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ABSTRACT
Eye gaze offers several key cues regarding conversational discourse
during face-to-face interaction between people. While a large body
of research results exist to document the use of gaze in human-
to-human interaction, and in animating realistic embodied avatars,
recognition of conversational eye gestures—distinct eye movement
patterns relevant to discourse—has received less attention. We an-
alyze eye gestures during interaction with an animated embodied
agent and propose a non-intrusive vision-based approach to esti-
mate eye gaze and recognize eye gestures. In our user study, human
participants avert their gaze (i.e. with “look-away” or “thinking”
gestures) during periods of cognitive load. Using our approach, an
agent can visually differentiate whether a user is thinking about a
response or is waiting for the agent or robot to take its turn.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Understanding—
Motion; I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Discourse

General Terms
Algorithms

Keywords
Eye gaze tracking, Eye gestures, Embodied conversational agent,
Aversion gestures, Turn-taking, Human-computer interaction

1. INTRODUCTION
In face to face interaction, eye gaze is known to be an important

aspect of discourse and turn-taking. To create effective conversa-
tional human-computer interfaces, it is desirable to have computers
which can sense a users’ gaze and infer appropriate conversational
cues. Embodied conversational agents, either in robotic form or
implemented as virtual avatars, have the ability to demonstrate con-
versational gestures through eye gaze and body gesture, and should
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also be able to perceive similar displays as expressed by a human
user.

It has long been known that eye gaze is a direct way to measure a
users attention and engagement, and/or interest in a particular dis-
play or person [1]. Gaze has also been demonstrated to be an effec-
tive cue to indicate explicit turn-taking in multi-party conversation;
users typically attend to the speaker who has the floor.

Even in two-way interaction without any physical objects under
discussion, however, gaze is also a useful discourse cue. As pointed
out by Kendon [16], humans can use gaze to mediate the length of
a conversational turn. When finished with a turn and willing to
give up the floor, users tend to look to their conversational partner.
Conversely, when they wish to hold the floor even as they pause
their speech, they often look away. This often appears as a “non-
deictic” or gaze-averting eye gesture while they pause their speech
to momentarily consider a response [12, 30].

In the user study presented in this paper, we observed that hu-
man users made similar gaze aversion gestures while considering
their reply when interacting with a virtual embodied conversational
agent. Currently, conversational speech systems rely primarily on
audio cues to determine utterance end-points, and thus may have
difficulty knowing in such cases whether a user is in fact finished
speaking. Also, a human participant may have to think about their
answer when asked a question, and this delay could be misinter-
preted by the system if no visual feedback like eye gaze aversion is
recognized.

It is disruptive for a user to have an agent not realize the user is
still thinking about a response and interrupt prematurely, or to wait
inappropriately thinking the user is still going to speak when the
user has in fact finished their turn. To overcome this limitation of
existing conversational systems, we have developed an automatic
system to recognize eye movement patterns that indicate a user is
still holding their conversational turn.

The remainder of this paper is organized as follows. In Section 2
we review relevant related work, and in Section 3 we discuss how
conversational gaze gestures can help embodied agents. The result
of our user study on the use of eye aversion gestures by subjects
interacting with an ECA is presented in Section 4. Our automatic
gaze tracking algorithm is described in Section 5 including the ex-
perimental results. Finally, a summary and discussion of future
work are provided in Section 6.

2. PREVIOUS WORK
Eye gaze tracking has been a research topic for many years [41,

19]. Stiefelhagen et al. suggested an approach for eye gaze esti-
mation from frontal images based on neural networks [34]. Some
recent systems can estimate the eye gaze with an accuracy of less
than a few degrees; these video-based systems require high resolu-



tion images and usually are constrained to small fields of view (4x4
cm) [25, 7]. Many systems require an infra-red illumination source
and filtered camera [42, 15]. In this paper we develop a passive
vision-based eye gaze estimator sufficient for inferring conversa-
tional gaze aversion cues; as suggested in [40], we can improve
tracking accuracy by integration with head pose tracking.

