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Abs t r ac t .  This paper presents a method for recognizing human-hand 
gestures using a model-based approach. A Finite State Machine is used to 
model four qualitatively distinct phases of a generic gesture. Fingertips 
are tracked in multiple frames to compute motion trajectories, which are 
then used for finding the start and stop position of the gesture. GesSures 
are represented as a list of vectors and are then matched to stored gesture 
vector models using table lookup based on vector displacements. Results 
are presented showing recognition of seven gestures using images sampled 
at 4 ttz on a SPARC-1 without any special hardware. The seven gestures 
are representatives for actions of Left, Right, Up, Down, Grab, Rotate, 
and Stop. 

1 I n t r o d u c t i o n  

It  is essential for computer  systems to possess the ability to recognize meaning- 
ful gestures if they are to interact naturally with people. Humans  use gestures 
in daily life as a means of communication,  e.g., pointing to an object to bring 
someone's  at tention to the object, waving "hello" to a friend, requesting n of 
something by raising n fingers, etc. The best example of communicat ion through 
gestures is given by sign language. American Sign Language (ASL) incorporates 
the entire English alphabet  along with many  gestures representing words and 
phrases [3], which permits  people to exchange information in a non-verbal man-  
ner. 

Currently, the human-computer  interface is through a keyboard and/or  mouse. 
Physically challenged people may have difficulties with such input devices and 
may require a new means of entering commands  or data  into the computer.  Ges- 
ture, speech, and touch inputs are few possible means of addressing such users' 
needs to solve this problem. Using Computer  Vision, a computer  can recognize 
and perform the user's gesture command,  thus alleviating the need for a key- 
board. Some applications for such a vision system are the remote control of a 
robotic arm, guiding a computer  presentation system, and executing computer  
operational commands  such as opening a window or program. 

This paper  presents a gesture recognition method using Computer  Vision, 
which permits  human users adorned with a specially marked glove to command  

* The research reported here was supported by the National Science Foundation grants 
CDA-9200369 and IRI-9220768. 

** For an extended version of this paper, please send e-mail to shah@sono.cs.ucf.edu. 

Lecture Notes in Compumr Science, Vol. 800 
Jan-Olof Eklundh (Ed.) 
Computer Vision - ECCV '94 



332 

a computer system to carry out predefined gesture action commands. Our system 
has been created to recognize a sequence of multiple gestures in which a subset 
of the gestures is comprised of select ASL letters (See Fig. 1). Each gesture 
begins with the hand in the "hello" position and ends in the recognizable gesture 
position. The current library of gestures contains seven gestures: Left, Right, 
Up, Down, Rotate, Grab, and Stop. The user must begin in the designated start 
position and is able to make gestures until the termination gesture (Stop) is 
recognized. 

There are several advantages of this system over other methods. First, it uses 
inexpensive black-and-white video. Incorporating color markers on a glove as 
interest points [2] requires costly color imaging, whereas a binary marked glove, 
as used in this research, can be detected in low-cost black-and-white imaging. 
Second, a simple vision glove is employed, i.e., no mechanical glove with LEDs 
or bulky wires. Current gesture input devices require the user to be linked to the 
computer, reducing autonomy [1]. Vision input overcomes this problem. Third, a 
duration parameter  for gestures is incorporated. For example, if this recognition 
system were connected to a robotic arm and the user makes a gesture for Left, 
the robotic arm would continue to move left until the user moves the hand 
from the gesture back to the start position. Therefore the user can control the 
execution duration of the robotic arm. Finally, due to Finite State Machine 
(FSM) implementation of a generic gesture, no warping of the image sequences 
is necessary. Tha t  is, the number of frames in each gesture can be variable. 

2 R e l a t e d  W o r k  

Baudel and Beaudouin-Lafon [1] implemented a system for the remote control 
of computer-aided presentations using hand gestures. In this system, the user 
wears a VPL DataGlove which is linked to the computer. The glove can measure 
the bending of fingers and the position and orientation of the hand in 3-D space. 
The user issues commands for the presentation by pointing at a predefined ac- 
tive zone and then performing the gesture for the desired command. Gesture 
models include informatio n pertaining to the start  position, arm motion (dy- 
namic phase), and stop position of the gesture. The command set includes such 
commands as next page, previous page, next chapter, previous chapter, table of 
contents, mark page, and highlight area. Two main types of errors that can occur 
with this system are system errors and user errors. System errors re]ate to the 
difficulties identifying gestures that  differ only in the dynamic phase, while user 
errors correspond to hesitations while issuing a command. With trained users, 
the recognition rate was 90- to 98%. This system does not use vision to recognize 
gestures, but instead uses a linked hardware system to track the hand and arm 
movements, which makes movement less natural  for the user. 

