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ABSTRACT 

We are developing a hand-printed character recognition system using a multi­

layered neural net trained through backpropagation. We report on results of 

training nets with samples of hand-printed digits scanned off of bank checks 

and hand-printed letters interactively entered into a computer through a sty­

lus digitizer. Given a large training set, and a net with sufficient capacity to 

achieve high performance on the training set, nets typically achieved error 
rates of 4-5% at a 0% reject rate and 1-2% at a 10% reject rate. The topology 

and capacity of the system, as measured by the number of connections in the 
net, have surprisingly little effect on generalization. For those developing 
practical pattern recognition systems, these results suggest that a large and 

representative training sample may be the single, most important factor in 
achieving high recognition accuracy. From a scientific standpoint, these re­
sults raise doubts about the relevance to backpropagation of learning models 

that estimate the likelihood of high generalization from estimates of capacity. 
Reducing capacity does have other benefits however, especially when the re­
duction is accomplished by using local receptive fields with shared weights. 

In this latter case, we find the net evolves feature detectors resembling those 
in visual cortex and Linsker's orientation-selective nodes. 

Practical interest in hand-printed character recognition is fueled by two current tech­

nology trends: one toward systems that interpret hand-printing on hard-copy docu­

ments and one toward notebook-like computers that replace the keyboard with a stylus 
digitizer. The stylus enables users to write and draw directly on a flat panel display. 

In this paper, we report on results applying multi-layered neural nets trained through 
backpropagation (Rumelhart, Hinton, & Williams, 1986) to both cases. 

Developing pattern recognition systems is typically a two-stage process. First, intuition 

and experimentation are used to select a set of features to represent the raw input pat­

tern. Then a variety of well-developed techniques are used to optimize the classifier 
system that assumes this featural representation. Most applications of backpropaga­

tion learning to character recognition use the learning capabilities only for this latter 
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stage--developing the classifier system (Burr, 1986; Denker, Gardner, Graf, Hender­

son, Howard, Hubbard, Jackel, Baird, & Guyon, 1989; Mori & Yokosawa, 1989; Weide­

man, Manry, & Yau, 1989). However, backpropagation learning affords the opportuni­

ty to optimize feature selection and pattern classification simultaneously. We avoid 

using pre-determined features as input to the net in favor of using a pre- segmented, 

size-normalized grayscale array for each character. This is a first step toward the goal 

of approximating the raw input projected onto the human retina, in that no pre-proces­

sing of the input is required. 

We report on results for both hand-printed digits and letters. The hand-printed digits 

come from a set of 40,000 hand-printed digits scanned from the numeric amount region 

of "real-world" bank checks. They were pre-segmented and size-normalized to a 

15x24 grayscale array. The test set consists of 4,000 samples and training sets varied 

from 100 to 35,200 samples. Although it is always difficult to compare recognition rates 

arising from different pattern sets, some appreciation for the difficulty of categoriza­

tion can be gained using human performance data as a benchmark. An independent 

person categorizing the test set of pre-segmented, size-normalized digits achieved an 

error rate of 3.4%. This figure is considerably below the near-perfect performance of 

operators keying in numbers directly from bank checks, because the segmentation al­

gorithm is flawed. 

Working with letters, as well as digits, enables tests of the generality of results on a 

different pattern set having more than double the number of output categories. The 

hand-printed letters come from a set of 8,600 upper-case letters collected from over 

110 people writing with a stylus input device on a flat panel display. The stylUS collects 

a sequence of x-y coordinates at 200 points per second at a spatial resolution of 1000 

points per inch. The temporal sequence for each character is first converted to a size­

normalized bitmap array, keeping aspect ratio constant. We have found that recogni­

tion accuracy is significantly improved if these bitmaps are blurred through convolution 

with a gaussian distnbution. Each pattern is represented as a 15x24 grayscale image. 

A test set of 2,368 samples was extracted by selecting samples from 18 people, so that 

training sets were generated by people different from those generating the test set. 

Training set sizes ranged from 500 to roughly 6,300 samples. 