A considerable body of work has been carried out regarding
eye gaze and eye motion patterns for perceptive user interfaces.
Velichkovsky suggested the use of eye motion to replace the mouse
as a pointing device [37]. Qvarfordt and Zhai used eye-gaze pat-
terns to sense the user interest with a map-based interactive sys-
tem [28]. Li and Selker developed the InVision system which re-
sponded to a user’s eye fixation patterns in a kitchen environment
[18].

There has been considerable work on gestures with embodied
conversational agents. Bickmore and Cassell developed an embod-
ied conversational agent (ECA) that exhibited many gestural capa-
bilities to accompany its spoken conversation and could interpret
spoken utterances from human users [4]. Sidner et al. have inves-
tigated how people interact with a humanoid robot [31]. Nakano et
al. analyzed eye gaze and head nods in computer–human conver-
sation and found that their subjects were aware of the lack of con-
versational feedback from the ECA [23]. Numerous other projects
(e.g. [35, 6]) explore aspects of gestural behavior in human-ECA
interactions. Physically embodied ECAs—for example, ARMAR
II [9, 10] and Leo [5]—incorporate the ability to perform articu-
lated body tracking and recognize human gestures.

Recently, many researchers have worked on modeling eye gaze
behavior for the purpose of synthesizing a realistic ECA. Colburn
et al. use hierarchical state machines to model eye gaze patterns
in the context of real-time verbal communication [8]. Fukayama
et al. use a two-state Markov model based on three gaze parame-
ters (amount of gaze, mean duration of gaze and gaze points while
averted) [11]. Lee et al. use an eye movement model based on
empirical studies of saccade and statistical models of eye-tracking
data [17]. Pelachaud and Bilvi proposed a model that embeds in-
formation on communicative functions as well as on statistical in-
formation of gaze patterns [26].

The goal of our paper is to observe the kind of eye gestures peo-
ple make when interacting with an ECA, and evaluate how well we
can recognize these gestures.

3. CONVERSATIONAL GAZE CUES
Eye gaze plays an important role in face-to-face interactions.

Kendon proposed that eye gaze in two-person conversation offers
different functions: monitor visual feedback, express emotion and
information, regulate the flow of the conversation (turn-taking),
and improve concentration by restricting visual input [16]. Many
of these functions have been studied for creating more realistic
ECAs [36, 38, 11], but they have tended to explore only gaze di-
rected towards individual conversational partners or objects.

We define three types of distinctive eye motion patterns, or “eye
gestures”: eye contact, deictic gestures, and non-deictic gestures.
Eye contact implies one participant looking at the other participant:
during typical interactions, the listener usually maintains fairly long
gazes at the speaker while the speaker tends to look at the listener
as he or she is about to finish the utterance [16, 24]. Deictic ges-
tures are eye gestures with a specific reference which can be a per-
son not currently involved in the discussion, or an object. Griffin
and Bock showed in their user studies that speakers look at an ob-
ject approximately 900ms before referencing it vocally [13]. Non-
deictic gestures are eye movements to empty or uninformative re-
gions of space. This gesture is also referred to as a gaze-averting

Gaze aversion gesture

Deictic gesture

Horizontal eye gaze estimate (in degrees)

V
er

tic
al

 e
ye

 g
az

e 
es

tim
at

e 
(in

 d
eg

re
es

)

Estimated gaze trajectory

Estimated gaze trajectory

Horizontal eye gaze estimate (in degrees)

V
er

tic
al

 e
ye

 g
az

e 
es

tim
at

e 
(in

 d
eg

re
es

)

Gaze aversion or 
deictic gesture?

Figure 1: Comparison of a typical gaze aversion gesture (top)
with a “deictic” eye movement (bottom). Each eye gesture is
indistinguishable from a single image (see left images), however
the eye motion patterns of each gesture are clearly different (see
right plots).

gesture [12] and the eye movement of a thinker [30]. Researchers
have shown that people will make gaze-averting gestures to retrieve
information from memory [29] or while listening to a story [32].
Gaze aversion during conversation has been shown to be a function
of cognitive load [12].

These studies of human-to-human interaction give us insight re-
garding the kind of gestures that could be useful for ECAs. Hu-
mans do seem to make similar gestures when interacting with an
animated agent. Colburn et al. looked at eye contact with ECAs
and found a correlation between the time people spend looking at
an avatar versus the time they spend looking at another human dur-
ing conversation [8].

