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Recognizing Hole-Free 4-Map Graphs in Cubic Time

Zhi-Zhong Chen∗ Michelangelo Grigni† Christos H. Papadimitriou‡

Abstract

We present a cubic-time algorithm for the following problem: Given a simple graph,
decide whether it is realized by adjacencies of countries in a map without holes, in which
at most four countries meet at any point.

Key words. planar graphs, maps, map graphs, cliques, graph algorithms.

1 Introduction

The authors [2] introduced a modified notion of planarity, in which two countries of a map are
considered adjacent when they share any point of their boundaries (not necessarily an edge,
as planarity requires). Such adjacencies of countries in a map define a map graph.

In order to make the notions of map and map graph more clear, we need to recall several
basic concepts in graph theory. Hereafter, a graph may have multiple edges but no loops,
while a simple graph has neither multiple edges nor loops. For a graph G, V (G) and E(G)
denote the vertex set and the edge set of G, respectively. A cycle of a graph G is a connected
subgraph H of G such that each v ∈ V (H) is incident to exactly two edges of H. A graph
is planar if it can be embedded in the sphere so that any pair of edges can only intersect at
their endpoints; a sphere graph is a planar one together with such an embedding. Let G be a
sphere graph. Consider the set of all points of the sphere that lie on no edge of G. This set
consists of a finite number of topologically connected regions; the closure of each such region
is a face of G. A face f of G is a cycle-face if its boundary is a cycle of G.

A map M is a sphere graph such that some of its cycle-faces are labeled while the other
faces are unlabeled. The labeled faces of M are the countries of M, while the unlabeled faces
are the holes of M. Two countries are adjacent in M if their boundaries intersect (possibly,
the intersection contains no edge of M). The map graph of M is the simple graph G where
V (G) consists of the countries of M and E(G) consists of all {f1, f2} such that f1 and f2 are
adjacent countries. We call G a map graph, call M a map of G, and say that M realizes G. If
M has no hole, then it is a hole-free map and its map graph G is a hole-free map graph. To
distinguish the elements of V (M) from those of V (G), we call the former nodes and call the
latter vertices or countries. Moreover, we use lower-case Greek letters to denote nodes and use
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lower-case roman letters to denote vertices. For an integer k, a k-node is a node of M that
appears on the boundaries of exactly k countries of M; if M has no j-node with j > k, then
it is a k-map and its map graph is a k-map graph. For example, Figure 2.2(2) is a hole-free
4-map and Figure 2.2(3) is a 4-map with one hole, realizing the same graph.

1.1 Motivations and Previous Results

In addition to having relevance to planarity, map graphs are related to the topological inference
problem which arises from theoretical studies in geographic database systems. For the details
and a comprehensive survey of known results on map graphs, we refer the reader to [3].
Here we only describe a brief history of research on map graphs. In [2] and [3], the authors
gave a simple nondeterministic polynomial-time algorithm for recognizing map graphs and
investigated the structure and the number of maximal cliques in a map graph. Subsequently,
Thorup [7] presented a polynomial-time algorithm for recognizing map graphs. Unfortunately,
his algorithm is complex and the exponent of the polynomial bounding its running time from
above is about 120. Moreover, as far as we know, Thorup’s algorithm [7] for recognizing map
graphs does not imply a polynomial-time recognition algorithm for hole-free map graphs.

As observed in [2], simple planar graphs are exactly 3-map graphs. Moreover, it is easy to
see that maximal planar graphs (i.e., those simple planar graphs to which we can add no more
edges without losing planarity) are exactly 3-connected hole-free 3-map graphs; the proof is
omitted here. Thus, it is natural to study k-map graphs and hole-free k-map graphs where
k ≥ 4. Thorup’s algorithm [7] for recognizing map graphs does not imply a polynomial-time
recognition algorithm for k-map graphs or hole-free k-map graphs, because even if we are
given a map realizing a map graph, it is not clear that it helps us to find a map with the
additional restrictions we want (e.g., a hole-free 4-map). In fact, it is still unknown if k-map
graphs (respectively, hole-free k-map graphs) for k ≥ 5 can be recognized in polynomial time.
We note in passing that for every k ≥ 4, neither the class of k-map graphs nor the class of
hole-free k-map graphs can be characterized by forbidden subgraphs or minors (because there
are a hole-free 4-map graph G and an edge e in G such that G − e is not a map graph [3]).

We next point out another reason for us to be interested in hole-free 4-map graphs. As
a natural extension of planar graphs, 1-planar graphs (i.e., those simple graphs that can be
embedded in the plane in such a way that each edge crosses at most one other edge) have been
studied extensively in the literature (see [4] and the references therein). It is open whether
1-planar graphs can be recognized in polynomial time. We say that a 1-planar graph G is
triangulated if it can be embedded in the sphere in such a way that (1) each edge of G crosses
at most one other edge and (2) the set of all points of the sphere that lie on no edge of G
consists of a finite number of topologically connected regions whose boundaries each consist of
points of exactly three edges of G. Then, it is easy to see that triangulated 1-planar graphs are
exactly 3-connected hole-free 4-map graphs; the proof is omitted here. In Section 3, we will
observe that the problem of recognizing hole-free 4-map graphs can be easily reduced to the
problem of recognizing 3-connected hole-free 4-map graphs. Hence, the problem of recognizing
triangulated 1-planar graphs is essentially the problem of recognizing hole-free 4-map graphs.

1.2 The New Result

In this paper, we describe a cubic-time algorithm for deciding whether a given graph is a
hole-free 4-map graph. Theorem 3.1 in [3] shows that each clique in a map graph can be
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realized in only four different ways by a map. The basic idea behind our cubic-time algorithm
is to figure out the correct way of realizing each maximal clique C of the input graph G in the
target map. The correct way of realizing C is found by a case analysis of the neighborhood
structure of the countries around C in G. Before the case analysis, certain separators of G
are found and used to simplify G so that the case analysis needs to consider only a few cases.

1.3 Organization of the Paper

This paper is organized as follows. Section 2 describes basic definitions and two lemmas about
map graphs. Section 3 details how to reduce the recognition problem of hole-free 4-map graphs
to its special case where the input graph is 4-connected. Section 4 describes the structure of
maximal cliques of 4-connected graphs G in a hole-free 4-map realizing G. Section 5 explains
how our algorithm makes progress. Section 6 gives a high-level description of our cubic-time
algorithm; the algorithm produces a hole-free 4-map, if one exists. Sections 7 through 9
present the structural results needed to prove the correctness of the algorithm; these sections
are the technical core of our paper. We give a time analysis in Section 10, and concluding
remarks in Section 11.

2 Preliminaries

Let G be a graph. The degree of a vertex v in G is the number of edges incident to v in G. For
a v ∈ V (G), NG(v) denotes the set of vertices adjacent to v in G. For a U ⊆ V (G), NG(U)
denotes

⋃
u∈U NG(u). A path of G is either a single vertex of G or a connected subgraph H of

G such that H is not a cycle and each vertex of H is incident to exactly one or two edges of
H. A path is nontrivial if it is not a single vertex. A vertex of a nontrivial path P is internal
if it is incident to exactly two edges of P .

Let k ≥ 1 be an integer. A k-cut of G is a subset U of V (G) with |U | = k whose removal
disconnects G. G is k-connected if |V (G)| ≥ k and G has no i-cut with i ≤ k − 1.

Let G be a sphere graph (e.g., a map). Two faces of G touch in G if their boundaries share
at least one node of G. Two faces of G strongly touch in G if their boundaries share at least
one edge of G. Two faces of G weakly touch in G if they touch but do not strongly touch in G.

Let M be a map. Let f1, . . . , fk be a set of two or more distinct countries of M. Let
fi1 , . . . , fik be a permutation of f1, . . . , fk. Countries f1 through fk meet at a node α in M in
the order fi1 , . . . , fik if their boundaries all contain α and the countries appear around α in
M in the order fi1 , . . . , fik clockwise. Countries f1 through fk meet at a node α in M if they
meet at α in M in some order. Note that when f1 through fk meet at a node α in M, α may
also appear on the boundary of a country f 6∈ {f1, . . . , fk} or even a hole in M.

The next two lemmas will be useful for analyzing the time complexity of our algorithm.

Lemma 2.1 [1] For every integer k ≥ 3, each k-map graph G with n ≥ 3 vertices has at most
kn − 2k edges.

Lemma 2.2 For every integer k ≥ 3, each hole-free k-map graph G with n ≥ 3 vertices is
realized by a hole-free k-map M with at most 2n − 4 nodes.

Proof: Suppose M is a hole-free k-map realizing G. Since M is hole-free and its countries
are cycle-faces, each node of M is shared by at least two countries. If some node α of M is
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shared by exactly two countries, then we connect the two neighbors of α by a new edge and
delete α together with the two edges incident to α. After this change, M remains a hole-free
k-map and G remains the map graph of M. So, we may assume that each node of M is
adjacent to at least 3 other nodes. By Euler’s formula, M has at most 2n − 4 nodes.

2.1 Marked Graphs and Their Layouts

A marked graph is a simple graph in which each edge is either marked or not marked (see Fig-
ure 5.1(1) for an example). Note that a marked graph may have no marked edge. Throughout
this subsection, G denotes a marked graph. Suppose U ⊆ V (G) and F ⊆ E(G). G − U − F
denotes the marked graph obtained from G by deleting the edges in F and the vertices in U
together with the edges incident to them. When U or F is empty, we drop it from the notation
G−U −F . G[U ] denotes G− (V (G)−U), the subgraph of G induced by U . A clique of G is
a set of pairwise adjacent vertices in G. Often times, we identify a clique C of G with G[C].
A clique C of G is maximal if no clique of G properly contains C. Let k ≥ 1 be an integer. A
k-clique of G is a clique C with |C| = k. For convenience, we denote a maximal k-clique by
MCk.

Definition 2.3 A layout of G is a 4-map L of G such that

(1) the degree of every node in L is at most 4, and

(2) for every marked edge {u, v} in G, countries u and v strongly touch in L.

L is well-formed if for every edge {u, v} in G, the intersection of countries u and v in L is a
single path S of L. (Note: The degree of each 4-node in a hole-free 4-map is 4.)

Note that the path S in Definition 2.3 may be a single node of L. Moreover, if S is not a
node, then each internal node of S is incident to exactly two edges of L.

Definition 2.4 If a layout L of G has no hole, we call it an atlas of G.

Since a marked graph may have no marked edge, the problem of recognizing hole-free
4-map graphs is a special case of the problem of deciding whether a given marked graph has
an atlas or not. Our goal is to design a cubic-time algorithm for the latter (more general)
problem. We prefer to work on marked graphs just for technical reasons.

Throughout the rest of this subsection, fix a U ⊆ V (G) and a layout L of G[U ]. A 2-
hole of L is a hole strongly touched by exactly two countries of L. Erasing a 2-hole H of
L is the operation of modifying L by extending one of the countries strongly touching H to
completely occupy H. Figure 2.1(1) depicts the operation. (Note: In our figures, we draw a
map by projecting one point of the sphere to infinity; we always choose a point that is not on
a country’s boundary.)

By definition, a 4-node of L appears on the boundary of exactly four countries. Thus, by
Condition (1) in Definition 2.3, no 4-node of L is on the boundary of a hole. Let u ∈ U and
v ∈ U . A (u, v)-node in L is a 4-node α at which countries u and v together with two other
countries x and y meet in L in the order u, x, v, y. Erasing (u, v)-node α in L is the operation
of modifying L by slightly extending country x so that α appears in the interior of country x
(and hence the boundaries of countries u, v, and y no longer contain α). Figure 2.1(2) depicts
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Figure 2.1: Erasing a 2-hole H, and a (u, v)-node α. Dashed curves may intersect.

the operation. Note that after erasing α in L, it is possible (but not always the case) that
countries u and v no longer intersect in L.

A (u, v)-segment in L is a nontrivial path S shared by the boundaries of countries u and v
in L such that the degree of each internal node of S in L is 2 but the degree of each endpoint
of S in L is at least 3. Note that two (u, v)-segments in L must be disjoint.

An edge {u, v} of G is good in L if the intersection of countries u and v in L is a path of
L. An edge that is not good in L is bad in L. Note that L is well-formed iff every edge of
G[U ] is good in L.

Definition 2.5 If M is an atlas of G and U is a subset of V (G), then M|U denotes the
layout of G[U ] obtained from M by removing all nodes and edges that do not appear on the
boundary of any country in U . L is an extensible layout of G[U ] if whenever G has an atlas, it
has an atlas M with L = M|U . L is transformable to another layout L′ of G[U ] if whenever
L is extensible, so is L′.

Literally, a layout of G[U ] is extensible iff it can be extended to an atlas of G whenever G
has an atlas.

2.2 Figures

Throughout this subsection, G denotes a marked graph and U denotes a subset of V (G). For
our arguments of the algorithm’s correctness, we need a convenient graphical notation for the
possible extensible layouts of G[U ]. First, as is very natural, we consider two layouts equivalent
when they are homeomorphic. But beyond this, we also introduce a convenient graphic
notation for partially determined layouts of G[U ]. In particular, we introduce contractible
forests and permutable labels.

Definition 2.6 A figure of G[U ] is a list1 D = 〈L, F , L1, . . . , Lk〉, where L is a layout of
G[U ], F is an acyclic subgraph (i.e., a forest) of L, and L1, . . . , Lk are disjoint lists of vertices
in U . We call L the layout in D, call F the contractible forest in D, and call L1, . . . , Lk the
permutable lists in D. (For an example, see Figure 2.2(1) and the explanation below.)

Intuitively speaking, L means a temporary layout of G[U ] and we can finalize it by con-
tracting zero or more edges in F and/or permuting the labels of the countries in each Li

(1 ≤ i ≤ k).
To illustrate a figure D, we draw L (a sphere graph), emphasize the contractible forest in

bold, and then for each permutable list Li, we label each country u ∈ Li as ui. The holes are

1Throughout this paper, a list is always ordered.
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Figure 2.2: (1) A figure of an MC6 U = {a, ..., f} with a single permutable list 〈a, ..., f〉. (2) A
well-formed atlas of an example G. (3) A well-formed 4-map of an example G with one hole.

unlabeled, and should be regarded as “optional” if a contraction could reduce it to a 2-hole.
For convenience, a contractible path means a connected component of the contractible forest
that is a path. Note that a contractible path may be either completely or partially contracted
when necessary. In particular, sometimes we may need to contract two or more vertex-disjoint
subpaths of a contractible path each to a single node.