1 HIGH RECOGNITION ACCURACY 

We find relatively high recognition accuracy for both pattern sets. Thble 11 reports 

the minimal error rates achieved on the test samples for both pattern sets, at various 

reject rates. In the case of the hand-printed digits, the 4% error rate (0% rejects) ap-

1. Eff~cts of the number.of training samples and network capacity and topology are reported in the 
next sectIon. Nets were tramed to error rates of 2-3%. 1i"aining began with a learning rate of .05 and 
a mome~tum value of .9. The learning rate was decreased when training accuracy began to oscillate or 
had stabtlized for a large number of training epochs. We evaluate the output vector on a winner-take­
all basis, as this consistently improves accuracy and results in network parameters having a smaller 
effect on perfonnance. 
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proaches the 3.4% errors made by the human judge. This suggests that further im­

provements to generalization will require improving segmentation accuracy. The fact 

that an error rate of 5% was achieved for letters is promising. Accuracy is fairly high, 

Table 1: Error rates of best nets trained on largest sample sets and tested 
on new samples 

REJECT RATE DIGITS LETTERS 

0% 

5% 

10% 

35% 

4% 

3% 

1% 

.001% 

5% 

3% 

2% 

.003% 

even though there are a large number of categories (26). This error rate may be ade­

quate for applications where contextual constraints can be used to significantly boost 

accuracy at the word-level. 

2 MINIMAL NETWORK CAPACITY AND TOPOLOGY EFFECTS 

The effects of network parameters on generalization have both practical and scientific 

significance. The practical developer of pattern recognition systems is interested in 

such effects to determine whether limited resources should be spent on trying to opti­

mize network parameters or on collecting a larger, more representative training set. 

For the scientist, effects of capacity bear on the relevance of learning models to back­

propagation. 

A central premise of most general models of learning-by-example is that the size of 

the initial search space-the capacity of the system-determines the number of train­

ing samples needed to achieve high generalization performance. Learning is conceptu­

alized as a search for a function that maps all possible inputs to their correct outputs. 

Learning occurs by comparing successive samples of input-output pairs to functions 

in a search space. Functions inconsistent with training samples are rejected. Very large 

training sets narrow the search down to a function that closely approximates the de­

sired function and yields high generalization. The capacity of a learning system-the 

number of functions it can represent--determines generalization, since a larger initial 

search space requires more training samples to narrow the search sufficiently . This 

suggests that to improve generalization, capacity should be minimized. Unfortunately, 

it is typically unclear how to minimize capacity without eliminating the desired function 

from the search space. A heuristic, which is often suggested, is that simple is usually 

better. It receives support from experience in curve fitting. Low-order polynomials typ­

ically extrapolate and interpolate better than high-order polynomials (Duda & Hart, 

1973). 

Extensions of the heuristic to neural net learning propose reducing capacity by reduc­

ing the number of connections or the number of bits used to represent each connection 
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weight (Baum & Haussler, 1989; Denker, Schwartz, Wittner, Solla, Howard, Jackel, 

& Hopfield,1987). We manipulated the capacity of nets in a number of ways: 1) varying 

the number of hidden nodes, 2) limiting connectivity between layers so that nodes re­

ceived input from only local areas, and 3) sharing connection weights between hidden 

nodes. We found only negligible effects on generalization. 

2.1 NUMBER OF HIDDEN NODES 

Figure 1 presents generalization results as a function of training set size for nets having 

one hidden layer and varying numbers of hidden nodes. The number of free parameters 

(i.e., number of connections and biases) in each case is presented in parentheses. De­

spite considerable variation in the number of free parameters, using nets with fewer 

hidden nodes did not improve generalization. 

Baum & Haussler (1989) estimate the number of training samples required to achieve 

an error rate e (where 0 < e ~ 1/8) on the generalization test, when an error rate 

of el2 has been achieved on the training set. They assume a feed-forward net with 

one hidden layer and W connections. The estimates are distribution-free in the sense 

that calculations assume an arbitrary to-be-learned function. If the number of training 

samples is of order : log ~ ,where N refers to the number of nodes, then it is a near 

certainty that the net will achieve generalization rates of (1 - e). This estimate is the 

upper-bound on the number of training samples needed. They also provide a lower 
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Figure 1. Effect of number of hidden nodes and training set size on generalization. 



Recognizing Hand-Printed Letters and Digits 409 

bound estimate, on the order of W/e. Using fewer than this number of samples will, 

for some functions, fail to achieve generalization rates of (1- e). The fact that we find 

no advantage to reducing the number of connections conflicts with Baum & Haussler's 

estimates and the underlying assumption that capacity plays a strong role in determin­

ing generalization. 

