data and provide detailed statistics and

analysis of the results.

6.1. Methodology

There are both technical difficulties in collecting data

sets of sufficient spatial and temporal resolution and

challenges in designing and interpreting experiments

that evaluate the ability of a system to recognize ex-

pressions. Technically,

• image sequences should be sampled at 30 Hz (or

more) to minimize the magnitudes of rigid and non-

rigid motions between consecutive images,

• image resolution should allow the facial features to

be of sufficient size to facilitate tracking and motion

estimation, and

• the amount of data that needs to be captured and

processed is large (on the order of 10 MBytes per

second) so that only expressions of short duration

can be captured.

Challenges associated with experimental designs

include
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Figure 15. The looming face motion parameters. Translation: solid = horizontal, dashed = vertical. Quadratic terms: solid = p0, dashed = p1.

Figure 16. The looming sequence. Mouth translation: solid and dashed lines indicate horizontal and vertical motion respectively. For the

brows, the solid and dashed lines indicate left and right brows respectively.
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Figure 17. Rotation experiment. Rigid head tracking, every 18th frame.

• expressions of emotions are hard to elicit in an artifi-

cial environment where people are not experiencing

the typical associated stimuli (see (Ekman, 1982) for

a discussion about how such experiments are con-

ducted in psychology),

• determining what expression is “actually” being dis-

played is difficult because “different” expressions

may appear quite similar leading to variation in hu-

man recognition of expressions.

In an attempt to maintain some consistency in decid-

ing which expression is actually being displayed, we

used the the cues identified by psychological studies

(Bassili, 1979; Ekman and Friesen, 1975) to determine

the “ground truth” expressions.

We provide two sets of experiments. In the first, we

recorded tens of expressions of forty subjects (having

varied race, culture, and appearance) displaying their

own choice of expressions. Our experimental subjects

were asked to display emotional expressions without

additional directions (in fact, we asked the subjects to

choose any subset of expressions and display the ex-

pressions in any order and as naturally as they possibly

could). The expressions ‘fear’ and ‘sadness’ were hard
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Figure 18. The rotate sequence face motion parameters. Translation: solid = horizontal, dashed = vertical. Quadratic terms: solid = p0,

dashed = p1.

Figure 19. The rotate sequence. For the brows, the solid and dashed lines indicate left and right brows respectively.
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to elicit compared to ‘happiness,’ ‘surprise,’ ‘disgust’

and ‘anger.’ The subjects were also asked to move their

heads; but avoid a profile view. In the second set of ex-

periments, we digitized tens of video-clips recorded

from talk shows, news, and movies. TV broadcasting,

reception, video-recording and digitization make the

data quite noisy.

While we asked our laboratory subjects not to speak

while conveying expressions, the video-recordings

only occasionally include speechless-expressions. The

occurrence of speech affects the interpretations of the

mouth motions since some motions due to speech may

appear to be due to expressions. Therefore, we chose

clips that are closely associated with emotional expres-

sions (emotional behavior on talk-shows, ‘smiles’ as a

substitute for ‘happiness,’ etc.). The set of expressions

recorded is dominated by ‘smiles.’

6.2. Results of Laboratory Set-Up

Figure 20 shows some of the forty subjects who partic-

ipated in our study; from these subjects we collected

a database of 70 image sequences containing a total

of 145 expressions. Each sequence is about 9 sec-

Figure 20. Twenty of the forty participants in the experiments.

onds long and contains 1–3 expressions. Images are

560 × 420 pixels (taken at 30 Hz).

The results of the experiments are summarized in

Table 4. The first column breaks the expressions in the

sequence into the six basic categories according to the

“ground truth.” The second column in the table notes

the number of occurrences of each of the expression

types. “Correct” indicates that the expression was of

type x and was judged to be of type x . “Insertions,”

or false positives, occurred when the expression was

judged to be of type x but the ground truth indicated

that the expression was neutral. Insertions could also

occur when the system answered that the expression

was of type x in the midst of another expression. In-

sertions were primarily due to motion and tracking in-

accuracies. For example, rigid head motion might be

mistaken for a smile or a smile might be recognized in

the middle of a surprise expression. “Deletions” indi-

cate that the expression was of type x but that it was not

noticed by the system. “Substitutions” occurred when

the expression was of type x but was judged to be of

some other type by the system; that is, a confusion of

one expression with another. The sum of the deletions

and substitutions gives the total number of misclassi-

fied expressions.
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Table 4. Facial expression recognition results on forty subjects.