Definition 2.7 A figure D = 〈L, F , L1, . . . , Lk〉 of G[U ] displays a layout L′ of G[U ] if L′

can be obtained from L by:

(1) contracting a set of node-disjoint paths of F each to a single node,

(2) erasing all resulting 2-holes, and

(3) for each permutable list Li, selecting a permutation π of Li and relabeling each country
u ∈ Li as π(u).

We say D displays G[U ], or D is a display of G[U ], if D displays an extensible layout of G[U ].
D is transformable to another figure D′ of G[U ] if whenever D displays G[U ], so does D′.

For example, if G has a well-formed atlas and U = {a, ..., f} is an MC6 of G, then
Figure 2.2(1) displays G[U ]. If in addition V (G) = {a, . . . , g}, NG(g) = {a, b, e}, and {b, d}
and {c, d} are the marked edges of G, then Figure 2.2(2) (respectively, Figure 2.2(3)) is a
well-formed atlas (respectively, 4-map) of G.

3 Reduction to the 4-Connected Case

Our goal here is to reduce our algorithmic problem (i.e., the problem of deciding if a given
marked graph has an atlas) to its special case where the input marked graph is 4-connected.

Definition 3.1 Let G be a sphere graph. Let S be a set of faces of G. The faces in S form
a cycle-superface if their union is a topologically connected region and this region’s boundary
is a cycle of G. The faces in S form disjoint cycle-superfaces of G if S can be partitioned into
disjoint nonempty subsets S1, . . . ,Sk (k ≥ 2) such that the faces in each Si (1 ≤ i ≤ k) form
a cycle-superface Ri of G and each pair of cycle-superfaces among R1, . . . ,Rk are disjoint.

Lemma 3.2 Let M be a hole-free map, and let G be its map graph. Suppose U is a proper
subset of V (G) such that the countries in U form a cycle-superface or disjoint cycle-superfaces
of M. Then, G − U is connected.
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Proof: Since the countries in U form a cycle-superface or disjoint cycle-superfaces of M,
removing the countries in U from the sphere leaves a topologically connected region. This
implies that G − U is connected.

Since each country in a hole-free map is a cycle-face, Lemma 3.2 implies that each hole-free
map graph is 2-connected. In the remainder of this section, G denotes a marked graph.

Lemma 3.3 Suppose G has an atlas M. Let u and v be two distinct vertices of G. Then,
the following statements hold:

1. G − {u, v} is disconnected iff there are at least two (u, v)-segments in M.

2. Suppose G−{u, v} is disconnected and its connected components are G1, . . . , Gk. Then
for each i ∈ {1, . . . , k}, the marked graph G′

i obtained from G[V (Gi) ∪ {u, v}] by mark-
ing edge {u, v} has an atlas. Moreover, given an atlas Mi for each G′

i, we can easily
construct an atlas for G.

Proof: We first prove Statement 1. If {u, v} 6∈ E(G), then countries u and v are disjoint
cycle-faces of M, and hence Lemma 3.2 implies that G − {u, v} is connected. Next, suppose
that {u, v} ∈ E(G). Let k be the number of (u, v)-segments in M. Consider the following
three cases.

Case 1: k = 0. We erase all the (u, v)-nodes in M. Then, M becomes an atlas of G−{{u, v}}
and countries u and v are disjoint cycle-faces of M. So, by Lemma 3.2, G−{u, v} is connected.

Case 2: k = 1. We erase all the (u, v)-nodes in M. M remains an atlas of G. Moreover,
edge {u, v} becomes good in M. So, countries u and v form a cycle-superface of M. By
Lemma 3.2, G − {u, v} is connected.

Case 3: k ≥ 2. We erase all the (u, v)-nodes in M. M remains an atlas of G. Moreover,
there are exactly k disjoint holes in M|{u,v}. So, removing countries u and v of M from
the sphere leaves exactly k topologically connected regions. Each of these regions forms a
connected component of G − {u, v}. Hence, G − {u, v} is disconnected. This completes the
proof of Statement 1.

We next prove Statement 2. For each i, let Ui = V (Gi). By Case 3 in the proof of
Statement 1, each hole in M|Ui∪{u,v} is a 2-hole and is touched only by u and v, and hence
erasing all the 2-holes of M|Ui∪{u,v} yields an atlas of G′

i. On the other hand, given an atlas
Mi of each G′

i, we erase all the (u, v)-nodes in Mi. Mi remains an atlas of G′
i, because edge

{u, v} is marked in G′
i and so there exists a (u, v)-segment in Mi. Since G′

i − {u, v} = Gi is
connected, Statement 1 implies that there is exactly one (u, v)-segment in Mi. Thus removing
countries u and v of Mi from the sphere leaves exactly one topologically connected region;
let Ri be the closure of this region. The boundary of Ri is a cycle of Mi and can be divided
into two nontrivial paths Si,u and Si,v such that Si,u (respectively, Si,v) is a portion of the
boundary of country u (respectively, v) in M. Now, we obtain an atlas of G as follows. First,
put R1, . . . , Rk on the sphere in such a way that no two of them intersect and each Si,u

appears on the upper half of the sphere while each Si,v appears on the lower half. Second,
draw country u (respectively, v) to completely occupy the area of the upper (respectively,
lower) half of the sphere that is occupied by no Ri. This gives an atlas of G.

Using Statement 2 in Lemma 3.3, we have a linear-time reduction from our algorithmic
problem to its special case where the input marked graph is 3-connected.
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Corollary 3.4 Suppose G has an atlas. Then, G is 3-connected iff G has a well-formed atlas.

Proof: By Statement 1 in Lemma 3.3, the “if” part is obvious. For the other direction,
suppose G is 3-connected. Let M be an atlas of G. If no edge of G is bad in M, then M
is well-formed and we are done. So, suppose that some edge {u, v} is bad in M. Since G is
3-connected, Statement 1 in Lemma 3.3 implies that there is at most one (u, v)-segment in
M. If there is no (u, v)-segment in M, we erase all but one (u, v)-nodes in M; otherwise,
we erase all the (u, v)-nodes in M. In both cases, M remains an atlas of G and edge {u, v}
becomes good in M while no good edge becomes bad in M. Consequently, we can make all
bad edges good in M.

Lemma 3.5 Suppose G has a well-formed atlas M. Let C = {a, b, c} be a set of three distinct
vertices in G. Then, the following statements hold:

1. Suppose C is not a clique in G. Then, G − C is connected.

2. Suppose C is a clique in G. Then, G−C is disconnected if and only if (i) the countries
in C do not meet at a node in M and (ii) each pair of countries in C strongly touch in
M.

3. Suppose G−C is disconnected. Then, (i) G−C has exactly two connected components
G1 and G2, and (ii) both G′

1 and G′
2 have a well-formed atlas, where G′

1 (respectively,
G′

2) is the marked graph obtained from G[V (G1) ∪ C] (respectively, G[V (G2) ∪ C]) by
marking the edges in E(G[C]). Moreover, given a well-formed atlas for G′

1 and another
for G′

2, we can easily construct one for G.

Proof: To prove Statement 1, suppose that C is not a clique. For each edge {u, v} ∈ E(G[C]),
if countries u and v weakly touch in M, then we erase the (u, v)-node in M. Now, M is an
atlas of a subgraph of G and countries in C form a cycle-superface or disjoint cycle-superfaces
of M. By Lemma 3.2, G − C is connected.

To prove Statement 2, suppose that C is a clique. Since M is hole-free, the “if” part is
clear. To prove the “only if” part, suppose that (i) or (ii) in Statement 2 does not hold. In
case (i) is false, a, b and c meet at a node in M, and the well-formedness of M ensures that
countries a, b and c form a cycle-superface of M; so, by Lemma 3.2, G − C is connected.
Otherwise, suppose (i) is true and (ii) is false. For each edge {u, v} ∈ E(G[C]), if countries u
and v weakly touch in M, then we erase the (u, v)-node to get atlas M′. Obviously, M′ is an
atlas of a subgraph of G and countries in C form a cycle-superface or disjoint cycle-superfaces
of M′. By Lemma 3.2, G − C is connected.

Next, we prove Statement 3. Since G−C is disconnected, (i) and (ii) in Statement 2 hold.
By this, there are exactly two holes H1 and H2 in M|C and they are disjoint. For i ∈ {1, 2},
let Ui be the set of countries that occupy Hi in atlas M. Each G[Ui] is a connected component
of G. Let G′

i be the marked graph obtained from G[Ui ∪C] by marking the edges in E(G[C]).
There is a unique hole in M|U1∪C and it is (strongly) touched only by the countries of C.
So, modifying M|U1∪C by extending country a to completely occupy its unique hole yields a
well-formed atlas of G′

1. Similarly, we can obtain a well-formed atlas of G′
2.

On the other hand, suppose we are given a well-formed atlas M1 for G′
1 and another M2

for G′
2. Let i ∈ {1, 2}. Since the edges in E(G[C]) are marked in G′

i, each pair of countries
of C strongly touch in Mi. Note that G′

i − C is connected. Then by Statement 2 and the
well-formedness of Mi, the countries in C share a 3-node αi in Mi. Let Di be a disk in the
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sphere such that αi is an interior point of Di and no country other than a, b, c intersects Di.
To obtain a well-formed atlas of G, we remove each Di from the sphere to obtain a connected
region Ri, and then glue R1 and R2 together by identifying countries a, b, c in R1 with those
in R2, respectively.

By the lemmas in this section, we now have:

Lemma 3.6 There is a linear-time reduction from the problem of deciding whether a given
marked graph has an atlas, to its special case where the input graph is 4-connected.

4 Maximal Cliques in Hole-Free 4-Map Graphs

Throughout this section, M denotes a well-formed atlas and G denotes its map graph. It is
known [3] that for every integer k ≥ 3, each k-map graph has no clique of size larger than
⌊3k/2⌋. So, G has no 7-clique.

By Theorem 3.1 in [3], we can classify the layout M|C of each maximal clique C of G with
4 ≤ |C| ≤ 6 into four types as follows:

Pizzas: There is a node α in M at which the countries in C meet. (See Figure 4.1(1).) This
is possible only when |C| ≤ 4, because M is a 4-map. We say that C is a pizza in M.
Since M is well-formed, α must be unique. So, we call α the center of C in M. Note
that no country in V (G) − C contains α as a boundary node.

Rice-balls: No node of M is shared by more than two countries in C. (See Figure 4.1(2).)
This is possible only when |C| ≤ 4 (as observed in [3]). We say that C is a rice-ball in
M.

Hamantaschen: There are exactly three nodes in M each of which is shared by exactly four
countries in C. This is possible only when |C| = 6 (as observed in [3]). We say that C
is a hamantasch in M. Figure 2.2(1) displays C.

Pizzas-with-crust: C is not a pizza, rice-ball, or hamantasch in M. (See Figures 4.1(3), (4),
and (5).) Then, there is at least one node α in M at which exactly |C| − 1 countries in
C meet (as shown in [3]). This is possible only when |C| ≤ 5, because M is a 4-map.
We say that C is a pizza-with-crust in M. Since M is well-formed, α must be unique if
|C| = 5. So, when |C| = 5, we call α the center of C in M, and call the country in C
not containing α the crust of C in M.

� ✁

✂ ✄
� ✁

✂
✄

� ✁
✂ ✄

☎

�✆✁
✂

✄

� ✁
✂

✄
✝✟✞✟✠ ✝☛✡☞✠ ✝✍✌✎✠ ✝☛✏✑✠ ✝✓✒✔✠

Figure 4.1: Well-formed layouts of maximal cliques.

Lemma 4.1 Suppose G is 4-connected and |V (G)| ≥ 7. Then, G has no 6-clique.

Proof: For a contradiction, assume that G has an MC6 C. Then, it must be a hamantasch
and Figure 2.2(1) displays M|C . After Figure 2.2(1) is modified by contracting the two paths
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in the contractible forest each to a single node and erasing all resulting 2-holes, it still displays
M|C because G is 4-connected. However, the modification yields a layout of C without holes,
a contradiction against the assumption that |V (G)| ≥ 7.

Lemma 4.2 [3] A map graph with n vertices has at most 27n maximal cliques.

5 Making Progress

Throughout this section, let G be the input marked graph. To find an atlas for G, our
algorithm may “make progress” by producing one or more smaller marked graphs, so that
finding an atlas for G is reduced to finding an atlas for each of these smaller graphs. Here
we define the graph features that our algorithm may identify in order to make progress;
subsequent sections show how to make progress for each.

Lemma 3.6 shows that the algorithm can always make progress when G is not 4-connected.
So, in the remainder of this section, we assume that G is 4-connected. Then, by Corollary 3.4,
it suffices to look for a well-formed atlas realizing G.

�
✁

✂✄
☎✝✆✟✞

✠ ✡ ☛
☞✌✍

✎
✏✑

✒

✓
✔

✕
✖

✗✙✘✙✚

✛ ✜ ✢

✣
✤✥

✦
✧★

✩ ✪

✪

Figure 5.1: (1) A marked graph G (whose marked edges are shown in bold). (2) A well-formed
atlas of G.

Definition 5.1 A correct 4-pizza in G is a list 〈a, b, c, d〉 of four countries in G such that if G
has a well-formed atlas, then it has one in which countries a, b, c, d meet at a 4-node in this
order. (For example, in the marked graph in Figure 5.1(1), 〈a, b, c, d〉 is a correct 4-pizza as
can be seen from Figure 5.1(2).) Removing a correct 4-pizza 〈a, b, c, d〉 from G is the operation
of modifying G as follows: Delete edge {a, c} from G and mark edges {b, d}, {a, b}, {b, c},
{c, d}, and {d, a}.

Lemma 5.2 Let G′ be the marked graph obtained from G by removing a correct 4-pizza
〈a, b, c, d〉. Then, G′ has a well-formed atlas if G has one. Moreover, given a well-formed
atlas for G′, we can easily construct one for G.

Proof: Suppose M is a well-formed atlas of G in which countries a, b, c, d meet at a node
α in this order. After erasing the (a, c)-node α in M, we obtain a well-formed atlas of G′ in
which countries a, b, and d meet at a 3-node and countries b, c, and d meet at another 3-node.
Thus, by Statement 2 in Lemma 3.5, both G′ − {a, b, d} and G′ − {b, c, d} are connected.