Baum & Haussler also suggest using a constant of proportionality of 1 in their esti­

mates. This implies that achieving error rates of 10% or less on new samples requires 

about 10 times as many training examples as there are connection weights in the net. 

For our largest nets, this implies a requirement of roughly a million training samples, 

which most developers would regard as prohibitively large. We found that about 5,000 

samples were sufficient. Thus, a sufficiently large training sample does not imply apro­

hibitively large sample, at least for character recognition. We find that sample sizes of 

the order of thousands to tens of thousands yield performance very close to human lev­

els. One reason for the discrepancy is that Baum & Haussler'S estimates are distribu­

tion-free in the sense that they reflect worst-case scenarios across all possible func­

tions the net might learn. Presumably, the functions underlying most natural pattern 

recognition tasks are not representative of the set of all possible functions. These re­

sults raise doubts about the relevance to natural pattern recognition of learning models 

based on worst-case analyses, because content may greatly impact generalization. 

2.2 LOCAL CONNECTMTY AND SHARED WEIGHTS 

A more biologically plausible way to reduce capacity is to limit connectivity between 

layers to local areas and to use shared weights. For example, visual cortex contains 

neurons, each of which is responsive to a feature such as an oriented line appearing 

in a small, local region on the retina (Hubel & Wiesel, 1979). A given oriented line-de­

tector is essentially replicated across the visual field, so that the same feature can be 

detected wherever it appears. In this sense, the connections feeding into an oriented­

line detector are shared across all similar line-detectors for different areas of the visual 
field. In an artificial neural net, local structure is achieved by limiting connectivity. 

A given hidden node receives input from only local areas in the input or hidden layer 

preceding it. Weight sharing is achieved by linking the incoming weights across a set 

of hidden nodes. Corresponding weights leading into these nodes are randomly initial­

ized to the same values and forced to have equivalent updates during learning. In this 

way the net evolves the same local feature set that is invariant across the input array. 

Several demonstrations exist indicating that local connectivity and shared weights im­

prove generalization performance in tasks where position invariance is required (Ie 

Cun, 1989; Rumelhart, Hinton, & Williams, 1986). 

We examined the benefits of using local receptive fields with shared weights for hand­

printed character recognition, where position invariance was not required. This does 

not minimize the importance of position invariance. However, it is only one of many 

necessary invariants underlying reliable pattern recognition. Unfortunately, most of 

these invariants have not been explicitly specified. So we don't know how to bias a net 

toward discovering them. Testing the role of local receptive fields with shared weights 
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in situations where position invariance is not required is relevant to discovering wheth­

er these constraints have a role other than in promoting position invariance. 

As indicated in Figure 2, we find only slightly improved generalization in moving from 

nets with global connectivity between layers to nets with local receptive fields or to nets 

with local receptive fields and shared weights. This is true despite the fact that the 

number of free parameters is substantially reduced. The positive effects that do occur 

are at relatively small training set sizes. This may explain why others have reported 

a greater degree of improved generalization by using local receptive fields (Honavar 

& Uhr, 1988). The data reported are for networks with two hidden layers. Global nets 

had 150 nodes in the first layer and 50 nodes in the second. In the Local nets, first hid­

den layer nodes (540) received input from 5x8local and overlapping regions (offset by 

2 pixels) on the input array. Second hidden layer nodes (100) and output layer nodes 

had global receptive fields. The Local. Shared nets had 540 nodes in the first hidden 

layer with shared weights and, at the second hidden layer, either 102 (digits) or 180 (let­

ters) nodes with local, overlapping, and shared receptive fields of size 4x6 on the 1st 
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Figure 2. Effects of net capacity and topology on generalization. 

hidden layer. We have experimented with a large variety of different net architectures 

of this sort, varying the number of hidden nodes, the sizes and overlap of local receptive 

fields, and the use of local receptive fields with and without shared weights in one or 

both hidden layers. The fact that we've found little difference in generalization for two 

different pattern sets across such variations in network architectures argues for the 

generality of the results. 
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2.3 DISCUSSION 

Given an architecture that enables relatively high training performance, we find only 

small effects of network capacity and topology on generalization performance. A large 

training set yields relatively high recognition accuracy in a robust way across most net 

architectures with which we've worked. These results suggest some practical advice to 

those developing hand-printed character recognition systems. IT optimizing general­

ization performance is the goal, it is probably better to devote limited resources to col­

lecting a very large, representative training set than to extensive experimentation with 

different net architectures. The variations in net capacity and topolOgy we've examined 

do not substantially affect generalization performance for sufficiently large training 

sets. Sufficiently large should be interpreted as on the order of a thousand to tens of 

thousands of samples for hand-printed character recognition. 