Expression Occurrences Correct Insertions Deletions Substitutions Success rate Accuracy

Happiness 61 58 7 1 2 95% 84%

Surprise 35 32 — 3 — 91% 91%

Anger 20 18 — 2 — 90% 90%

Disgust 15 14 1 1 — 93% 87%

Fear 6 5 — — 1 83% 83%

Sadness 8 8 — — — 100% 100%

Total 145 135 8 7 3 93% 88%

Figure 21. Four frames (four frames apart) of the beginning of an ‘anger’ expression displayed by a six year old boy.

The performance of the approach is judged in two

ways. The “Success Rate” and “Accuracy” are defined

as:

Success:
Correct

Occurrences
,

Accuracy:
Correct − Insertions

Occurrences
.

The overall success rate for the system was 93% while

the accuracy was 89%.

The dynamic nature of facial expressions makes

it difficult to demonstrate the experiments in print.

Therefore, we provide selected images that will, hope-

fully, convey our results. Figure 21 shows four frames

(taken as every fourth frame from the sequence) of the
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Figure 22. Four frames (four frames apart) of the beginning of a ‘smile’ expression.

beginning of an ‘anger’ expression of a six year old

boy. The text that appears on the left side of each

image represents the mid-level predicates of the fa-

cial deformations, and the text that appears on the right

side represents the mid-level predicates of the head mo-

tion. The text below each image displays the high-level

description of the facial deformations and the head mo-

tions. Figure 22 shows the beginning of a ‘smile’ ex-

pression while the head is rotating initially leftward and

then rightward.

6.3. Results of Video-Clips

Figure 23 shows a representative sample of the 36

video-clips that were collected from TV talk shows,

news, movies, and commercials. Table 5 shows the

details of our results on these 36 video-clips.

Figure 24 shows four frames (taken as every fourth

frame from the sequence) of the beginning of a “sur-

prise” expression of a TV-show host. Note that the

expression is not a classical “surprise” expression; the

eyebrows and eyes deform in the appropriate way but

the mouth does not. The system classifies every expres-

sion as one of the known expressions or no expression.

Since some expression is occurring the system chooses

the most likely one which, in this case, is “surprise”.

The analysis of another example clip is provided in

Fig. 25. This figure shows four frames taken from the

movie “Amadeus” in which Mozart displays ‘fear.’

6.4. Computational Cost

With the exception of the rigid and non-rigid mo-

tion estimation computations, the algorithms described
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Figure 23. Representative sample of still frames from the 36 video-clips.

Figure 24. Four frames (four frames apart) of the beginning of a ‘surprise’ expression.
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Table 5. Facial expression recognition results on 36 video-clips.

Expression Occurrences Correct Insertions Deletions Substitutions Success rate Accuracy

Happiness 37 35 4 2 — 95% 84%

Surprise 7 6 1 1 — 86% 71%

Anger 5 4 — — 1 80% 80%

Disgust 4 2 2 2 — 50% 0%

Fear 1 1 — — — 100% 100%

Sadness 5 3 1 2 — 60% 40%

Total 59 51 8 7 1 86% 73%

Figure 25. Four frames (four frames apart) of the beginning of a ‘fear’ expression.

operate at near frame-rates. The recovery of deforma-

tion and motion parameters requires about 2 minutes

per frame on a Digital Alpha 3000 at full image res-

olution. We are currently studying possible speedups

for the computations using an incremental estimation

approach.

6.5. Observations from Experimental Work

Our experiments illustrate the wide variety of situations

for which our approach works and the robustness of

the tracking and recognition procedures. Below we

explore some of the limitations of the current work.
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• The planar assumption used to model the face can

lead to quantitative tracking errors for subjects with

very spherical faces. Additionally, we want to ana-

lyze profile views of the head, but cannot currently

track the motion of the head between profile to frontal

views.

• Various natural mouth motions (lip biting, and even

simple opening) are sometimes mistakingly identi-

fied as ‘smiles’. Also, speech remains a consider-

able source of false alarms (usually, openings are

confused with ‘smiles’).