Let M′ be a well-formed atlas of G′. Since G′−{a, b, d} is connected and the edges {a, b},
{a, d}, and {b, d} are marked in G′, countries a, b, and d must meet at a 3-node α1 in M′

according to Statement 2 in Lemma 3.5. Similarly, countries b, c, and d must meet at a 3-node
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α2 in M′. Thus, the intersection of countries b and d in M′ is a nontrivial path S between
α1 and α2 in M′. We modify M′ by contracting S to a single node, obtaining a well-formed
atlas of G.

In some of our reductions we will discover that an induced subgraph of G has a well-
formed extensible layout in which there are several correct 4-pizzas. In those situations we
may remove all the 4-pizzas at once. This is because that if G has a well-formed atlas, then
the graph obtained from G by removing a correct 4-pizza still has a well-formed atlas (and
therefore is 3-connected) and Lemma 5.2 can be applied further.

To see a particular type of correct 4-pizza in G, consider an extensible layout of an MC5

C in G. As pointed out in Section 4, each extensible layout of C is a pizza-with-crust. The
center of this pizza-with-crust motivates the following definition.

Definition 5.3 A correct center of an MC5 C is a list 〈a, b, c, d〉 of four countries in C, such
that C has a well-formed extensible layout in which countries a, b, c, d meet at a 4-node in
this order. (For example, in the marked graph in Figure 5.1(1), {a, . . . , e} is an MC5 and
〈a, b, c, d〉 is a correct center of the MC5 as can be seen from Figure 5.1(2).) The unique
country in C − {a, b, c, d} is the corresponding correct crust of C.

Fact 5.4 Let C be an MC5 in G. Then, every correct center of C is a correct 4-pizza in G.

Note that C may have multiple correct centers, each from a different extensible layout.
Besides the k-cuts mentioned above, we also consider the more specialized separators

introduced below in Definition 5.7. Section 7 will show how the algorithm may make progress
as long as G contains one of these.

Definition 5.5 Edges {a, b} and {x, y} in G are crossable if they are both unmarked and
{a, b, x, y} is an MC4 in G. For an edge {a, b}, if {a, b} is unmarked, then let E [a, b] denote
the set of all edges {x, y} crossable with {a, b}; otherwise, let E [a, b] be the empty set. (For
example, in the marked graph in Figure 5.1(1), {a, e} and {t, u} are crossable but {h, i} and
{k, v} are not. Moreover, E [a, e] = {{t, u}, {h, u}}.)

Note that if G has an atlas where countries a, x, b, y meet at a 4-node in this order, then
either they are part of an MC5, or {a, b} and {x, y} are crossable. This is because {a, x, b, y}
has to be a 4-clique which can be either maximal or not.

Fact 5.6 If {a, b} is an edge and G− {a, b} has a 3-clique {c, d, e}, then at most one edge of
that 3-clique is in E [a, b].

Proof: Two edges would imply two MC4’s, sitting inside the 5-clique {a, b, c, d, e}.

Definition 5.7 We define the following separators in the marked graph G:

1. A separating edge of G is an edge {a, b} such that G − {a, b} − E [a, b] is disconnected.
(For example, in the marked graph in Figure 5.1(1), {a, e} is a separating edge.)

2. An induced 4-cycle of G is a set C of four vertices in G such that G[C] is a cycle of G.
A separating 4-cycle of G is an induced 4-cycle C of G such that G−C is disconnected.
(For example, in the marked graph in Figure 5.1(1), {a, d, w, t} is a separating 4-cycle.)
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3. A separating triple of G is a list 〈a, b, c〉 of three vertices in G such that C = {a, b, c} is
a clique in G and G−C −E [a, b] is disconnected. (For example, in the marked graph in
Figure 5.1(1), 〈h, i, v〉 is a separating triple.)

4. A separating quadruple of G is a list 〈a, b, c, d〉 of four vertices in G such that (i) {a, b, c, d}
is an induced 4-cycle of G and (ii) G−{a, b, c, d}−E [a, b] is disconnected. (For example,
in the marked graph in Figure 5.1(1), 〈h, i, b, a〉 is a separating quadruple.)

5. A separating triangle of G is a list 〈a, b, c〉 of three vertices in G such that (i) C = {a, b, c}
is a clique in G and (ii) G′ = G − C − (E [a, b] ∪ E [a, c]) is disconnected. If in addition,
G′ has a connected component consisting of a single vertex, then 〈a, b, c〉 is a strongly
separating triangle of G. (For example, in the marked graph in Figure 5.1(1), 〈x, a, d〉 is
a strongly separating triangle.)

6 Sketch of the Algorithm

Throughout the rest of this paper, G denotes the input marked graph. By Lemma 3.6, we
may assume that G is 4-connected. Then, by Corollary 3.4, it suffices to look for a well-formed
atlas realizing G. Moreover, if |V (G)| ≤ 8, our algorithm will solve the problem by exhaustive
search. So, we further assume that |V (G)| ≥ 9. For ease of describing our algorithm, we
further make the following assumption:

Assumption 1 G has a well-formed atlas M.

When G really has a well-formed atlas, our algorithm will output one with at most
2|V (G)| − 4 nodes (cf. Lemma 2.2). On the other hand, when G has no atlas indeed, our al-
gorithm will either finish without giving an atlas (e.g., this may happen when the input graph
has too many maximal cliques), or finish with an invalid atlas (because of Assumption 1).

Given G, our algorithm searches it for a separating edge (cf. Lemma 7.2), separating 4-
cycle (cf. Lemma 7.5), separating triple (cf. Lemma 7.7), separating quadruple (cf. Lemma 7.9),
strongly separating triangle (cf. Lemma 7.18), or separating triangle (cf. Lemma 7.19), in this
order. In each case, as the lemmas show, the algorithm makes progress by either (1) removing
a correct 4-pizza or (2) reducing the problem for G to the problems for certain marked graphs
smaller than G whose total size is that of G plus a constant.

If none of the above separators exists in G, then G has no 6-clique (cf. Lemma 4.1) and
the algorithm searches G for an MC5 or MC4, in this order. If an MC5 C is found, it tries to
find an extensible layout of C by doing a case-analysis based on the neighborhood of C in G
(cf. Section 8). The absence of the above separators guarantees that only a few cases need to
be analyzed. The case-analysis either yields an extensible layout of C whose center is then
removed to make progress, or produces a marked graph G′ smaller than G such that finding
a well-formed atlas for G can be reduced to finding a well-formed atlas for G′.

If no MC5 but an MC4 is found in G, the algorithm scans all MC4’s of G in an arbitrary
order. While scanning an MC4 C, it decides whether C has a rice-ball layout (cf. Lemma 9.1).
If C has a rice-ball layout, the algorithm quits the scanning and makes progress by removing
a correct 4-pizza obtained from the rice-ball layout of C. On the other hand, if no rice-ball
is found after scanning all MC4’s, the algorithm scans all MC4’s of G in an arbitrary order,
once again. But this time, while scanning an MC4 C, it decides whether C has a non-pizza
layout, by doing a case-analysis based on the neighborhood of C in G (cf. Section 9.2). The
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analysis consists of only a few cases due to the absence of the above separators. If C has a
non-pizza layout, the algorithm quits the scanning and makes progress by removing a correct
4-pizza obtained from the layout of C. Otherwise, all MC4’s are pizzas; the algorithm finds
their centers (cf. Section 9.3), and removes all of them so that G no longer has an MC4.

If neither MC5 nor MC4 is found in G, then this is a base case. Since each map graph
without 4-cliques is planar [3], G must be planar, or else we reject. When G is planar, then it
has a unique planar embedding because G is 4-connected (for lack of 3-cuts). We claim that
G has a well-formed atlas if and only if all its faces are triangles. The “if” direction is obvious
because the planar dual of G is an atlas of G, which is well-formed by the 4-connectivity of G
and the absence of 4-cliques in G. Conversely, suppose G has a well-formed atlas M. Since
M has no k-node for k > 3, all adjacent pairs of countries strongly touch in M, and so the
3-nodes and boundaries in M define a 3-regular planar graph G′, whose dual is G. So, it
suffices for the algorithm to check that G is planar and has a 3-regular dual; if so, it returns
the dual as an atlas.

In all the recursive cases, the smaller graphs that we generate have total size at most
the size of G plus a constant, and we spend quadratic time on generating them. A simple
argument (cf. Section 10) shows that the overall time is cubic.

7 Advanced Separations

In this section we prove the necessary properties of the separators in Definition 5.7. Fig-
ures 7.1(1), (2), and (3) help understand the proofs in Sections 7.1, 7.2, and 7.3, respectively.
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Figure 7.1: Three figures for Sections 7.1, 7.2, and 7.3, respectively.

7.1 Separating Edges

By the 4-connectivity of G, if {a, b} is a separating edge of G, then E [a, b] 6= ∅ and hence {a, b}
is an unmarked edge of G.

Definition 7.1 A shrinkable segment in M is a (u, v)-segment S in M such that (i) {u, v} is
an unmarked edge in G, (ii) both the two endpoints α and β of S are 3-nodes, and (iii) the two
countries a and b such that u, v, a meet at α and u, v, b meet at β are distinct and adjacent in
G. We call a and b the ending countries of S.

In the next two results, we show a close relationship between separating edges and shrink-
able segments.

Lemma 7.2 Assume that G has a separating edge {a, b}. Let G′ = G−{a, b}−E [a, b]. Then,
for every {x, y} ∈ E(G) such that x and y belong to different connected components of G′,
〈a, x, b, y〉 is a correct 4-pizza in G.
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Proof: Let M′ be the atlas of G obtained from M by contracting those shrinkable segments
whose ending countries are a and b. All edges except {a, b} are good in M′.

First, we claim that for every {u, v} ∈ E(G) such that u and v belong to different connected
components of G′, there is a node α at which countries u, a, v, b meet in M′ in this order.
Toward a contradiction, assume that such a node does not exist in M′. By the definition of
G′, {u, v} is in E [a, b]. There is no country w ∈ V (G) − {a, b, u, v} adjacent to both u and v;
otherwise, w would connect u and v in G′ (by Fact 5.6). So, by the absence of holes in M′,
the intersection of countries u and v in M′ must be a nontrivial path S in M′ and neither
endpoint of S appears on the boundary of a country other than a and b in M′. At least one
endpoint of S is not on the boundary of country a in M′; otherwise, since the edges {a, u}
and {a, v} are still good in M′, countries a, u, and v together would have to occupy the whole
sphere, a contradiction. Similarly, at least one endpoint of S is not on the boundary of country
b in M′. Thus, both endpoints of S are 3-nodes. In summary, countries u, v, a meet at one
endpoint of S in M′ while countries u, v, b meet at the other endpoint of S in M′. Therefore,
S would be a shrinkable segment with ending countries a and b in M′, a contradiction.

Second, we claim that there is no (a, b)-segment in M′. Toward a contradiction, assume
that an (a, b)-segment S exists in M′. By the first claim, there is an (a, b)-node α in M′. Note
that α is not on S. Let x and y be the two countries of V (G) − {a, b} that meet at α. Since
M′ has no hole and G is a 4-connected graph with at least nine vertices, there is a country
z ∈ V (G)−{a, b, x, y} that touches either x or y in M′. If z touches x (respectively, y) in M′,
then z is not reachable from y (respectively, x) in G − {a, b, x} (respectively, G − {a, b, y}),
contradicting the 4-connectivity of G.

Third, we claim that there are at least two (a, b)-nodes in M′. Toward a contradiction,
assume that there is at most one (a, b)-node in M′. Then, there is a unique (a, b)-node β in
M′, because countries a and b are adjacent but there is no (a, b)-segment in M′. So, by the
first claim, E [a, b] would have at most one edge, namely, the edge {x, y} such that countries
a, x, b, y meet at β in M′. Hence, erasing the (x, y)-node β in M′ results in an atlas M′′ of
G−{{x, y}} such that countries a and b form a cycle-superface of M′′. Thus, by Lemma 3.2,
G − {a, b} − {{x, y}} is connected. Now, since E [a, b] ⊆ {{x, y}}, G′ = G − {a, b} − E [a, b]
would be connected too, a contradiction.

Let ℓ be the number of (a, b)-nodes in M′. Since ℓ ≥ 2 and there is no (a, b)-segment in
M′, atlas M′ has a cyclic sequence of (a, b)-nodes β0, . . . , βℓ−1. These nodes alternate with
ℓ 2-holes in M′|{a,b}; Figure 7.1(1) displays M′|{a,b} when ℓ = 4.

For each j ∈ {0, 1, . . . , ℓ − 1}, let xj and yj be the countries such that a, xj , b, yj meet at
βj in M′. Clearly, {a, b, xj , yj} is a 4-clique of G. We claim that {a, b, xj , yj} is an MC4 of
G; otherwise to form a containing 5-clique would force ℓ ≤ 3 and E [a, b] = ∅, contradicting
the disconnectivity of G′. So, each βj corresponds to an edge {xj , yj} in E [a, b]. Moreover, for
each hole H of M′|{a,b}, the countries occupying H in atlas M′ form a connected component
of G′.

Now consider a particular edge {xj , yj} of G. To show that 〈a, xj , b, yj〉 is a correct 4-pizza
in G, we must find a well-formed atlas of G in which countries a, xj , b, yj meet at a node in this
order. This is easy to do: we simply erase all (a, b)-nodes in M′ except βj , and the resulting
atlas is a well-formed atlas of G.

Corollary 7.3 Let {a, b} be an edge of G. Then, {a, b} is a separating edge iff the following
conditions hold:
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1. There is a shrinkable segment in M with ending countries a and b.

2. Countries a and b weakly touch in M, and no MC5 of G contains both the two countries
in V (G) − {a, b} that meet at the (a, b)-node in atlas M.

Proof: The “only if” part is obvious from the proof of Lemma 7.2. To prove the “if”
part, suppose that Conditions 1 and 2 hold. Let M′ be the atlas of G obtained from M by
contracting a shrinkable segment with ending countries a and b to a single node α. Besides
α, there is exactly one (a, b)-node β in M′, inherited from M. Now, M′|{a,b} has exactly two
holes H0 and H1. Let Z0 (respectively, Z1) be the set of countries of V (G)−{a, b} occupying
H0 (respectively, H1) in atlas M′. Let x ∈ Z0 and y ∈ Z1 be the two countries that meet at α
in M′. Similarly, let x′ ∈ Z0 and y′ ∈ Z1 be the two countries that meet at β in M′. By M′,
edges {x, y} and {x′, y′} are not marked in G and they are all the edges connecting countries
of Z0 to those of Z1. Now, since no MC5 of G contains both x′ and y′ (by Condition 2), no
MC5 of G contains both x and y either. Therefore, both edges {x, y} and {x′, y′} belong to
E [a, b], and no connected component of G − {a, b} − E [a, b] contains both the countries of Z0

and those of Z1. In other words, {a, b} is a separating edge of G.