From a theoretical standpoint, the negligible effects of network capacity on generaliza­

tion performance contradicts the central premise of machine learning that the size of 

the initial hypothesis space determines learning performance. This challenges the rele­

vance, to backpropagation learning, of statistical models that estimate likelihood of 

high generalization performance from estimates of capacity. Due to the gradient de­

scent nature of backpropagation learning, not all functions that can be represented will 

be visited during learning. The negligible effects of capacity suggest that the number 

of functions visited during learning constitutes only a very small percentage of the total 

possible functions that can be represented. 

There are a number of reasons for believing that capacity might impact generalization 

performance in other circumstances. We regularly train only to 2-3% error rates. This 

helps to avoid the possibility of overfitting the data, although we have seen no indica­

tion of this when we have trained to higher levels, as long as we use large training sets. 

It is also possible that the number of connections is not a good measure of capacity. 

For example, the amount of information that can be passed on by a given connection 

may be a better measure than the number of connections. At this conference, Ie Cun, 

Denker, Solla, Howard, & Jackel have also presented evidence that removing unim­

portant weights from a network may be a better way to reduce capacity. However, the 

fact that generalization rates come very close to human accuracy levels, even for nets 

with extremely large numbers of free parameters, suggests that general effects of net 

capacity and topology are, at best, small in comparison to effects of training set size. 

We don't deny that there are likely to be net topologies that push performance up to 

human accuracy levels, presumably by biasing the net toward discovering the range of 

invariants that underlie human pattern recognition. The problem is that only a few 

of these invariants have been explicitly specified (e.g., position, size, rotation), and so 

it is not possible to bias a net toward discovering the full range. 
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3 ADVANTAGES OF REDUCING CAPACITY 

Although reducing gross indicators of capacity may not significantly improve general­

ization, there are good practical and scientific reasons for doing it. A good reason to 

reduce the number of connections is to speed processing. Also, using local receptive 

fields with shared weights biases a net toward position invariance, and toward produc­

ing a simpler, more modular internal representation which can be replicated across a 

large retina. This has important implications for developing nets that combine charac­

ter segmentation with recognition. 

Using local receptive fields with shared weights also offers promise for increasing our 

understanding of how the net correctly classifies patterns because the number of dis­

tinct receptive fields is greatly reduced. Figure 3 depicts Hinton diagrams of local re-

Digits Letters 

Figure 3. Receptive fields that evolved in 1st hidden layer nodes in nets with 
local receptive fields having shared weights. 

ceptive fields from 1st hidden layer nodes in nets with shared weights trained on digits 

or letters. Each of the eight large, gray rectangles corresponds to the receptive field 

for a hidden node. The four on the left came from a net trained on digits; those on 

the right from a net trained on letters. Within each ofthese eight, the black rectangles 

correspond to negative weights and the white to positive weights. The size of the black 

and white rectangles reflects the magnitude of the weights. 

The local feature detectors that develop for both pattern sets appear to be oriented 

line and edge detectors. These are similar to oriented line and edge detectors found 

in visual cortex (Hubel & Wiesel, 1979) and to Linsker's (1986,1988) orientation-selec­

tive nodes, which emerge from a self-adaptive net exposed to random patterns. In 

Linsker's case, the feature detectors develop as an emergent property of the principle 

that the signal transformation occurring from one layer to the next should maximize 

the information that output signals convey about input signals. The fact that similar 
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feature detectors emerge in backpropagation nets trained on "natural" patterns is in­

teresting because there were no explicit constraints to maximize information flow be­

tween layers in the backpropagation nets and because categorization is typically viewed 

as an abstraction process involving considerable loss of category-irrelevant informa­

tion. 
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