We have observed that eye motions that attend to a specific per-
son or object tend to involve direct saccades, while gaze aversion
gestures tend to include more of a “wandering” eye motion. Look-
ing at still images may be inconclusive in terms of deciding whether
it is a gaze aversion gesture or a deictic eye movement, while look-
ing at the dynamics of motion tends to be more discriminative (Fig-
ure 1). We therefore investigate the use of eye motion trajectory
features to estimate gaze aversion gestures.

To our knowledge, no work has been done to study gaze aversion
by human participants when interacting with ECAs. Recognizing
such eye gestures would be useful for an ECA. A gaze aversion ges-
ture while a person is thinking may indicate the person is not fin-
ished with their conversational turn. If the ECA senses the aversion
gesture, it can correctly wait for mutual gaze to be re-established
before taking its turn. In this paper, we show how to visually dif-
ferentiate gaze aversion gestures from eye contact and deictic eye
movements.

4. USER STUDY
Our user study was designed with two tasks in mind: (1) to ob-

serve the kind of eye gestures people make when interacting with
an ECA, and (2) to evaluate how well we can recognize these ges-



tures. We built a multimodal kiosk with an interactive avatar that
can perform a survey of 100 questions (see Figure 2). Sample ques-
tions asked during the user study include:

1. Are you a student?

2. Is your age an even number?

3. Do you live on campus?

4. Do you like Coke better than Pepsi?

5. Is one of the official languages in Canada Spanish?

6. Does Canada have a president?

7. Is fifteen minus five equal to nine?

8. Is five a prime number?

Our user study was composed of 6 participants: 2 men and 4
women, aged between 25-35 years old. Each interaction lasted ap-
proximately 10-12 minutes. At the beginning of the experiment,
participants were informed that they would interact with an avatar
who would ask them 100 questions. Participants were asked to an-
swer every question with a positive answer (by saying “yes” and/or
head nodding) or a negative answer (by saying “no” and/or head
shaking) and were not aware that their eye gestures were being
monitored.

The kiosk consisted of a 15.4” screen and a monocular camera
with an integrated microphone placed on top of the screen. Partic-
ipants sat in a chair placed 1.3 meters in front of the screen. The
screen was elevated so that the eyes of the avatar were approxi-
mately at the same height as the eyes of the participant. The central
software component of our kiosk consisted of a simple event-based
dialogue manager that produced output using the AT&T text-to-
speech engine [2] and the Haptek virtual avatar [14]. The experi-
menter, sitting to the right of each participant, used a remote key-
board to trigger the dialogue manager after each answer from each
participant.

4.1 Results and Discussion
Since eye gaze gestures can be subtle and sometimes hard to

differentiate even for a human, we asked three people to annotate
the aversion gestures in the video sequences corresponding to each
subject. The following definition was given to each coder for gaze-
aversion gestures: eye movements to empty or uninformative re-
gions of space, reflecting “look-away” or “thinking”.

Even though the user study didn’t include any explicit deictic
reference to the environment around the user, human participants
naturally made deictic eye gestures during the interactions. Most
of these deictic gestures were targeted to the video camera or the
experimenter sitting on the right side of the participant. Coders
were instructed to label these deictic eye gestures as “non-gaze-
aversion”.

During the process of labeling and segmentation of the 6 video
sequences from our user study, the 3 coders labeled 114, 72 and 125
gaze-aversion gestures, respectively. The variation between coders
is not that surprising since gaze gestures are sometime subtle. We
decided to define our ground truth as the intersection of all three
coders, for a total of 72 gaze-aversion gestures.

The average length of gaze aversion gestures was 1.3 seconds.
Since all verbal answers from the users were short “yes” or “no”,
waiting an extra 2 seconds for an answer may be a long time for the

Figure 2: Multimodal interactive kiosk used during our user
study.

embodied agent. Without any visual feedback recognition, the dia-
log manager could potentially identify silence as a sign for misun-
derstanding and would repeat the question or ask the user if he/she
understood the question.