7.2 Separating 4-Cycles

Since M is hole-free, the following fact is clear.

Fact 7.4 Let C be an induced 4-cycle of G. If for each edge {u, v} of G[C], countries u and
v strongly touch in an atlas of G, then C is a separating 4-cycle of G.

Lemma 7.5 Suppose C = {a, b, c, d} is a separating 4-cycle of G. Let the edges of G[C] be
{a, b}, {b, c}, {c, d}, {d, a}. Then, G − C has exactly two connected components G1 and G2;
and for each i ∈ {1, 2}, the marked graph G′

i obtained from G[V (Gi)∪C] by adding edge {a, c}
and marking edges {a, b}, {b, c}, {c, d}, {d, a}, {a, c} has a well-formed atlas. Moreover, given
a well-formed atlas for G′

1 and another for G′
2, we can easily construct one for G.

Proof: Since G[C] is a cycle and M is well-formed, there are exactly two holes H1 and H2

in M|C . For j ∈ {1, 2}, let Uj be the set of countries that occupy Hj in atlas M. Clearly, the
countries in Uj are connected together in G − C. By this and the assumption that G − C is
disconnected, both G[U1] and G[U2] are connected components of G − C and G − C has no
other connected component. So, H1 and H2 must be disjoint. Thus, for each edge {u, v} in
G[C], countries u and v strongly touch in M.

For each j ∈ {1, 2}, there is a unique hole in M|Uj∪C and it may be (strongly) touched
only by the countries of C. So, modifying M|Uj∪C by extending country a to cover its unique
hole yields a well-formed atlas of G′

j in which countries a, b, and c meet at a 3-node and
countries a, c, and d meet at a 3-node. So, by Statement 2 in Lemma 3.5, both G′

j − {a, b, c}
and G′

j − {a, c, d} are connected.
Conversely, suppose we are given an atlas Mj for each G′

j . Since G′
j−{a, b, c} is connected

and the three edges {a, b}, {a, c}, and {c, b} are marked in G′
j , countries a, b, and c meet at

a 3-node in Mj , by Statement 2 in Lemma 3.5. Similarly, countries a, c, and d must meet at
a 3-node in Mj . Thus, by the well-formedness of Mj , Figure 7.1(2) displays Mj |C . By the
figure, we can modify Mj by drawing a new edge that starts at the middle point of the (a, b)-
segment, crosses the interior of country a, and ends at the middle point of the (a, d)-segment;

15



let M′
j be the resulting map. In map M′

j , countries a and c no longer touch, and there is a
hole Hj strongly touching all of countries a, b, c, d. Now, to obtain a well-formed atlas of G,
we remove each Hj from the sphere to obtain a connected region Rj , and then glue R1 and
R2 together by identifying countries a, b, c, d in R1 with those in R2, respectively.

7.3 Separating Triples

Since M is hole-free, the following fact is clear.

Fact 7.6 Let C = {a, b, c} be a 3-clique of G. If the following three conditions hold, then
〈a, b, c〉 is a separating triple of G:

1. Countries in C do not meet at a node in M.

2. If countries a and b weakly touch in M, then no MC5 of G contains both the two countries
in V (G) − C that meet at the (a, b)-node in atlas M.

3. Countries c and a strongly touch in M, and so do countries c and b.

By the 4-connectivity of G, if 〈a, b, c〉 is a separating triple of G, then E [a, b] 6= ∅ and hence
{a, b} is an unmarked edge of G.

Lemma 7.7 Suppose G has no separating edge but has a separating triple 〈a, b, c〉. Let C =
{a, b, c} and G′ = G − C − E [a, b]. Then, G′ has exactly two connected components G1 and
G2 and exactly one edge {u, v} ∈ E connects G1 to G2 in G − C. Moreover, 〈a, u, b, v〉 is a
correct 4-pizza in G.

Proof: Since G is 4-connected, G − C is connected. So E [a, b] is non-empty to disconnect
G′, and we may choose {u, v} ∈ E [a, b] such that u belongs to a connected component G1 of
G′ and v belongs to another different connected component G2 of G′. By definition of E [a, b],
{a, b, u, v} is an MC4 in G.

We claim that countries u and v do not strongly touch in M. Assume, on the contrary,
that a (u, v)-segment S exists in M. Since M is hole-free and |V (G)| ≥ 9, there are countries
w1, w2 in V (G) − {u, v} such that one endpoint of S is on the boundary of w1 and the other
is on the boundary of w2. If w1 were neither a nor b, then by Fact 5.6, w1 would connect
u and v in G′. Thus w1 ∈ {a, b}, and similarly w2 ∈ {a, b}. By the well-formedness of M
and the fact that |V (G)| ≥ 9, we can verify that there is no way for country a (respectively,
b) to have both endpoints of S on its boundary. So, both endpoints of S are 3-nodes in
M. Moreover, one endpoint of S is on the boundary of country a and the other is on the
boundary of country b. In summary, S is a shrinkable segment in M with ending countries
a and b. Thus, if countries a and b weakly touch in M, then by Corollary 7.3, {a, b} would
be a separating edge of G, a contradiction. On the other hand, if countries a and b strongly
touch in M, then Figure 7.1(3) displays M|{a,b,u,v}. Since |V (G)| ≥ 9, at least one of the two
contractible paths in Figure 7.1(3) should be fixed to be no longer contractible. This together
with Statement 2 in Lemma 3.5 implies that at least one of {a, b, v} and {a, b, u} would be a
3-cut of G, a contradiction. Therefore, the claim holds.

By the claim, countries u and v weakly touch in M. Let α be the unique node at which
countries u and v meet in M. Then, since M has no hole, there are two distinct countries
w1, w2 ∈ V (G) − {u, v} such that countries u, w1, v, w2 meet at α in M in this order. As
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before, we can show that {w1, w2} = {a, b}. Thus, by the well-formedness of M, 〈a, u, b, v〉 is
a correct 4-pizza in G.

The discussions above actually prove that for every pair of adjacent countries x and y of G
that belong to different connected components of G′, countries a, x, b, y must meet at a 4-node
in M in this order. Since α is the unique node at which countries a and b meet in M, (u, v)
is the unique pair of adjacent countries of G that belong to different connected components
of G′. We now claim that G′ has only two connected components G1 and G2. Assume, on the
contrary, that G′ has a connected component G3 other than G1 and G2. Then, there exists a
country w ∈ V (G) − (C ∪ V (G3)) which touches some country w′ of G3 in M; otherwise, G3

would be a connected component of G−C, a contradiction. But now, (w,w′) would be another
pair (than (u, v)) of adjacent countries of G that belong to different connected components of
G′, a contradiction. Thus, the connected components of G′ are only G1 and G2, and {u, v} is
the unique edge connecting G1 to G2 in G − C.

7.4 Separating Quadruples

Since M is hole-free, the following fact is clear.

Fact 7.8 Let {a, b, c, d} be an induced 4-cycle of G. If the following two conditions hold, then
〈a, b, c, d〉 is a separating quadruple of G:

1. If countries a and b weakly touch in M, then no MC5 of G contains both the two countries
in V (G) − C that meet at the (a, b)-node in atlas M.

2. Countries b and c strongly touch in M, so do countries c and d, and so do countries d
and a.

Note that among the facts used in the proof of Lemma 7.7, only the fact that G − C is
connected is related to C. So, we can modify the proof of Lemma 7.7 to prove the following:

Lemma 7.9 Suppose G has neither separating edge nor separating 4-cycle, but has a separat-
ing quadruple 〈a, b, c, d〉. Let C = {a, b, c, d}. Then, G−C −E [a, b] has exactly two connected
components G1 and G2 and exactly one edge {u, v} ∈ E(G) connects G1 to G2 in G − C.
Moreover, 〈a, u, b, v〉 is a correct 4-pizza in G.

7.5 Separating Triangles

Since M is hole-free, the following fact is clear.

Fact 7.10 Let C = {a, b, c} be a 3-clique of G. If the following three conditions hold, then
〈a, b, c〉 is a separating triangle of G:

1. Countries in C do not meet at a node in M.

2. If countries a and b (respectively, countries a and c) weakly touch in M, then no MC5 of
G contains both the two countries in V (G)−C that meet at the (a, b)-node (respectively,
(a, c)-node) in atlas M.

3. Countries b and c strongly touch in M.
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The results in Sections 7.1 through 7.4 allow our algorithm to simplify G whenever it
contains a separating edge, triple, or quadruple. In this subsection, we consider how to make
progress when G has no such separators. So, throughout this subsection, we assume:

Assumption 2 G does not have a separating edge, triple, or quadruple.

Suppose G has a separating triangle 〈a, b, c〉. By Assumption 2 and the 4-connectivity of
G, both E [a, b] and E [a, c] are nonempty and hence both {a, b} and {a, c} are unmarked edges
of G. Let C and G′ be as described in Definition 5.7(5). Our goal is to show that using C
and G′, our algorithm can proceed by finding correct 4-pizzas in G.

Claim 7.11 If {u, v} is an edge in G − C but not in G′, then a ∈ NG(u) ∩ NG(v). Also,
countries u, v, b, and c cannot meet at a 4-node in a well-formed atlas of G.

Proof: Since {u, v} ∈ E [a, b]∪E [a, c], either {a, b, u, v} or {a, c, u, v} is an MC4 of G. In both
cases, a ∈ NG(u)∩NG(v). For the last part, such a 4-node would imply a 5-clique containing
the MC4, contradicting its maximality.

Claim 7.12 For every connected component K of G′, (i) C ⊆ NG(V (K)) and (ii) G′ has
another connected component J such that V (K) ∩ NG(V (J)) 6= ∅.

Proof: For (i), let S = C ∩ NG(V (K)). Since G − C is connected, some edge {x, y} ∈
E [a, b] ∪ E [a, c] connects K to an outside vertex. So, {a, b, x, y} or {a, c, x, y} is an MC4 of
G. Hence, {a, b} ⊆ S or {a, c} ⊆ S. If |S| = 2, then S would be a separating edge of G,
separating K from the rest. Thus, S = C.

For (ii), if on the contrary V (K)∩NG(V (J)) = ∅ for every J , then K would be a component
of G − C, contradicting the 4-connectivity of G.

Claim 7.13 Let Z ⊆ V (G)−C. Suppose a subset {u, v, w} of Z is a 3-clique of G such that
u and v belong to different connected components of G′[Z]. Then, the following hold:

1. Either (i) C ⊆ NG(u) and {C ∩NG(v), C ∩NG(w)} = {{a, b}, {a, c}} or (ii) C ⊆ NG(v)
and {C ∩ NG(u), C ∩ NG(w)} = {{a, b}, {a, c}}.

2. There is no x ∈ Z − {u, v, w} with {u, v, w} ⊆ NG(x).

Proof: Since u and v are disconnected in G′[Z], at least two of the edges in G[{u, v, w}] are
not in G′. Claim 7.11 applied to these edges implies {u, v, w} ⊆ NG(a). On the other hand,
by Fact 5.6 each of E [a, b] and E [a, c] contains at most one edge of G[{u, v, w}]. So, exactly
two edges of G[{u, v, w}] are not in G′, and either edge {u, w} or {v, w} remains in G′.

We suppose {v, w} remains; the other case is similar (by swapping u and v). We also
suppose {u, v} ∈ E [a, b] and {u, w} ∈ E [a, c], the other case is similar (by swapping b and c).
Then {a, b, c} ⊆ NG(u), {a, b} ⊆ NG(v), and {a, c} ⊆ NG(w). On the other hand, G cannot
have the edge {v, c} (respectively, {w, b}), since this edge would imply a 5-clique containing
the MC4 {a, b, u, v} (respectively, {a, c, u, w}). So, the first assertion holds.

For the second assertion, suppose on the contrary there is an x ∈ Z − {u, v, w} with
{u, v, w} ⊆ NG(x). As above, we suppose that both {a, b, u, v} and {a, c, u, w} are MC4’s of
G. Then neither {a, b} nor {a, c} is a subset of NG(x), since otherwise x would extend one of
these MC4’s to a 5-clique. But then the edges from x to u and v would all survive in G′[Z],
contradicting the disconnection of u and v.
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Claim 7.14 Suppose countries a, b, c meet at a node in some well-formed atlas M of G. Then,
for every connected component K of G′, there is no node β in M at which two countries x
and y of K together with two countries w and z of V (G)−V (K) meet in the order x, w, y, z.

Proof: Since countries a, b, c meet at a node α in M, Figure 7.2 displays M|C . Node α
is either a 3-node or a 4-node in M. If α is a 3-node in M, then each pair of countries in
C strongly touch (i.e., the contractible path in Figure 7.2 should be fixed to be no longer
contractible); otherwise, the contractible path in Figure 7.2 should be contracted to a single
node. In either case, let P be the set of all nodes γ in M such that exactly two countries in
C (together with some country(s) not in C) meet at γ. Note that α 6∈ P.

Figure 7.2: A possible display of G[{a, b, c}].

Assume, on the contrary, that for some connected component K of G′, some node β in
M satisfies the condition in the claim. Then, by Claim 7.13(2), C ∩ {w, z} 6= ∅. By
Figure 7.2, β 6∈ {α} ∪ P no matter whether the contractible path in the figure should be
contracted or not; so, |C ∩ {w, z}| ≤ 1. Hence, |C ∩ {w, z}| = 1. In turn, C ∩ {w, z} = {a};
otherwise, by Claim 7.11, {x, y, a, w, z} would be a 5-clique of G, a contradiction. We assume
that w = a; the other case is similar (by replacing z with w). Now, by Claim 7.13(1),
{C∩NG(x), C∩NG(y)} = {{a, b}, {a, c}} and C ⊆ NG(z). We assume that C∩NG(x) = {a, b}
and C ∩ NG(y) = {a, c}; the other case is similar (by swapping x and y). In summary,
Figure 7.3(1) or (2) displays M|{a,b,c,x,y,z}.

Figure 7.3: Possible displays of G[{a, b, c, x, y, z}].