• Shape information is not directly integrated into our

analysis, yet the use of shape can considerably im-

prove the accuracy of the system at all levels. At

the low level, tracking and feature deformation can

benefit from feedback from a shape recognition mod-

ule. At the high level the shape created by contours

around the features can disambiguate expressions.

In addition, some technical observations:

• Accuracy of the motion estimation decreases when-

ever faces occupy too small a portion of the image

(about 1/8 of the NTSC standard). This limits some-

what the cases where the facial expression analysis

is applicable.

• Interlacing in broadcasting and very rapid body mo-

tions produce images that do not satisfy the basic

assumption of brightness conservation inherent in

the motion estimation. The standard approach of

processing only one of the interlaced fields at a time

results in reduced image sizes and hence smaller fea-

tures whose motion cannot be estimated as reliably.

7. Conclusion and Future Research

In this paper we proposed local parameterized models

of image motion that can recover the rigid and non-rigid

facial motions that are an integral part of human be-

havior. The motions of facial features are modeled

locally to allow for accurate recovery of their defor-

mations. A robust optical flow algorithm is developed

to the recover the motion of a person’s head and the

relative motions of their facial features. In a series

of experiments we have demonstrated how these pa-

rameterized models of optical flow provide a concise

description of the human motion in terms of a few pa-

rameters and how these parameters can be used to rec-

ognize human expressions. The paper has presented

a facial-expression recognition strategy based on these

motion models and we have illustrated the effective-

ness of the approach for recognizing facial expressions.

Extensive experimentation with many subjects in natu-

ral situations, including television clips, indicates that

expression recognition from motion can be achieved

accurately even in the presence of significant head

motion.

Our ongoing work is focused on the modeling of co-

incident speech and facial expressions, more accurate

recovery of 3D head motion, and dealing with a richer

set of facial expressions. In particular we are exploring

issues related to the integration of our motion-based

approach with shape-based approaches. We are also

pursuing the application of facial expression tracking

and recognition to user interfaces.

Acknowledgments

We are thankful to Prof. Larry Davis for his valuable

comments and suggestions. Without the wonderful co-

operation of our forty volunteers in subjecting them-

selves to the intrusive experiments on their facial ex-

pressions this work would not have been possible. To

them we are grateful.

References

Adiv, G. 1985. Determining three-dimensional motion and struc-

ture from optical flow generated by several moving objects.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

PAMI-7(4):384–401.

Azarbayejani, A., Horowitz, B., and Pentland, A. 1993a. Recur-

sive estimation of structure and motion using relative orientation

constraints. In Proc. Computer Vision and Pattern Recognition,

CVPR-93, New York, pp. 294–299.

Azarbayejani, A., Starner, T., Horowitz, B., and Pentland, A. 1993b.

Visually controled graphics. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 15(6):602–604.

Bassili, J.N. 1979. Emotion recognition: The role of facial move-

ment and the relative importance of upper and lower areas of

the face. Journal of Personality and Social Psychology, 37:2049–

2059.

Bergen, J.R., Anandan, P., Hanna, K.J., and Hingorani, R. 1992.

Hierarchical model-based motion estimation. In Proc. of Sec-

ond European Conference on Computer Vision, ECCV-92, G.

Sandini (Ed.), Springer-Verlag, volume 588 of LNCS-Series,

pp. 237–252.

Beymer, D., Shashua, A., and Poggio, T. 1993. Example based im-

age analysis and synthesis. Technical Report A.I. Memo No. 1431,

MIT.

Black, M.J. and Anandan, P. 1993. A framework for the robust es-

timation of optical flow. In Proc. Int. Conf. on Computer Vision,

ICCV-93, Berlin, Germany, pp. 231–236.

Black, M.J. and Jepson, A. 1994. Estimating multiple indepen-

dent motions in segmented images using parametric models with



48 Black and Yacoob

local deformations. In Proceedings of the Workshop on Motion

of Non-rigid and Articulated Objects, Austin, Texas, pp. 220–

227.

Black, M.J. and Anandan, P. 1996. The robust estimation of multiple

motions: Parametric and piecewise-smooth flow fields. Computer

Vision and Image Understanding, 63(1):75–104.