On average, our 6 participants made gaze aversion gestures 12
times per interaction with a standard deviation of 6.8. Since 100
questions were asked during each interaction, on average 12% of
the time, people made a gaze aversion gesture that was labeled by
all 3 coders. In our experiment, most gaze-aversions were gestures
where the participant was thinking about their answer. Since our
dialog manager was relatively simple, few gaze-aversion gestures
had the purpose of floor-holding. We anticipate that with a more
complex dialog manager and a better speech recognizer, human
participants would express an even greater amount of gaze-aversion
gestures.

Our results suggest that people do make gaze aversion gestures
while interacting with an ECA and that it would be useful for an
avatar to recognize these patterns. The question now is to know
if we can recognize these eye gaze gestures. In the following sec-
tion we present our eye gesture recognition framework and discuss
experimental results on eye gaze aversion gesture recognition

5. EYE GESTURE RECOGNITION
Our goal is to recognize eye gestures during multimodal conver-

sation with an embodied agent. To ensure a natural interaction, we
want a recognition framework with the following capabilities:

• User-independent

• Non-intrusive

• Automatic initialization

• Robust to eye glasses

• Works with monocular cameras

• Takes advantage of other cues (e.g., head tracking)

As discussed earlier, we wish to recognize eye gestures that can
help an ECA differentiate when a user is thinking from when a user
is waiting for more information from the ECA. Since our goal is
eye gesture and not precise eye gaze estimation, we built an eye



Figure 3: Example image resolution used by our eye gaze esti-
mator. The size of the eye samples are 16x32 pixels.

gaze estimator that produces sufficient precision for gesture recog-
nition but works with a low-resolution camera. Figure 3 shows an
example of the resolution used during training and testing.

Our approach for eye gesture recognition is a four-step process:
(1) detect the location of each eye in the image using a cascade
of boosted classifiers, (2) track each eye location over time using
a head pose tracker, (3) estimate the eye gaze based on a view-
based appearance model, and (4) recognize eye gestures using a
sliding time-window of eye motion estimates and a discriminative
classifier.

5.1 Eye Detection
For eye detection, we first detect faces inside the entire image

and then search inside the top-left and top-right quarters for the
right and left eyes, respectively. Face and eye detectors were trained
using a cascaded version of Adaboost [39]. For face detection, we
used the pre-trained detector from Intel OpenCV.

To train our left and right eye detectors, we collected a database
of 16 subjects looking at targets on a whiteboard. This dataset was
also used to train the eye gaze estimator described in Section 5.3. A
tripod was placed 1 meter in front of the whiteboard. Targets were
arranged on a 7x5 grid so that the spacing between each target was
10 degrees (see Figure 4). The top left target represented a eye
direction of -30 degrees horizontally and +20 degrees vertically.
Two cameras were used to image each subject: one located in front
of the target (0,0) and another in front of the target (+20,0).

Participants were asked to place their head on the tripod and then
look sequentially at the 35 targets on the whiteboard. A keyboard
was placed next to the participant so that he/she could press the
space bar after looking at a target. The experiment was repeated
under 3 different lighting conditions (see Figure 5). The location
and size of both eyes were manually specified to create the train-
ing set. Negative samples were selected from the non-eye regions
inside each image.

5.2 Eye Tracking
The results of the eye detector are sometime noisy due to missed

detections, false-positives and jitter in the detected eye location.

Figure 4: Experimental setup used to acquire eye images from
16 subjects with ground truth eye gaze. This dataset was used
to train our eye detector and our gaze estimator.

Figure 5: Samples from the dataset used to train the eye de-
tector and gaze estimator. The dataset had 3 different lighting
conditions.

For these reasons we need a way to smooth the estimated eye loca-
tions and keep a reasonable estimate of the eye location even if the
eye detector doesn’t trigger.

Our approach integrates eye detection results with a monocular
3D head pose tracker to achieve smooth and robust eye tracking,
that computes the 3D position and orientation of the head at each
frame. We initialize our head tracker using the detected face in the
first frame. A 3D ellipsoid model is then fit to the face based on
the width of the detected face and the camera focal length. The
position and orientation of the model are updated at each frame
after tracking is performed.

Our approach for head pose tracking is based on the Adaptive
view-based appearance model [20] and differs from previously pub-
lished ellipsoid-based head tracking techniques [3] in the fact that
we acquire extra key-frames during tracking and adjust the key-
frame poses over time. This approach makes it possible to track
head pose over a larger range of motion and over a long period of
time with bounded drift. The view registration is done using an
iterative version of the Normal Flow Constraint [33].