Let γ be the endpoint of the unique (x, z)-segment other than β in M. There is no f ∈
V (G)−{a, b, c, x, y, z} with {x, z} ⊆ NG(f); otherwise, by Claim 7.13(1), C ∩NG(f) = {a, c}
which is impossible by Figures 7.3(1) and (2) (even if we contract a set of vertex-disjoint paths
of the contractible forests). In turn, no country f ∈ V (G) − {a, b, c, x, y, z} has node γ on its
boundary in M. Neither country a nor c has node γ on its boundary in M either, because
{x, c} 6∈ E(G) and M is well-formed. Thus, the absence of holes in M implies that γ is a
3-node on the boundary of country b in M. Similarly, there is no f ∈ V (G) − {a, b, c, x, y, z}
with {y, z} ⊆ NG(f), and the endpoint of the unique (y, z)-segment other than β in M is a
3-node on the boundary of country c in M. Thus, Figures 7.3(1) and (2) are transformable to
Figures 7.3(3) and (4), respectively. Figures 7.3(3) and (4) together with Fact 7.6 imply that
〈a, z, b〉 or 〈a, z, b1〉 would be a separating triple of G (separating x from y), a contradiction.
So, the claim holds.
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If the countries in C meet at a node in M, then Figure 7.4(1), (2), or (3) displays G[C];
otherwise, Figure 7.4(4) displays G[C]. However, we can show that the countries in C in fact
cannot meet at a node in M, and hence Figure 7.4(4) is the only possible display of G[C] (we
will further show that Figure 7.4(5) displays G[C] if 〈a, b, c〉 is a separating triangle of G).
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Figure 7.4: Possible displays of a separating triangle 〈a, b, c〉.

Lemma 7.15 Figure 7.4(1) does not display G[C].

Proof: Assume, on the contrary, that G has a well-formed atlas M such that Figure 7.4(1)
displays M|C . Let α be the node in M|C at which countries a, b, and c meet. Let αa,b

(respectively, αa,c) be the endpoint of the (a, b)-segment (respectively, (a, c)-segment) other
than α in M. There must exist a d ∈ V (G)−C such that countries a, b, d, c meet at α in M.
By the well-formedness of M, α is the unique node shared by countries a and d, and hence
{a, d} is an unmarked edge in G. Let G′

d be the connected component of G′ containing d. Let
K be a connected component of G′ other than G′

d such that some country u of G′
d touches

some country v of K in M; K exists by Claim 7.12.

Figure 7.5: Possible displays of G[{a, b, c, d, v, w}].

We claim that country a touches some country of G′
d−{d} in M. Assume, on the contrary,

that the claim is false. Clearly, {a, b, u, v} or {a, c, u, v} is an MC4 of G. Since no country of
G′

d − {d} touches a in M, u = d. That is, {a, b, d, v} or {a, c, d, v} is an MC4 of G. Since
C ⊆ NG(d), we have |NG(v) ∩ {b, c}| = 1; otherwise, {a, b, c, d, v} would be a 5-clique of
G. We assume that NG(v) ∩ {b, c} = {b}; the other case is similar (by swapping b and c).
Then, since country v cannot touch country c in M and M has no hole, there is a node
β in M at which countries v, d and some w ∈ V (G) − {a, b, c, d, v} meet. By Claim 7.13,
C ∩ NG(w) = {a, c} and there is no x ∈ V (G) − {a, b, c, d, v, w} such that {d, v, w} ⊆ NG(x).
In turn, no country x ∈ V (G) − {a, b, c, d, v, w} has node β on its boundary. No country
in C has node β on its boundary either, because {b, w} 6∈ E(G), {c, v} 6∈ E(G) and M
is well-formed. So, the absence of holes in M implies that β is a 3-node in M. Now, we
see that Figure 7.5(1) displays M|{a,b,c,d,v,w}. There is no x ∈ V (G) − {a, b, c, d, v, w} with
{d, v} ⊆ NG(x); otherwise, C ∩ NG(x) = {a, c} by Claim 7.13(1), which is impossible by
Figure 7.5(1) (even if we completely or partially contract the contractible path). This together
with the absence of holes in M and the well-formedness of M implies that the endpoint of the
unique (v, d)-segment other than β in M must be a 3-node on the boundary of country b in
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M. Similarly, since edge {v, w} remains in G′ (because neither {a, b, v, w} nor {a, c, v, w} is
an MC4 of G), there is no x ∈ V (G) − {a, b, c, d, v, w} with {d, w} ⊆ NG(x) and the endpoint
of the unique (w, d)-segment other than β in M must be a 3-node on the boundary of country
c in M. Thus, Figure 7.5(1) is transformable to Figure 7.5(2). Figure 7.5(2) together with
Fact 7.8 implies that 〈b, c, w, v〉 would be a separating quadruple of G (separating d from the
rest), a contradiction. So, the claim holds.

Figure 7.6: Possible displays of G[{a, b, c, u, v, w}].

By the above claim, Claim 7.14 and the fact (Claim 7.12) that C ⊆ NG(V (K)), it follows
that αa,b or αa,c is shared by G′

d and K in M. Suppose αa,b is shared by G′
d and K; the other

case is similar (by swapping b and c). Let u (respectively, v) be the country of G′
d (respectively,

K) that has node αa,b on its boundary. Then, countries u and v strongly touch in M. Let
S be the (u, v)-segment in M. One endpoint of S is αa,b. Let β be the other endpoint of
S. Neither country d nor c has node β on its boundary in M; otherwise, {u, v, a, b, d} or
{u, v, a, b, c} would be a 5-clique of G (and hence edge {u, v} would remain in G′). By the
well-formedness of M, neither country a nor b has node β on its boundary in M. In turn, since
M has no hole, there is a country w ∈ V (G)−{a, b, c, d, u, v} that has node β on its boundary
in M. By Claim 7.13(2) and the fact that no country in C has node β on its boundary in
M, it follows that β is a 3-node. Moreover, by Claim 7.13(1), C ∩NG(w) = {a, c} and either
(i) C ⊆ NG(v) and C ∩ NG(u) = {a, b} or (ii) C ⊆ NG(u) and C ∩ NG(v) = {a, b}. In
case (i) holds, Figure 7.6(1) or (2) displays M|{a,b,c,u,v,w}. However, Figure 7.6(2) contradicts
Claim 7.14 (because d, u, w belong to G′

d while v belongs to K), and Figure 7.6(1) together
with Fact 7.8 implies that 〈b, c, w, u〉 would be a separating quadruple (separating d from v), a
contradiction. So, (ii) holds and only Figure 7.6(3) or (4) can possibly display M|{a,b,c,u,v,w}.
However, Figure 7.6(3) together with Fact 7.8 implies that 〈b, c, w, v〉 would be a separating
quadruple (separating d from u), a contradiction. Thus, only Figure 7.6(4) can possibly display
M|{a,b,c,u,v,w}. There is no f ∈ V (G) − {a, b, c, u, v, w} with {u, w} ⊆ NG(f); otherwise, by
Claim 7.13(1), C ∩NG(f) = {a, b} which is impossible by Figure 7.6(4) (even if we completely
or partially contract the contractible path). This together with the absence of holes in M
and the well-formedness of M implies that the endpoint of the (u, w)-segment other than β
in M must be a 3-node on the boundary of country c. Now, Figure 7.6(4) is transformable to
Figure 7.6(5). However, Figure 7.6(5) together with Fact 7.6 implies that 〈a, u, c〉 would be a
separating triple of G (separating b from v), a contradiction. This completes the proof.

Lemma 7.16 Figure 7.4(2) does not display G[C].

Proof: Assume, on the contrary, that G has a well-formed atlas M such that Figure 7.4(2)
displays M|C . We assume that 〈b1, c1〉 = 〈b, c〉 in the figure; the other case is similar (by
swapping b and c). Define nodes α and αa,b, country d and G′

d as in the proof of Lemma 7.15.
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By the well-formedness of M, country d meets b only at α and {b, d} is not a marked edge in
G. Let αb,c be the endpoint of the (b, c)-segment other than α in M.

We claim that some country of G′
d−{d} touches country b in M. Assume, on the contrary,

that no country of G′
d − {d} touches country b. Let K be a connected component of G′ other

than G′
d such that some country u of G′

d touches some country v of K in M. By Claim 7.12,
such K exists. Clearly, {a, b, u, v} or {a, c, u, v} is an MC4 of G.

Case 1: u 6= d. Then, countries u and b do not touch in M; hence, C ∩ NG(u) = {a, c}
and {a, c, u, v} is an MC4 of G. Moreover, there is no w ∈ V (G)− {a, b, c, u, v} with {u, v} ⊆
NG(w); otherwise, since C∩NG(u) = {a, c}, we would have C ⊆ NG(v) and C∩NG(w) = {a, b}
by Claim 7.13(1), and in turn w would be a country of G′

d − {d} that touches country b in
M, a contradiction. So, by Figure 7.4(2) and the absence of holes in M, countries u and v
strongly touch in M and both endpoints of the unique (u, v)-segment S in M are 3-nodes
one of which is on the boundary of country a and the other is on the boundary of country c
in M. In turn, S is a shrinkable segment in M. Moreover, no MC5 of G contains both b and
d. Consequently, by Corollary 7.3, {a, c} would be a separating edge of G (indeed, G′

d is a
connected component of G − {a, c} − E [a, c]), a contradiction.

Case 2: u = d. Then {a, b, d, v} or {a, c, d, v} is an MC4 of G. Since {a, b, c} ⊆ NG(d), we
have |NG(v) ∩ {b, c}| = 1; otherwise, {a, b, c, d, v} would be a 5-clique of G. So we have two
sub-cases.

Figure 7.7: Possible displays of G[{a, b, c, d, v, w}].

Case 2.1: NG(v) ∩ {b, c} = {b}. Then C ∩ NG(v) = {a, b} and {a, b, d, v} is an MC4 of
G. Moreover, since country v cannot touch country c in M and M has no hole, there is a
node in M at which countries v, d and some w ∈ V (G) − {a, b, c, d, v} meet. By Claim 7.13,
C ∩ NG(w) = {a, c} and there is no x ∈ V (G) − {a, b, c, d, v, w} such that {d, v, w} ⊆ NG(x).
Now, we see that Figure 7.7(1) displays M|{a,b,c,d,v,w}. There is no x ∈ V (G)−{a, b, c, d, v, w}
with {d, w} ⊆ NG(x); otherwise, C ∩ NG(x) = {a, b} by Claim 7.13(1), which is impossible
by Figure 7.7(1) (even if we completely or partially contract the two contractible paths).
This together with the absence of holes in M implies that Figure 7.7(1) is transformable to
Figure 7.7(2). By Figure 7.7(2) and Fact 7.8, 〈b, v, w, c〉 would be a separating quadruple
of G (separating a from those occupying the shaded hole of M|{a,b,c,d,v,w} in atlas M), a
contradiction.

Case 2.2: NG(v) ∩ {b, c} = {c}. If there is a w ∈ V (G) − {a, b, c, d, v} with {d, v} ⊆ NG(w),
then similarly to Case 2.1 (by swapping v and w), we can prove that 〈b, w, v, c〉 would be a
separating quadruple of G, a contradiction. Otherwise, countries d and v strongly touch in
M, and both endpoints of the unique (d, v)-segment S in M are 3-nodes one of which is on
the boundary of country a and the other is on the boundary of country c in M; by this, S is
a shrinkable segment in M, d constitutes a connected component of G − {a, c} − E [a, c], and
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{a, c} would be a separating edge of G, a contradiction.
Therefore, the claim holds: G′

d − {d} touches b.

Figure 7.8: Possible displays of G[{a, b, c, u, v}] or G[{a, b, c, u, v, w}].

By the above claim, Claim 7.14, and the fact that C ⊆ NG(V (K)), it follows that αa,b or
αb,c is shared by G′

d and K in M. By Claim 7.11, αb,c cannot be shared by G′
d and K. So,

αa,b is shared by G′
d and K. Let u (respectively, v) be the country of G′

d (respectively, K) that
has node αa,b on its boundary. Then, countries u and v strongly touch in M. One endpoint
of the unique (u, v)-segment S in M is αa,b. Let β be the other endpoint of S. Neither
country d nor c has node β on its boundary in M; otherwise, {u, v, a, b, d} or {u, v, a, b, c}
would be a 5-clique of G (and hence edge {u, v} would remain in G′). By the well-formedness
of M, neither country a nor b has node β on its boundary in M. So, there is a country
w ∈ V (G)−{a, b, c, d, u, v} that has node β on its boundary in M. Moreover, by Claim 7.13(2)
and the fact that no country in C has node β on its boundary in M (because M is well-formed
and {v, c} 6∈ E(G)), it follows that β is a 3-node. Now, by Claim 7.13(1), C ∩NG(w) = {a, c}
and either (i) C ⊆ NG(u) and C ∩NG(v) = {a, b} or (ii) C ⊆ NG(v) and C ∩NG(u) = {a, b}.
In case (i) holds, Figure 7.8(1) displays M|{a,b,c,u,v} or Figure 7.8(2) displays M|{a,b,c,u,v,w}.
However, Figure 7.8(2) contradicts Claim 7.14 (because u and d belong to G′

d while v and w
belong to K), and Figure 7.8(1) gives no way for country w to touch all of countries v, a, c in
M (even if we completely or partially contract the contractible path), a contradiction. So, (ii)
holds and Figure 7.8(3) displays M|{a,b,c,u,v} or Figure 7.8(4) displays M|{a,b,c,u,v,w}. However,
Figure 7.8(3) contradicts Claim 7.14 (because d and u belong to G′

d while v belongs to K). So,
only Figure 7.8(4) can possibly display M|{a,b,c,u,v,w}. There is no f ∈ V (G)−{a, b, c, u, v, w}
with {v, w} ⊆ NG(f); otherwise, by Claim 7.13(1), C ∩ NG(f) = {a, b} which is impossible
by Figure 7.8(4) (even if we completely or partially contract the two contractible paths). By
this and the absence of holes in M, Figure 7.8(4) is transformable to Figure 7.8(5). However,
Figure 7.8(5) together with Fact 7.8 implies that 〈b, u, w, c〉 would be a separating quadruple
of G (separating a from v), a contradiction. This completes the proof.

Lemma 7.17 Figure 7.4(3) does not display G[C].