Cipolla, Okamoto, and Kuno [2] present a real-time structure-from-motion 
(SFM) method in which the 3-D visual interpretation of hand gestures is used in 
a man-machine interface. A glove with colored markers attached is used as input 
to the vision system. Movement of the hand results in motion between the images 
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of the colored markers. The authors use the parallax motion vector, divergence, 
curl, and deformation components of the affine t.ransformation of an arbitrary 
triangle, with the colored points at each vertex, to determine the projection 
of the axis of rotation, change in scale, and cyclotorsion. This information is 
then used to alter an image of a model. The information extracted from the 
colored markers does not give the position of the entire hand (each finger), it 
only provides a triangular plane for the SFM algorithm. The SFM method used 
here assumes rigid objects, which is not true in the case of hand gestures. 

Fukumoto, Mase, and Suenaga [5] present a system called Finger-Poinler 
which recognizes pointing actions and simple hand forms in real-time. The sys- 
tem uses stereo image sequences and does not require the operator to wear any 
special glove. It also requires no special image processing hardware. Using stereo 
images, their system uses the 3-D location of fingers rather than the 2-D loca- 
tion. The coordinates of the operator 's  fingertip and the direction it is pointing 
is determined from the stereo images and then a cursor is displayed in the target 
location on the opposing screen. The system is robust in that it is able to de- 
tect the pointing regardless of the operator 's pointing style. Applications of this 
system can be similar to the gesture controlled computer-aided presentations of 
Baudel and Beaudouin-Lafon [1] and also can be used in a video browser with a 
VCR. 

Darrell and Pentland [4] have also proposed a glove-free environment ap- 
proach for gesture recognition. Objects are represented using sets of view models, 
and then are matched to stored gesture patterns using dynamic time warping. 
Each gesture is dynamically time-warped to make it of the same length as the 
longest model. Matching is based upon the normalized correlation between the 
image and the set of 2-D view models where the view models are comprised of 
one or more example images of a view of an object. This method requires the 
use of special-purpose hardware to achieve real-time performance, and uses gray 
level correlation which can be highly sensitive to noise. Also, their method was 
only tested in distinguishing between two gestures. 

3 G e n e r i c  G e s t u r e  

For a system to recognize a sequence of gestures, it must be able to determine 
what state the user's hand is in, i.e., whether or not the hand is dormant,  moving, 
or in gesture position. Our approach relies on the qualitatively distinct events 
(phases) in gestures, rather than on frame by frame correlation. Each gesture 
the user performs begins with the hand in the start position (all fingers upright, 
as if one was about to wave "hello" to another person). Next, the user moves the 
fingers and/or  entire hand to the gesture position. Once in position, the system 
will a t tempt  to recognize and then execute the gesture command until the hand 
begins moving back to the start  position. The system will then wait for the next 
gesture to occur. Thus, the user is constrained to the following four phases for 
making a gesture. 
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1. Keep hand still (fixed) in start position until motion to gesture begins. 
2. Move fingers smoothly as hand moves to gesture position. 
3. Keep hand in gesture position for desired duration of gesture command. 
4. Move fingers smoothly as hand moves back to start  position. 

Since these four phases occur in a fixed order, an FSM can be used to guide 
the flow and recognition of gestures, based on the motion characteristics of the 
hand (See Fig. 2). A 1 or 0 in the state diagram represents motion or no motion 
respectively, between two successive images. A three frame similarity constraint, 
which states that,  "at least three consecutive images must have the same motion 
properties to advance to the next phase," was found to inhibit premature phase 
advancement. 

0 1 0 1 

Fig. 2. State diagram. States SO and S1 depict the initial phase (Phase 1), states $2 
and $3 depict the motion to gesture phase (Phase 2), states $4 and $5 depict the 
gesture recognition phase (Phase 3) where an external device such as a robotic arm 
could execute the gesture until exiting this phase, and states $6 and $7 depict the 
motion to initial phase (Phase 4). 