Given the new head pose estimate for the current frame, the re-
gion of interest (ROI) around both eyes is updated so that the center
of the ROI reflects the observed head motion. The eye tracker will
return two ROIs per eye: one from the eye detector (if the eye was
detected) and the other from the updated ROI based on the head
velocity.

5.3 Gaze Estimation
To estimate the eye gaze given a region of interest inside the im-

age, we created two view-based appearance models [27, 22], one



model for each eye. We trained the models using the dataset de-
scribed in Section 5.1, which contains eye images of 16 subjects
looking at 35 different orientations, ranging [-30,30] horizontally
and [-20,20] vertically.

We define our view-based eigenspaces models Pl and Pr, for the
left and right eye respectively, as:

P = {Īi,Vi, εi}
where Īi is the mean intensity image for one of the 35 views i, εi is
the eye gaze of that view and Vi is the eigenspace matrix. The eye
gaze is represented as ε = [ Rx Ry ], a 2-dimensional vector
consisting of the horizontal and vertical rotation.

To create the view-based eigenspace models, we first store every
segmented eye image in a one-dimensional vector. We can then
compute the average vectors Īi = 1

n

∑n
j=1 Ij

i and stack all the
normalized intensity vectors into a matrix:

Ii =
[ (

I1
i − Īi

) (
I2

i − Īi

) · · · ]T

To compute the eigenspaces Vi for each view, we find the SVD
decomposition Ii = UiDiVT

i .
At recognition time, given a seed region of interest (ROI), our

algorithm will search around the seed position for the optimal pose
with the lowest reconstruction error e∗i . For each region of interest
and each view of the appearance model i, the reconstruction error
is computed:

ei = |I ′
t − Īi − �wi · VIi |2, (1)

The lowest reconstruction error e∗i will be selected and the eye gaze
εi associated with the optimal view i will be returned. In our im-
plementation, the search region was [+4,-4] pixels along the X axis
and [+2,-2] pixels along the Y axis. Also, different scales for the
search region were tested during this process, ranging from 0.7 to
1.3 times the original size of the ROI.

Gaze estimation was done independently for each seed ROI re-
turned by the eye tracker described in the previous section. ROIs
associated with the left eye are processed using the left view-based
appearance model and similarly for the right eye. If more then one
seed ROI was used, then the eye gaze with the lowest reconstruc-
tion error is selected. The final eye gaze is approximated based on
a simple average of the left and right eye gaze estimates.

To test the accuracy of our eye gaze estimator we ran a set of ex-
periments using the dataset described earlier in Section 5.1. In these
experiments, we randomly selected 200 images, then retrained the
eye gaze estimator and compared the estimated eye gaze with the
ground truth estimate.

We tested two aspects of our estimator: its sensitivity to noise
and its performance using different merging techniques. To test our
estimator’s sensitivity to noise, we added varying amounts of noise
to the initial region of interest. Figure 6 shows the average error
on the eye gaze for varying levels of noise. Our eye gaze estimator
is relatively insensitive to noise in the initialized region of interest,
maintaining an average error of under 8 degrees for as much as 6
pixel noise.

We also tested two techniques to merge the left and right eye
gaze estimates: (1) picking the eye gaze estimate from the eye with
the lowest reconstruction error and (2) averaging the eye gaze esti-
mates from both eyes. Figure 6 also summarizes the result of this
experiment. We can see that the averaging technique consistently
works better than picking the lowest reconstruction error. This re-
sult confirms our choice of using the average to compute eye gaze
estimates.
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Figure 6: Average error of our eye gaze estimator when varying
the noise added to the initial region of interest.

5.4 Gesture Recognition
Our goal is to recognize gaze aversion gestures given a video

sequence. We have found that dynamic cues can differentiate such
eye gestures from eye contact and deictic gestures (Figure 1). For
this reason, our input features for the gesture recognition algorithm
are based on temporal windows of eye gaze observations.