Proof: Assume, on the contrary, that G has a well-formed atlas M such that Figure 7.4(3)
displays M|C . Define nodes α, αa,b and αa,c as in the proof of Lemma 7.15. Let αb,c be the
endpoint of the (b, c)-segment other than α in M. Let d be a country in V (G)−{a, b, c} that
has node αb,c on its boundary in M. Let G′

d be the connected component of G′ containing d.
Let K be a connected component of G′ other than G′

d such that some country u of G′
d touches

some country v of K in M; K exists by Claim 7.12.
By Claims 7.11, 7.12(i) and 7.14, it follows that αa,b or αa,c is shared by G′

1 and G′
2 in M.

We assume that αa,b is shared by G′
1 and G′

2 in M; the other case is similar (by swapping
b and c). Let u (respectively, v) be the country of G′

d (respectively, K) that has node αa,b
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Figure 7.9: Possible displays of G[{a, b, c, u, v, w}].

on its boundary in M. Similarly to the proof of Lemma 7.15, we can prove that there is a
country w ∈ V (G)−{a, b, c, u, v} such that only Figures 7.9(1) through (4) can possibly display
M|{a,b,c,u,v,w}. However, Figure 7.9(1) together with Fact 7.5 implies that {b, u, w, c} would
be a separating 4-cycle of G (separating v from d), a contradiction. Similarly, Figure 7.9(3)
together with Fact 7.5 implies that 〈b, v, w, c〉 would be a separating 4-cycle of G (separating
u from d), a contradiction. Also, Figure 7.9(2) contradicts Claim 7.14 (because d, u, w belong
to G′

d while v belongs to K). So, only Figure 7.9(4) can possibly display M|{a,b,c,u,v,w}. Now,
there is no f ∈ V (G) − {a, b, c, u, v, w} with {u, w} ⊆ NG(f); otherwise, by Claim 7.13,
C ∩ NG(f) = {a, b} which is impossible by Figure 7.9(4) (even if we completely or partially
contract the contractible path). By this, Figure 7.9(4) is transformable to Figure 7.9(5). By
Figure 7.9(5) and Fact 7.8, 〈b, v, w, c〉 would be a separating quadruple of G (separating a
from u), a contradiction. This completes the proof.

By Lemmas 7.15, 7.16 and 7.17, only Figure 7.4(4) can display G[C].
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Lemma 7.18 Suppose 〈a, b, c〉 is a strongly separating triangle of G. Let d be the vertex that
constitutes a connected component of G′. Then, C ⊆ NG(d) and d has exactly two neighbors
x, y in graph G − C. Moreover, either (i) NG(x) ∩ {b, c} = {b} and NG(y) ∩ {b, c} = {c},
or (ii) NG(x) ∩ {b, c} = {c} and NG(y) ∩ {b, c} = {b}. Furthermore, if (i) (respectively,
(ii)) holds, then both 〈a, d, b, x〉 and 〈a, d, c, y〉 (respectively, both 〈a, d, b, y〉 and 〈a, d, c, x〉) are
correct 4-pizzas in G.

Proof: Figure 7.4(4) displays M|C . Let H1 be one hole of M|C , and H2 be the other. Let Z1

(respectively, Z2) be the set of countries in V (G) − C that occupy hole H1 (respectively, H2)
in atlas M. Let αa,b be the node at which countries a and b together with some country(s) of
Z1 meet in M. Define nodes αa,c and αb,c similarly.

First, we observe that C ⊆ NG(V (K)) for every connected component K of G′[Z1]. If
V (K) = Z1, then this is clear from Figure 7.4(4). Otherwise G′[Z1] has some other component
K ′ adjacent to K in G[Z1], and now our argument resembles that for Claim 7.12(i). That
is, let S = C ∩ NG(V (K)). Since an edge between K and K ′ is absent in G′, S contains
either {a, b} or {a, c}. Toward a contradiction, assume S = {a, b}; the {a, c} case is similar
(by swapping b and c). Then, in case K is also a connected component of G′, it is clear
that {a, b} would be a separating edge in G (separating K from K ′), a contradiction. In
case K is not a connected component of G′, Figure 7.4(4) ensures that there is exactly one
edge {x1, x2} ∈ E(G) with x1 ∈ V (K) and x2 ∈ Z2; moreover, the four countries a, x1, b, x2

must meet at node αa,b in atlas M in this order (so, the (a, b)-segment in the layout in
Figure 7.4(4) should be contracted to a single node). If {a, x1, b, x2} is an MC4 of G, then
K would be a connected component of G′, a contradiction. Otherwise, there is a 5-clique C ′

with {a, x1, b, x2} ⊆ C ′. By Figure 7.4(4), the country x3 ∈ C ′ − {a, x1, b, x2} cannot have
node αa,b on its boundary and hence has to touch country c in order to touch both x1 and x2

in M. Moreover, since {x1, c} 6∈ E(G), x3 must belong to Z1 or else x3 could not touch x1

in M. Therefore, {x1, x3} remains an edge in G′[Z1]. This implies that {x1, x3} ⊆ V (K) and
C ⊆ NG(V (K)), contradicting the assumption that S = {a, b}. So, S = C.

Similarly, we have C ⊆ NG(V (K)) for every connected component K of G′[Z2].
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Figure 7.10: Possible displays of G[{a, b, c, d, x, y}].

We assume that d ∈ Z1; the other case is similar (by swapping Z1 and Z2). We want to
prove that Z1 = {d}. Toward a contradiction, assume that Z1 6= {d}. Then, since M has no
hole, there is a connected component K of G′[Z1] with V (K) ∩ NG(d) 6= ∅. First, we claim
that d and some country of K must meet at αa,b, αa,c, or αb,c. Assume, on the contrary, that
the claim does not hold. Then, since C ⊆ NG(V (K))∩NG(d) by the above observation, there
must exist a node β in M at which two countries x and y of K together with d and some
u ∈ C meet in the order x, d, y, u. Claim 7.13 ensures that either (i) C ∩NG(x) = {a, b} and
C ∩ NG(y) = {a, c} or (ii) C ∩ NG(x) = {a, c} and C ∩ NG(y) = {a, b}. In either case, we
have u = a. We assume that (i) holds; the other case is similar (by swapping b and c). Then,
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Figure 7.10(1) displays M|{a,b,c,d,x,y}. There is no u ∈ Z1 − {d, x, y} with {x, d} ⊆ NG(u);
otherwise, by Claim 7.13(1), C ∩ NG(u) = {a, c} which is impossible by Figure 7.10(1) (even
if we contract a set of vertex-disjoint paths of the contractible forest). This together with
the well-formedness of M and the absence of edge {x, c} in G implies that the endpoint of
the unique (x, d)-segment other than β in M must be a 3-node on the boundary of country
b. Similarly, there is no u ∈ Z1 − {d, x, y} with {y, d} ⊆ NG(u), and the endpoint of the
unique (y, d)-segment other than β in M must be a 3-node on the boundary of country
c. So, Figure 7.10(1) is transformable to Figure 7.10(2). By Figure 7.10(2), if there were
countries in M occupying the shaded hole of the layout in Figure 7.10, then none of these
countries could touch country a in M and hence they together with d would fall into the
same connected component of G′[Z1], a contradiction. This together with Claim 7.11 implies
that Figure 7.10(2) is transformable to Figure 7.10(3). However, Figure 7.10(3) together with
Fact 7.8 implies that 〈x, y, c, b〉 would be a separating quadruple of G (separating d from a),
a contradiction. So, the claim holds: d meets K at αa,b, αa,c, or αb,c.
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Figure 7.11: Possible displays of G[{a, b, c, d, u, v}].

Next, we use the above claim to get a contradiction. By the above claim, d and a country
u of K must meet at αa,b, αa,c, or αb,c in M. By Claim 7.11, d and u cannot meet at αb,c.
So, they meet at αa,b or αa,c. We assume that they meet at αa,b; the other case is similar
(by swapping b and c). Then, countries d and u in M strongly touch in M. One endpoint
of the unique (d, u)-segment S in M is αa,b. Let β be the other endpoint of S. Since M is
well-formed, neither country a nor b has node β on its boundary in M. Moreover, country
c cannot have node β on its boundary in M; otherwise, {a, b, c, d, u} would be a 5-clique of
G. On the other hand, by the absence of holes in M, it is impossible that only countries u
and d meet at β. So, there is a country v ∈ Z1 − {d, u} such that countries u, d, v meet at
β in M; β must be a 3-node by Claim 7.13(2). Now, by Claim 7.13(1), C ∩ NG(v) = {a, c}.
Thus, Figure 7.11(1) or (2) displays M|{a,b,c,d,u,v}. Actually, Figure 7.11(1) does not display
M|{a,b,c,d,u,v} or else Fact 7.6 would imply that 〈b, c, a〉 is a separating triple of G (separating
countries in Z1 from countries in Z2), a contradiction. So, only Figure 7.11(2) can possibly
display M|{a,b,c,d,u,v}. There is no w ∈ Z1 − {d, u, v} with {d, v} ⊆ NG(w); otherwise, by
Claim 7.13(1), C∩NG(w) = {a, b} which is impossible by Figure 7.11(2) (even if we contract a
set of vertex-disjoint paths of the contractible forest). By this, Figure 7.11(2) is transformable
to Figure 7.11(3). By Claim 7.11 and the fact that 〈b, c, d〉 is not a separating triple of G,
each pair of countries in {b, c, d} must strongly touch in M (cf. Fact 7.6). So, Figure 7.11(3)
is further transformable to Figure 7.11(4). Figure 7.11(4) and the absence of edge {u, c} in G
together with Fact 7.8 implies that 〈u, b, c, v〉 would be a separating quadruple of G (separating
d from the rest), a contradiction. This completes the proof that Z1 = {d}.

Now, Z1 = {d}. Thus, by Claim 7.11 and Assumption 2 (G has no separating triple),
Figure 7.4(5) displays M|C . By the figure, d and some country x ∈ Z2 meet at the (a, b)-node
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in atlas M; d and some country y ∈ Z2 meet at the (a, c)-node in atlas M. Since d constitutes
a connected component of G′, x 6= y, NG(x) ∩ {b, c} = {b}, and NG(y) ∩ {b, c} = {c}. By
Figure 7.4(5), only x and y can be the neighbors of d in graph G−C, and both 〈a, d, b, x〉 and
〈a, d, c, y〉 are correct 4-pizzas in G. This completes the proof of Lemma 7.18.

Lemma 7.19 Suppose there is no strongly separating triangle of G. Then, G′ has exactly
two connected components G1 and G2, and exactly two edges {u, v}, {x, y} ∈ E(G) connect
G1 to G2 in graph G − C. Moreover, either (i) both {a, b, u, v} and {a, c, x, y} are MC4’s of
G, or (ii) both {a, b, x, y} and {a, c, u, v} are MC4’s of G. Furthermore, if (i) (respectively,
(ii)) holds, then both 〈a, u, b, v〉 and 〈a, x, c, y〉 (respectively, both 〈a, x, b, y〉 and 〈a, u, c, v〉) are
correct 4-pizzas in G.

Proof: Define sets Z1 and Z2 and points αa,b, αa,c, and αb,c as in Lemma 7.18. As in the
proof of Lemma 7.18, we observe that C ⊆ NG(V (K)) for every connected component K of
G′[Z1] or G′[Z2].
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Figure 7.12: Possible displays of G[{a, b, c, x, y, z}].

We claim that for every connected component K of G′[Z1], there is no node β in M at
which two countries x and y of K together with two countries w and z of (C ∪ Z1) − V (K)
meet in the order x, w, y, z. Assume, on the contrary, that such β exists in M. Then, by
Claim 7.13(2) with Z = Z1, we have C ∩ {w, z} 6= ∅. By Figure 7.4(4), β 6∈ {αa,b, αa,c, αb,c}
and hence |C ∩ {w, z}| ≤ 1. So, |C ∩ {w, z}| = 1. Thus, C ∩ {w, z} = {a}; otherwise,
by Claim 7.11, {x, y, a, w, z} would be a 5-clique of G, a contradiction. We assume that
w = a; the other case is similar (by replacing z with w). Now, by Claim 7.13(1), {C ∩
NG(x), C ∩ NG(y)} = {{a, b}, {a, c}} and C ⊆ NG(z). We assume that C ∩ NG(x) = {a, b}
and C ∩ NG(y) = {a, c}; the other case is similar (by swapping x and y). In summary,
Figure 7.12(1) displays G[{a, b, c, x, y, z}]. There is no f ∈ Z1−{x, y, z} with {x, z} ⊆ NG(f);
otherwise, by Claim 7.13(1), C ∩ NG(f) = {a, c} which is impossible by Figure 7.12(1) (even
if we contract a set of vertex-disjoint paths of the contractible forest). This together with
the well-formedness of M and the absence of edge {x, c} in G implies that the endpoint
of the unique (x, z)-segment other than β in M is a 3-node on the boundary of country b
in M. Similarly, the endpoint of the unique (y, z)-segment other than β in M is a 3-node
on the boundary of country c in M. So, Figure 7.12(1) is transformable to Figure 7.12(2).
Figure 7.12(2) is further transformable to Figure 7.12(3), because (i) 〈a, b, x〉 and 〈a, c, y〉
are not separating triples of G and (ii) both {a, b, x, z} and {a, c, y, z} are MC4’s of G. By
Figure 7.12(3) and the fact that both {a, b, x, z} and {a, c, y, z} are MC4’s of G, 〈a, b, z〉 would
be a strongly separating triangle of G (separating x from the rest), a contradiction. So, the
claim holds.

Next, we claim that G′[Z1] is connected. Assume, on the contrary, that G′[Z1] is discon-
nected. Then, since M has no hole, there are two distinct connected components K and K ′
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Figure 7.13: Possible displays of G[{a, b, c, u, v, w}].

of G′[Z1] such that V (K) ∩ NG(V (K ′)) 6= ∅. Since C ⊆ NG(V (K)) and C ⊆ NG(V (K ′)),
some country u of K and some country v of K ′ have to meet at αa,b, αa,c or αb,c in M, by the
claim of the previous paragraph and Figure 7.4(4). By Claim 7.11, u and v cannot meet at
αb,c in M. We assume that u and v meet at αa,b in M; the other case is similar (by swapping
b and c). Similarly to the proof of Lemma 7.18 (by replacing d there with v1), we can prove
that there is a country w ∈ Z1 − {u, v} such that only Figure 7.13(1) or (2) can possibly
display M|{a,b,c,u,v,w}. Actually, Figure 7.13(1) does not display it or else 〈a, u1, w〉 would
be a strongly separating triangle of G (separating v1 from the rest). So, only Figure 7.13(2)
can possibly display it. Since 〈a,w, u1〉 is not a separating triple of G, Fact 7.6 implies that
Figure 7.13(2) is transformable to Figure 7.13(3). By Figure 7.13(3), 〈a,w, v1〉 would be a
strongly separating triangle of G (separating u1 from the rest), a contradiction. So, the claim
holds. Similarly, we can prove that G′[Z2] is connected.