Due to the nature of this machine, no warping of image sequences is necessary, 
i.e., it is not required to have a fixed number of images for each gesture sequence. 
The FSM compensates for varying numbers of images by looping at the current 
phase as long as the three frame similarity constraint is satisfied. The actual 
number of frames which constitute the motion of a gesture yields no information 
for use with this system. The only useful information is the start and end position 
of the fingertips. The system does not care how the fingers or hand arrive in the 
gesture position; it wants to know the location of each fingertip before and 
when the gesture is made. Only the locations and total displacement of the 
fingertips play a crucial role in gesture recognition, as compared to other motion 
characteristics such as instantaneous velocity. Therefore, we need only to track 
each fingertip from the initial position to the final gesture position. The FSM 
permits the determination of which phase the user is currently executing, and 
it also tracks the fingertips of a variable-length frame sequence to the gesture 
position. 
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In our method, each image in the sequence is analyzed to find the location of 
the fingertips, and then motion correspondence is used to track these points to 
the resulting gesture position (Section 4). The trajectories computed by the mo- 
tion correspondence algorithm are then converted to vector form to be matched 
with the stored gestures (Sections 5 and 6). 

4 F i n g e r t i p  D e t e c t i o n  a n d  M o t i o n  C o r r e s p o n d e n c e  

The goal of fingertip detection is to identify the 2-D location of the marked fin- 
gertips on the vision glove. The location of the fingertips determines the position 
of the fingers at any time. Since we are using a sequence of images in which the 
intensity of the fingertips is known a priori to be significantly different from the 
remaining regions, a multi-modal histogram of the image can be generated and 
used to segment the image into fingertip regions (See Fig. 3). We represent the 
five fingertip regions using centroids for ease of calculations, storage, display, etc. 
and also for motion correspondence (See Fig. 3.d). 

Motion correspondence maps points in one image to points in the next image 
such that no two points are mapped onto the same point. A path, known as a 
trajectory, is generated for each of the m points, starting with the points in the 
first image and ending with the points in the nth image. 

Rangarajan and Shah's [6] motion correspondence algorithm was chosen for 
its exploitation of a proximal uniformity constraint, which says objects follow 
smooth paths and cover a small (proximal) distance in a small time. It was 
stated previously, in the Phase 2 gesture constraint, that the fingers must move 
smoothly to the gesture position. Additionally, the three frame similarity con- 
straint for motion, which requires at least three frames of motion, implies that the 
fingertips move a small (proximal) distance in each successive frame. Therefore, 
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the algorithm, using a proximal uniformity constraint, agrees with the previously 
stated gesture motion constraints. 

The authors '  algorithm establishes correspondence among points by mini- 
mizing a proximal  uni formi ty  funct ion  5, which prefers the proximal uniform 
path, such that  

k-1 k x r k + l ) =  6(Xp , X q ,  
.~ m X k - I X  k _ X k X k + l  

+ 

:Ckyk+l  II-q--  II 
m m X k Xk+l E x = l E z : l  It z II 

(1) 

where ~k is one to one onto correspondence between points of image k and image 

k + l,  1 < p , q , r  < m , 2  < k < m -  l , q  -- ~ - l ( p )  y k  y k + l  _ _ l.q ~ is the vector from 
point q in image k to point r in image k +  1, and II x II denotes the magnitude of 
vector X [6]. The first term in the equation represents the smoothness constraint 
and the second represents the proximity constraint. 

5 G e s t u r e  M o d e l i n g  

In general, human finger movements are linear, with extrema moving from an 
extended position down to palm/wrist  area, e.g., from the hand in the "hello" 
position to the hand making a fist. Even though we have the ability of limited 
rotational movement in the fingers, we mostly move the fingers up and down to 
the palm, with the thumb moving left and right over the palm. Since the fingers 
move relatively linearly (some move curvilinearly at times), we can approximate 
each fingertip trajectory by a single vector (See Fig. 4). Each vector will origi- 
nate at the location of the corresponding fingertip before motion to the gesture 
position, and will terminate at the location of the gesture position. We disre- 
gard the actual path each fingertip makes because, as stated previously, we are 
concerned with only the beginning and ending location of each fingertip. There- 
fore, if there is some curvature to the fingertip trajectory, it will be disregarded. 
The motion information leading to the gesture position is not needed. Motion 
correspondence is used only to map the starting points to the ending points by 
means of tracking the points in-between in the trajectories. See Fig. 4 for vector 
representations of the gesture set. 