Blake, A. and Isard, M. 1994. 3D position, attitude and shape input

using video tracking of hands and lips. In Proceedings of SIG-

GRAPH 94, pp. 185–192.

Chow, G. and Li, X. 1993. Towards a system for automatic facial

feature detection. Pattern Recognition, 26(12):1739–1755.

Cipolla, R. and Blake, A. 1992. Surface orientation and time to con-

tact from image divergence and deformation. In Proc. of Second

European Conference on Computer Vision, ECCV-92, G. Sandini

(Ed.), Springer-Verlag, volume 588 of LNCS-Series, pp. 187–

202.

Ekman, P. 1992. Facial expressions of emotion: An old controversy

and new findings. Philosophical Transactions of the Royal Society

of London, B(335):63–69.

Ekman, P. and Friesen, W. 1975. Unmasking the Face. Prentice Hall.

Ekman, P. (Ed.) 1982. Emotion in the Human Face. Cambridge Uni-

versity Press.

Essa, I.A. and Pentland, A. 1994. A vision system for observing and

extracting facial action parameters. In Proc. Computer Vision and

Pattern Recognition, CVPR-94, Seattle, WA, pp. 76–83.

Essa, I., Darrell, T., and Pentland, A. 1994. Tracking facial motion.

In Proceedings of the Workshop on Motion of Non-rigid and Ar-

ticulated Objects, Austin, Texas, pp. 36–42.

Geman, S. and McClure, D.E. 1987. Statistical methods for tomo-

graphic image reconstruction. Bulletin of the International Statis-

tical Institute, LII-4:5–21.

Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., and Stahel, W.A.

1986. Robust Statistics: The Approach Based on Influence Func-

tions. John Wiley and Sons: New York, NY.

Kass, M., Witkin, A., and Terzopoulos, D. 1987. Snakes: Active con-

tour models. In Proc. First International Conference on Computer

Vision, pp. 259–268

Koenderink, J.J. and van Doorn, A.J. 1975. Invariant properties of the

motion parallax field due to the movement of rigid bodies relative

to an observer. Optica Acta, 22(9):773–791.

Li, H., Roivainen, P., and Forcheimer, R. 1993. 3-D motion estima-

tion in model-based facial image coding. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 15(6):545–555.

Mase, K. 1991. Recognition of facial expression from optical flow.

IEICE Transactions, E 74:3474–3483.

Rosenblum, M., Yacoob, Y., and Davis, L.S. 1994. Human emotion

recognition from motion using a radial basis function network ar-

chitecture. In Proceedings of the Workshop on Motion of Non-rigid

and Articulated Objects, Austin, Texas.

Terzopoulos, D. and Waters, K. 1993. Analysis and synthesis of

facial image sequences using physical and anatomical models.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

15(6):569–579.

Toelg, S. and Poggio, T. 1994. Towards an example-based im-

age compression architecture for video-conferencing. Technical

Report CAR-TR-723, Center for Automation Research, U. of

Maryland.

Waxman, A.M., Kamgar-Parsi, B., and Subbarao, M. 1987. Close-

form solutions to image flow equations. In Proc. Int. Conf. on

Computer Vision, ICCV-87, London, England, pp. 12–24.

Yacoob, Y. and Davis, L.S. 1993. Labeling of human face com-

ponents from range data. In Proc. Computer Vision and Pattern

Recognition, CVPR-94, New York, NY, pp. 592–593.

Yacoob, Y. and Davis, L.S. 1994. Computing spatio-temporal repre-

sentations of human faces. In Proc. Computer Vision and Pattern

Recognition, CVPR-94, Seattle, WA, pp. 70–75.

Young, A.W. and Ellis, H.D. (Eds.) 1989. Handbook of Research on

Face Processing. Elsevier Science Publishers B.V.

Yuille, A.L., Cohen, D.S., and Hallinan, P.W. 1989. Feature extrac-

tion from faces using deformable templates. In Proc. Computer

Vision and Pattern Recognition, CVPR-89, pp. 104–109.

Yuille, A. and Hallinan, P. 1992. Deformable templates. In Active

Vision, A. Blake and A. Yuille (Eds.), MIT Press: Cambridge,

Mass, pp. 21–38.