Since both G′[Z1] and G′[Z2] are connected, both have to be connected components of G′

(or else G′ would be connected), and G′ has no other connected component. So, by Claim 7.11,
the figure obtained from Figure 7.4(4) by contracting the bold (b, c)-segment to a single node
does not display M|C . Thus, the bold (a, b)-segment in Figure 7.4(4) should be contracted to
a single node; otherwise, 〈a, c, b〉 would be a separating triple of G (separating countries of Z1

from countries of Z2), by Fact 7.6. Similarly, the bold (a, c)-segment in Figure 7.4(4) should
be contracted to a single node. Hence, Figure 7.4(5) displays M|C . By the figure, a unique
country u ∈ Z1 and a unique country v ∈ Z2 meet at the (a, b)-node in atlas M; and a unique
country x ∈ Z1 and a unique country y ∈ Z2 meet at the (a, c)-node in atlas M. Since both
G′[Z1] and G′[Z2] are connected components of G′, both {a, b, u, v} and {a, c, x, y} are MC4’s
of G. Moreover, by Figure 7.4(5), both 〈a, u, b, v〉 and 〈a, x, c, y〉 are correct 4-pizzas in G, and
only {u, v} and {x, y} can be the edges connecting G′[Z1] to G′[Z2] in graph G − C.

By the above reductions, our algorithm may make progress whenever G has a separating
edge, quadruple, or triangle. Hereafter we assume that all such reductions have been made:

Assumption 3 G does not have a separating edge, quadruple, or triangle.

In fact Assumption 3 implies the 4-connectivity of G (by Lemma 3.5(1)) and Assumption 2.

8 Removing Maximal 5-Cliques

We assume that G has an MC5; our goal of this section is to show how to remove MC5’s from
G. The idea behind the removal of an MC5 C from G is to try to find and remove a correct
center P of C. By Fact 5.4, we make progress after removing P . After removing P , the
resulting G may no longer satisfy Assumption 3; in that case, the algorithm must therefore
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reapply the reductions of the previous sections before considering another MC5. Also, not
unexpectedly, our search for a correct center of C may fail. In this case, we will be able to
decompose G into smaller graphs to make progress.
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Figure 8.1: Possible displays of MC5 {a, b, c, d, e}.

Throughout this section, let C = {a, . . . , e} be an MC5 of G. We argue that one of
Figures 8.1(1) through (4) must display M|C as follows. First, C is a pizza-with-crust in M.
Suppose the four non-crust countries a1, b1, c1, d1 meet at a 4-node α in M in this order. Let
βa,b be the endpoint of the (a1, b1)-segment other than α in M. Define βb,c, βc,d, and βd,a

similarly. Let k be the number of nodes among βa,b, βb,c, βc,d, βd,a that are shared by the
crust e1 of C and another country of V (G) − C in M. Since M is well-formed, k ≤ 2. On
the other hand, since C 6= V (G) and G has no separating triangle, we have k ≥ 1 (otherwise,
by Fact 7.10, at least one of 〈e1, a1, b1〉, 〈e1, a1, d1〉, 〈e1, d1, c1〉, and 〈e1, c1, b1〉 would be a
separating triangle of G). If k = 1, then Fact 7.10 implies that Figure 8.1(1) displays M|C .
If k = 2, then Fact 7.10 implies that Figure 8.1(2), (3) or (4) displays M|C .

For a positive integer k, two maximal cliques C ′ and C ′′ are k-sharing if |C ′ ∩ C ′′| = k.
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Figure 8.2: Possible displays of 4-sharing MC5’s.

C is 4-sharing with at most two other MC5’s C ′ of G (and so is every MC5 of G); this is
because the center of C ′ must be a 3-node bordering a hole in M|C , and there are at most
two such nodes in the possible displays of Figure 8.1. We claim that at least one MC5 of G is
4-sharing with two other MC5’s of G. Toward a contradiction, assume that the claim does not
hold. When C is 4-sharing with no MC5 of G, none of Figures 8.1(1) through (4) displays M|C
or else either V (G) would equal C or at least one of 〈e1, a1, b1〉, 〈e1, c1, d1〉, and 〈e1, a1, d1〉
would be a separating triangle of G, a contradiction. So, consider the case where C is 4-sharing
with exactly one MC5, say C1 = {a1, b1, c1, e1, f}, of G. In this case, by Assumption 3 (G
has no separating triangle), Figures 8.1(2) and (4) are transformable to Figure 8.1(1). By
Figures 8.1(1) and (3), only Figure 8.2(1) or (2) can possibly display M|{a,...,f}. Actually,
Figure 8.2(2) does not display M|{a,...,f}; otherwise, since C1 is 4-sharing with no MC5 of G
other than C, there is no g ∈ V (G) − {a, . . . , f} with {a1, b1, e1, f} ⊆ NG(g) and Fact 7.10
implies that 〈a1, f, e1〉 would be a separating triangle of G (separating d from those occupying
the shaded hole of M|{a,...,f} in atlas M), a contradiction. Similarly, Figure 8.2(1) does not
display M|{a,...,f}; otherwise, since |V (G)| ≥ 9, Fact 7.6 implies that 〈a1, f, b1〉 or 〈a1, f, e1〉
would be a separating triple of G, a contradiction. Therefore, the claim holds.

By the above claim, if G has an MC5, then it has an MC5 that is 4-sharing with two other
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MC5’s of G. By our assumption, C is an arbitrary MC5 of G and hence we can assume that
C is 4-sharing with two other MC5’s, say C1 = {a, c, d, e, f} and C2 = {a, b, c, e, g}, of G. Let
U = C ∪ {f, g}. We show how to find a correct center of C below. First, we observe the
following simple but useful fact (which is clear from Figures 8.1(1) through (4)).

Fact 8.1 Let W be a subset of an MC5 C ′ of G with |W | ≥ 3. If all the edges of G[W ] are
marked in G or G − C ′ has a vertex x with W = C ′ ∩ NG(x), then W contains all correct
crusts of C ′. In particular, if C ′ and C ′′ are MC5’s with |C ′ ∩ C ′′| ≥ 3, then both their
crusts are in the intersection.

{f, g} is not an edge in G; otherwise, only Figure 8.1(3) or (4) can possibly display M|C ,
but after drawing countries f and g in the two figures, we see that the 4-connectedness of
G would force V (G) to equal U , contradicting the assumption that |V (G)| ≥ 9. So, only
Figure 8.2(3) or (4) can possibly display M|U . By the figures, a correct center of C can be
found from a correct crust immediately. So, it suffices to find out which one of a, c, and e is
a correct crust of C.

Let k be the number of vertices v ∈ {a, c, e} such that NG(v) ⊆ U . We have k ≤ 1;
otherwise, no matter which of Figures 8.2(3) and (4) displays M|U , the 4-connectedness of G
would force V (G) to equal U , contradicting the assumption that |V (G)| ≥ 9. First, consider
the case where k = 0. In this case, only Figure 8.2(3) displays M|U . Moreover, by this
figure, there is a (unique) country h ∈ V (G) − U with {a1, b, e1, g} ⊆ NG(h) or else Fact 7.6
would imply that 〈a1, g, b〉 or 〈a1, g, e1〉 is a separating triple of G, a contradiction. Similarly,
there is a unique country i ∈ V (G)−U with {c1, d, e1, f} ⊆ NG(i). So by Fact 8.1, the unique
country in NG(h) ∩ NG(i) is a correct crust of C.

Now, we may assume that k = 1. We may further assume that c is the unique u ∈ {a, c, e}
such that NG(u) ⊆ U ; the other cases are similar (by swapping and relabeling). For each
of Figures 8.2(3) and (4), we want to figure out which of countries a1, c1, e1 in the figure
can actually be c. If Figure 8.2(4) displays M|U , then neither a1 nor e1 can be c or else
the 4-connectedness of G would force V (G) to be U , a contradiction. So, in Figure 8.2(4),
c1 = c. Similarly, if Figure 8.2(3) displays M|U , e1 cannot be c or else both {a1, b, g} and
{c1, d, f} would be 3-cuts of G, a contradiction. So, if Figure 8.2(3) displays M|U , either
a1 = c in Figure 8.2(3) (and hence NG({b, c, g}) ⊆ U), or c1 = c in Figure 8.2(3) (and hence
NG({c, d, f}) ⊆ U). No matter which of Figures 8.2(3) and (4) displays M|U , if there is
a u ∈ {a, e} such that {u, d} or {u, b} is a marked edge in G, then the unique country in
{a, e}− {u} is a correct crust of C. So, we may assume that none of {a, d}, {e, d}, {a, b}, and
{e, b} is a marked edge in G. It remains to consider three cases as follows.
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Figure 8.3: (1) A possible display of G[U ] in Case 1. (2) Another possible display of G[U ] in
Case 1. (3) A display of G′[{a, . . . , e, g}] in Case 1.1. (4) A display of G[U ] in Case 3.1. (5) A
display of G′[U ] in Case 3.1.
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Case 1: NG({c, d, f}) ⊆ U . Then, Figures 8.2(3) and (4) are transformable to Figures 8.3(1)
and (2), respectively.

Case 1.1: Edge {c, f} is not marked in G. Then, Figure 8.3(1) is transformable to Fig-
ure 8.3(2), and hence Figure 8.3(2) displays M|U . Let G′ be the marked graph obtained from
G−{f} by marking the following edges: {b, c}, {c, d}, {a, e}, {a, d}, {e, d}. By Figure 8.3(2),
we can obtain a well-formed atlas M′ of G′ from M by extending country e1 to completely
occupy country f . Figure 8.3(3) displays M′|{a,...,e,g}. On the other hand, we claim that every
well-formed atlas M′′ of G′ can be used to construct a well-formed atlas of G. To see this,
first note that by Fact 8.1, the crust of C in M′′ must be either a or e. Suppose the crust
is e; the other case is similar (by swapping a and e). Then, since edges {b, c} and {c, d} are
marked in G′, the center of C in M′′ must be 〈a, b, c, d〉. Moreover, since NG′({d}) ⊆ C, the
four countries a, c, d, and e must be related in M′′ as shown in Figure 8.3(3). Thus, we can
assign a suitable sub-region of e to f to obtain an atlas of G. This establishes the claim.

Case 1.2: Edge {c, f} is marked in G. Then, only Figure 8.3(1) displays M|U . By the figure,
at most one of edges {a, f} and {e, f} is marked in G. Moreover, if {a, f} is marked in G,
then a is a correct crust of C. Similarly, if {e, f} is marked in G, then e is a correct crust of
C. So, it remains to consider the case where neither {a, f} nor {e, f} is a marked edge in G.
In this case, it suffices to construct a marked graph G′ as in Case 1.1.

Case 2: NG({b, c, g}) ⊆ U . Similar to Case 1, after relabeling.

Case 3: Neither NG({b, c, g}) ⊆ U nor NG({c, d, f}) ⊆ U . Then as argued above, Fig-
ure 8.2(4) displays G[U ]. We consider three sub-cases as follows:

Case 3.1: There is no v ∈ V (G) − U such that d ∈ NG(v) and NG(v) ∩ {a, e} 6= ∅. Then,
Figure 8.3(4) displays M|U by the 4-connectedness of G. By the figure, NG(d) = C∪{f}. Let
G′ be the marked graph obtained from G − {{c, f}} by marking the following edges: {b, c},
{c, d}, {a, d}, {e, d}, {a, f}, {e, f}, {d, f}. By Figure 8.3(4), we can obtain a well-formed atlas
M′ of G′ by erasing the (c, f)-node in M. Figure 8.3(5) displays M′|{a,...,g}. By Figure 8.3(5)
and Lemma 3.5, both G′ − {a, d, f} and G′ − {e, d, f} are connected. We claim that every
well-formed atlas M′′ of G′ can be used to construct a well-formed atlas of G. To see this,
first note that by Fact 8.1, the crust of C in M′′ must be either a or e. We assume that the
crust is e; the other case is similar (by swapping e and a). Then, since {b, c} and {c, d} are
marked edges in G′, the center of C in M′′ must be 〈a, b, c, d〉. Moreover, since G′ − {a, d, f}
is connected, the marked edges {a, d}, {d, f} and {f, a} of G′ force countries a, d and f to
meet at a 3-node in M′′. For a similar reason, countries e, d and f meet at a 3-node in M′′.
Now, since NG′(d) = C ∪ {f}, the four countries c, d, e, and f must be related in M′′ as
shown in Figure 8.3(5). Thus, to obtain a well-formed atlas of G, it suffices to modify M′′ by
contracting the (e, d)-segment to a single node.

Case 3.2: No v ∈ V (G)−U satisfies b ∈ NG(v) and NG(v)∩ {a, e} 6= ∅. Similar to Case 3.1.

Case 3.3: There are countries h and i in V (G)−U such that d ∈ NG(h), NG(h)∩{a, e} 6= ∅,
b ∈ NG(i), and NG(i) ∩ {a, e} 6= ∅. By Figure 8.2(4), no country of V (G) − U can touch
both b and d in M. So, h and i are distinct countries. Moreover, if |NG(h) ∩ {a, e}| = 1
(respectively, |NG(i) ∩ {a, e}| = 1), then the unique country in {a, e} − NG(h) (respectively,
{a, e} − NG(i)) must be a correct crust and we are done. So, we assume that {a, e} ⊆ NG(h)
and {a, e} ⊆ NG(i). Then, by Figure 8.2(4), {a, d, e, f, h} and {a, b, e, g, i} are MC5’s in G.
Let Uh = U ∪{h}. If {g, h} were an edge in G, then by Figure 8.2(4), after drawing country h
in M|U , we see that the 4-connectedness of G would force V (G) to equal Uh, contradicting the
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assumption that |V (G)| ≥ 9. So, {g, h} 6∈ E(G). Similarly, {f, i} 6∈ E(G). Then, Figure 8.4(1)
or (5) displays M|Uh

. If edge {d, h} is marked in G or NG(d)−Uh 6= ∅, Figure 8.4(5) displays
M|Uh

; otherwise, Figure 8.4(5) is transformable to Figure 8.4(1). So, we can decide which of
Figures 8.4(1) and (5) displays M|Uh

.
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Figure 8.4: (1) A display of M|Uh
in Case 3.3.1. (2) A display of M|Uh

in Case 3.3.1.1. (3) A
display of G′[{a, b, e, . . . , h}] in Case 3.3.1.2. (4) Splitting countries f and h in Figure 8.4(3)
into four countries. (5) A display of M|Uh

in Case 3.3.2.