A library model is created from averaging m test models of the same gesture 
and is represented in a data  structure which contains 

1. The gesture name. 
2. The mean direction and mean magnitude, i.e., mean displacement, for each 

fingertip vector. 
3. The gesture's motion code. 
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The direction, O, and magnitude, or displacement, of a fingertip vector is 
determined from the starting point (x0, y0) and stopping point (x,~, yn) of its 
trajectory and are easily calculated respectively by 

O = a r c t a n  Yn - Y______~0 , (2) 
X n - -  X 0 

D i s p  = ~ / ( x , ~  - Xo )  2 + (y,~ - y o )  2 . (3) 

We use a five-bit motion code to store the motion activity of the five fingertips 
for the gesture, which acts as a table key for the model. Each bit of this code 
corresponds to a specific fingertip vector, with the least significant bit storing 
finger l 's  (thumb's) motion information and progressing to the most significant 
bit where finger 5's (little finger's) motion information is stored. A bit is set if 
its respective fingertip vector has motion, i.e., it's fingertip vector magnitude is 
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above some displacement threshold. Thus, the motion code for a gesture with 
significant motion in fingertip vectors 3, 4, and 5 only is represented as 11100. 
This binary number in decimal notation is 28, which is stored as the gesture's 
motion code. 

6 G e s t u r e  M a t c h i n g  

Gesture matching consists of comparing the unknown gesture with the models 
to determine whether the unknown gesture matches with any model gesture in 
the system vocabulary. 

Motion codes enable the matching scheme to consider only those models 
which have the same motion code as the unknown gesture and also provide 
information to which motion category the unknown gesture belongs. The library 
models, when loaded into memory, can be stored in an array of linear linked lists 
in which the array is indexed by the motion codes (0-31). During the matching 
stage, the unknown gesture is only compared with the library models that  are 
indexed by the unknown gesture's motion code. 

With only a subset of library models to compare to the unknown gesture, 
we have reduced the search complexity, which is now dependent on the different 
motion codes of the current library of gestures. A match is then determined 
by comparison between the stored models and the unknown gesture. A match 
is made if all vector fields (magnitude and direction for each fingertip) in the 
unknown gesture are within some threshold of the corresponding model entries. 

7 R e s u l t s  

Ten sequences of over 200 frames each were digitized at 4 tJz, stored, and then 
used for the recognition program. Each run was performed in the same fashion, 
starting with the gesture for Lef-l and progressing to the ending gesture Stop, as 
shown horizontally in Table 1. An image set in which the fixed order shown in 
Table 1 was altered resulted in perfect recognition, which implies order is not a 
concern. 

The number of images for each sequence depended on the duration of each 
gesture performed. The overall results on the ten sequences of images yielded 
almost perfect scores with the exception of run 9, where an error in the sequence 
caused the remaining gestures to be unrecognizable. A shift of the hand above 
the threshold limit or occlusion of points due to lighting conditions may cause 
premature advancement of one phase to another, which in turn may result in 
the FSM continuing asynchronously with the image sequence. 

Recognition of a nine 128 x 128 frame sequence sampled at 4 Hz took a CPU 
time of 890 ms on a SPARC-1 (99 ms processing time per frame) with no special 
hardware. Our experiments show that  sampling at a rate of 30 Hz is not necessary 
for gesture recognition since the processing time needed for our method is small 
enough for implementation in real-time with images sampled up to 10 Hz. 
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Table  1. Table 1: Results. x / -  Recognized, X - Not Recognized, * - Error in Sequence. 

Run Frames Left Right Up Down Rotate Grab Stop 

1 200 4 4 4 4 4 , /  , /  
2 250 4 , /  4 4 4 4 , /  
3 250 4 4 4 x 4 , /  , /  
4 250 4 4 4 4 , /  4 4 
5 300 , /  4 , /  , /  4 4 4 
6 300 x/ ~/ x/ X/ X/ ~/ X/ 

8 300 , /  4 4 4 , /  4 4 
9 300 ~/ ~/ x/ ~/ * * * 
lo 300 4 4 4 , /  4 4 4 

8 C o n c l u s i o n  

In this paper, we have developed a Computer  Vision method for recognizing 
sequences of human-hand gestures within a gloved environment.  A specialized 
FSM was constructed as an alternative to image sequence warping. We utilize 
vectors for representing the direction and displacement of the fingertips for the 
gesture. Modeling gestures as a set of vectors with a motion code allows the 
reduction of complexity in the model form and matching. We presented the per- 
formance of this method on real image sequences. Future work pursued includes 
extending the gesture vocabulary, removing the glove environment,  and relaxing 
the s ta r t / s top  requirement. 
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