In our implementation we use a supervised discriminative classi-
fication approach: the Support Vector Machine (SVM). Our choice
of a discriminative approach over a generative approach like Hid-
den Markov Models (HMMs) was influenced by our previous work
on head gesture recognition, where SVMs were shown to outper-
form HMMs when trying to differentiate subtle head nods from
other natural gestures of a human participant interacting with an
ECA [21]. Gaze aversion gestures can be very subtle to differ-
entiate from other natural eye gestures, as confirmed by the large
variability in the human coder results in Section 4.1.

In order to create training data, we first ran the eye gaze estimator
described in the previous sections and obtained an estimate of the
eye gaze for each frame. The data was labeled with the start and end
points of each gesture. We concatenate eye gaze estimates over a
fixed window size to create a feature vector x, and shift the window
through all of the video sequences to create training samples. In
our implementation the window size was set to 20 frames (∼0.7
seconds for a frame rate of 30Hz). Training samples were labeled
as positive if the start and end times were inside a labeled gaze
aversion gesture. Otherwise, the training sample was labeled as
negative. The training set had the same number of negative and
positive samples.

After training of the SVM, the margin m(x) of the feature vector
x can easily be computed given the learned set of support vectors
xi, the associated set of labels yi and weights wi, and the bias b:

m(x) =

l∑

i=1

yiwiK(xi, x) + b (2)

where l is the number of support vectors and K(xi, x) is the kernel
function. In our experiments, we used a radial basis function (RBF)
kernel:

K(xi, x) = e−γ‖xi−x‖2
(3)

where γ is the kernel smoothing parameter learned automatically
using cross-validation on our training set.



At testing, we create a feature vector x for each frame of the
video sequence and a frame is labeled as a gesture if the margin
m(x) is larger then a threshold k. The following section shows the
performance of our gesture recognizer.

5.5 Results and Discussion
The eye gaze estimator and eye gesture recognizer were applied

to unsegmented video sequence of all 6 human participants from
the user study described in Section 4. Each video sequence lasted
approximately 10-12 minutes, and was recorded at 30 frames/sec,
for a total of 105,743 frames. During these interactions, human par-
ticipants would rotate their head up to +/-70 degrees around the Y
axis and +/-20 degrees around the X axis, and would also occasion-
ally translate their head, mostly along the Z axis. The following
eye gesture recognition results are on the unsegmented sequences,
including extreme head motion.

First, it is interesting to look at the qualitative accuracy of the eye
gaze estimator for a sample sequence of images. Figure 8 illustrates
a gaze aversion gesture where the eye gaze estimates are depicted
by cartoon eyes and the head tracking result is indicated by a white
cube around the head. Notice that the estimator works quite well
even if the participant is wearing eye glasses.

To analyze the performance of our eye gesture recognizer, we
performed a leave-one-out experiment where we retrained the ges-
ture recognizer with 5 out of 6 participants and tested the trained
recognizer with the sixth participant. Figure 7 shows the ROC
curves for all 6 participants in gray and the average ROC curve
in black.

We computed the true positive rate by dividing the number of
recognized gestures by the total number of ground truth gestures.
An aversion eye gesture is tagged as recognized if the recognizer
triggered at least once during a time window around the aversion
eye gesture. The false positive rate is computed by dividing the
number of falsely recognized frames by the total number of non-
gesture frames. A frame is tagged as falsely recognized if the eye
gesture recognizer triggers and if this frame is outside any time
window of a ground truth aversion eye gesture. The denominator is
the total number of frames outside any time window.

With a small false positive rate of 0.02, our eye gesture recog-
nizer correctly labeled more then 87% of all aversion eye gestures.
This result shows that we can accurately recognize gaze-aversion
eye gestures during interactions with an embodied conversational
agent.

6. CONCLUSION
We introduced an automatic system that allows conversational

agents to detect gaze aversion gestures in human conversational
partners. We found that human participants avert their gaze (i.e.
perform “look-away” or “thinking” gestures) to hold the conversa-
tional floor even while answering relatively simple questions. Us-
ing our approach, an agent could visually differentiate whether a
user is thinking about a response or is waiting for the agent or
robot to take its turn. Interesting avenues of future work include
extending our user study to interactions with a more complex di-
alog manager and the use of dialogue context for improving eye
gesture recognition.
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