Case 3.3.1: Figure 8.4(1) displays M|Uh
. We further distinguish two cases as follows.

Case 3.3.1.1: There is no v ∈ V (G)−Uh such that f ∈ NG(v) and {a, e}∩NG(v) 6= ∅. Then,
Figure 8.4(2) displays M|Uh

and so NG(f) ⊆ Uh. By the figure, if there is a w ∈ {a, e} such
that edge {w, f} is marked in G, then w is a correct crust of C. So, we may assume that
neither edge {a, f} nor {e, f} is marked in G. Let G′ be the marked graph obtained from
G−{f} by marking the following edges: {b, c}, {c, d}, {a, d}, {e, d}, {a, h}, {e, h}, {d, h}. By
Figure 8.4(2), we can obtain a well-formed atlas M′ of G′ from M by erasing the (c, f)-node
and further extending country h to completely occupy f . Indeed, by renaming country f in
Figure 8.3(5) as h, we obtain a figure displaying M′|{a,...,e,g,h}. Moreover, similarly to Case 3.1,
we can prove that every well-formed atlas of G′ can be used to construct one of G.

Case 3.3.1.2: There is a j ∈ V (G) − Uh such that f ∈ NG(j) and {a, e} ∩ NG(j) 6= ∅. If
{a, e} 6⊆ NG(j), then by Figure 8.4(1), the unique country in {a, e} ∩NG(j) is a correct crust
of C and we are done. So, we assume that {a, e} ⊆ NG(j). Then, by Figure 8.4(1), h ∈ NG(j).
Recall that {f, i} 6∈ E(G). So, j 6= i. By Figure 8.4(1), if there is a w ∈ {a, e} such that {w, c}
is a marked edge in G, then w is a correct crust of C. So, we may assume that neither {a, c}
nor {e, c} is a marked edge in G. Let G′ be the graph obtained from G−{c, d} by adding the
three edges {g, f}, {b, f}, and {h, b} and further marking the two edges {b, f} and {f, h}. By
Figure 8.4(1), we can obtain a well-formed atlas M′ of G′ from M by (i) erasing the (d, e1)-
node, (ii) erasing the (a1, f)-node, (iii) extending country f to completely occupy country c,
and (iv) extending country h to completely occupy country d. Indeed, Figure 8.4(3) displays
M′|{a,e,b,f,g,h}. We claim that every well-formed atlas M′′ of G′ can be used to construct a
well-formed atlas of G. To see this, first note that G′ contains the MC5’s C ′ = {a, e, b, f, h},
C ′

1 = {a, e, b, f, g}, C ′
2 = {a, e, f, h, j}, and C ′

3 = {a, e, b, g, i}. By these MC5’s and Fact 8.1,
the crust of C ′ in M′′ must be a or e. Moreover, the marked edges {b, f} and {f, h} together
ensure that countries b and h do not appear consecutively around the center of C ′ in M′′.
We assume that the crust of C ′ in M′′ is e; the other case is similar (by swapping e and a).
Then, the center of C ′ in M′′ is 〈a, b, f, h〉. Because of this, countries a, b, f, g cannot meet at
a 4-node in M′′ and hence the crust of C ′

1 in M′′ cannot be e. On the other hand, by Fact 8.1
and the existence of MC5’s C ′, C ′

1, C
′
2, C

′
3 in G′, the crust of C ′

1 in M′′ must be a or e. Thus,
the crust of C ′

1 in M′′ is a. Therefore, the centers of C ′ and C ′
1 are as shown in Figure 8.4(3).

From this, the claim follows immediately (see Figure 8.4(4)).
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Case 3.3.2: Figure 8.4(5) displays M|Uh
. In this case, we check if there is a v ∈ V (G) − Uh

such that d ∈ NG(v) and NG(v)∩{a, e} 6= ∅. If such v exists, then by Figure 8.4(5), |NG(v)∩
{a, e}| = 1 and the unique country in {a, e} − NG(v) is a correct crust of C. If no such v
exists, then by Figure 8.4(5) and the 4-connectedness of G, we have NG({d, f, h}) ⊆ Uh and
so Figure 8.4(5) is transformable to a figure D, where D is obtained from Figure 8.4(5) by
extending country h to completely occupy the two holes touched by h. By figure D, if there is
a w ∈ {a, e} such that edge {w, f} is marked in G, then w is a correct crust of C. Similarly,
if there is a w ∈ {a, e} such that edge {w, h} is marked in G, then the unique country in
{a, e} − {w} is a correct crust of C. So, we may assume that none of the edges {a, f}, {e, f},
{a, h} and {e, h} are marked in G. Let G′ be the marked graph obtained from G − {f, h} by
marking the following edges: {b, c}, {c, d}, {a, e}, {a, d}, {e, d}. By figure D, we can obtain a
well-formed atlas M′ of G′ from M by extending country e1 to completely occupy countries
f and h. On the other hand, as in Case 1.1, we can prove that every well-formed atlas of G′

can be used to construct a well-formed atlas of G.

9 Removing Maximal 4-Cliques

Throughout this section, we assume that G has no MC5. We further assume that G has an
MC4; our goal of this section is to show how to remove MC4’s from G. The idea behind the
removal of an MC4 C from G is to try to find and remove a correct 4-pizza via constructing an
extensible layout of C. After the removal of a correct 4-pizza, the resulting G may be not 4-
connected and may have a separating 4-cycle, edge, triple, quadruple, or triangle. To restore
Assumption 3, the algorithm reapplies the reductions in Sections 3 and 7 to the resulting G.
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Figure 9.1: Possible displays of MC4 {a, b, c, d}.

Suppose C = {a, b, c, d} is an MC4 of G; using Fact 7.10 and the assumption |V (G)| > 8,
we find that only Figure 9.1(1), (2) or (3) can possibly display M|C . Note that these are
a pizza, a pizza-with-crust, and a rice-ball, respectively. Obviously, if G has a marked edge
between two vertices of C, then Figure 9.1(3) does not display M|C (i.e., C has no extensible
rice-ball layout).

9.1 Finding Rice-Balls

Let C = {a, b, c, d} be an MC4 of G such that no two vertices of C are connected by a marked
edge in G. We want to decide whether C has an extensible rice-ball layout (i.e., whether
Figure 9.1(3) displays M|C). For a subset W of C, let E [W ] be the set of unmarked edges
{u, v} ∈ E(G) such that u 6∈ W , v 6∈ W , and some MC4 of G consists of u, v, and two vertices
in W . Note that when W consists of only two countries x and y, it holds that E [W ] = E [x, y]
(cf. Definition 5.5).

Let G′ = G−C −E [C]. A 3-subset of C is a subset S of C with |S| = 3. For each 3-subset
S of C, let VS = ∪KV (K), where K ranges over all connected components K of G′ with
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C ∩ NG(V (K)) = S.

Lemma 9.1 Figure 9.1(3) displays M|C iff the following statements hold:

1. V{a,b,c}, V{a,b,d}, V{a,c,d}, and V{b,c,d} each are nonempty, and they together form a par-
tition of V (G) − C.

2. For every two distinct 3-subsets S and T of C, VS ∩NG(VT ) consists of a unique country
y, VT ∩ NG(VS) consists of a unique country z, and 〈y, x1, z, x2〉 is a correct 4-pizza in
G, where S ∩ T = {x1, x2}.

3. For every 3-subset S of C, the following hold:

(a) G − VS is connected.
(b) G[VS ] is connected.
(c) G′[VS ] is a collection of connected components of G′.

Proof: For the “only if” direction, suppose that Figure 9.1(3) displays M|C . Then, M|C
has four holes, and each hole is touched by exactly three countries of C. For each 3-subset S of
C, let HS be the hole touched by the countries of S, and let ZS be the countries of V (G)−C
that occupy HS in atlas M. We want to prove that for each 3-subset S of C, ZS = VS . To this
end, first observe that for each connected component K of G′, there is a 3-subset S of C with
V (K) ⊆ ZS and C ∩NG(V (K)) ⊆ S. This is because Figure 9.1(3) implies that for each pair
(u, v) of countries in C, exactly two countries x, y ∈ V (G)−C meet at the (u, v)-node in M but
the edge {x, y} ∈ E(G) is absent in G′. We claim that C ∩ NG(V (K)) = S indeed. Toward
a contradiction, assume that G′ has a connected component K with |C ∩ NG(V (K))| ≤ 2.
Let W = C ∩ NG(V (K)). If |W | ≤ 1, then K would be a connected component of G − W ,
a contradiction. If |W | = 2, then K is a connected component of G − W − E [W ], and the
vertices of W define a separating edge of G, a contradiction. So, the claim holds. This claim
together with the above observation and Figure 9.1(3), implies that ZS = VS for each 3-subset
S of C. So, by Figure 9.1(3), Statements 1 through 3 hold.
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Figure 9.2: Possible atlases of G.

For the “if” direction, suppose that Statements 1 through 3 hold. We first prove that
Figure 9.1(1) does not display M|C . Toward a contradiction, assume that Figure 9.1(1)
displays M|C . Let S be a 3-subset of C. We claim that there is no 4-node in M at which two
countries u, v ∈ VS together with two countries x, y ∈ V (G) − VS meet in the order u, x, v, y.
This claim holds; otherwise, {x, y} 6⊆ C by Figure 9.1(1), so x or y belongs to VT for some 3-
subset T of C other than S, and hence {u, v} would be a subset of VS ∩NG(VT ), contradicting
Statement 2. By this claim and Statement 3b, the countries of VS form a cycle-superface of
M (otherwise, M|VS

has at least two holes and they are disjoint, contradicting Statement 3a).
Thus, by Statements 1 and 2, Figure 9.2(1) displays M. By this figure, there is a 4-node α
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in M such that for each 3-subset S of C, exactly one country vS ∈ VS has node α on its
boundary. Since the countries vS meet at α but no two of them belong to the same connected
component of G′ because of Statement 3c, we have C ∩ NG(vS) = S. So, by Figure 9.2(1)
and the 4-connectedness of G, each VS would equal {vS}, contradicting the assumption that
|V (G)| ≥ 9. Therefore, Figure 9.1(1) does not display M|C .

We next prove that Figure 9.1(2) does not display M|C . Toward a contradiction, assume
that Figure 9.1(2) displays M|C . As in the last paragraph, we can claim that the countries
of each VS form a cycle-superface of M. Thus, by Statements 1 and 2, Figure 9.2(2) displays
M. By this figure, there is a 4-node α in M at which country a1, some u ∈ V{a1,b1,c1},
some v ∈ V{a1,b1,d1}, and some w ∈ V{a1,c1,d1} meet. Since u, v and w meet at α but no two
of them belong to the same connected component of G′ because of Statement 3c, we have
C ∩ NG(u) = {a1, b1, c1}, C ∩ NG(v) = {a1, b1, d1}, and C ∩ NG(w) = {a1, c1, d1}. So, by
Figure 9.2(2), countries v, a1, b1, d1 meet at a node in M, and countries w, a1, c1, d1 meet
at a node in M. Thus, V{a1,b1,d1} = {v} or else 〈u, b1, v〉 would be a separating triple of
G by Fact 7.6, a contradiction. Similarly, V{a1,c1,d1} = {w}. In a similar way, we can also
prove that |V{b1,c1,d1}| = 1. Now, by Figure 9.2(2) and the 4-connectedness of G, we have
V{a1,b1,c1} = {u}. In summary, |V (G)| = 8, a contradiction. Therefore, Figure 9.1(2) does not
display M|C .

Since both Figures 9.1(1) and (2) do not display M|C , only Figure 9.1(3) can display M|C .
This completes the proof.

Since it is easy to check whether Statements 1 through 3 hold, we can easily decide whether
C has an extensible “rice-ball” layout. Once we know that C has an extensible “rice-ball”
layout, then by Statement 2, we can easily find and then remove six correct 4-pizzas from G.
By examining all the MC4’s in G, our algorithm can either find one that is a rice-ball, and
thus make progress; or else it can establish that none of the MC4’s is a rice-ball.

9.2 Distinguishing Pizzas and non-Pizzas

By the previous discussion, we now suppose that our algorithm reaches a point where none
of the MC4’s has a rice-ball layout. Then all the remaining MC4’s are either pizzas or pizza-
with-crusts. Specifically, we have:

Corollary 9.2 For every MC4 C of G, either Figure 9.1(1) or (2) displays M|C . Conse-
quently, if the countries of C do not meet at a 4-node in atlas M, then C has a 3-subset S
such that the countries of S pairwise weakly touch in M and one of the two holes of M|S is
completely occupied by the unique country of C − S in atlas M.

Let C = {a, b, c, d} be an MC4 of G. Our goal in this section is to give a linear-time
decision procedure to decide which of Figures 9.1(1) and (2) displays M|C . Moreover,
the procedure always chooses Figure 9.1(2) when both are possible. Whenever we arrive at
the conclusion that Figure 9.1(2) displays M|C , we will have identified d1 and therefore we
immediately make progress by removing three correct 4-pizzas (cf. Statement 2 in Claim 9.4)
from G. When Figure 9.1(1) (the pizza) displays M|C , we do nothing with this MC4 C
and proceed to consider other MC4’s; this may eventually lead to a situation where all MC4’s
in G have to be pizzas, as considered in Section 9.3.

Claim 9.3 If Figure 9.1(2) displays M|C , then the following hold:
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1. C is 3-sharing with exactly three MC4’s C1, C2 and C3 of G.

2. C1 ∩ C2 ∩ C3 consists of a unique country; this country belongs to C and is adjacent to
no country of V (G) − (C ∪ C1 ∪ C2 ∪ C3) in graph G.

Proof: Suppose Figure 9.1(2) displays M|C . Let wa1,b1 be the country in V (G)−C such that
d1 and wa1,b1 meet at the (a1, b1)-node in M. Define wa1,c1 and wb1,c1 similarly. Countries
wa1,b1 , wa1,c1 and wb1,c1 are distinct or else G would have an MC5. Let C1 = {a1, b1, d1, wa1,b1},
C2 = {a1, c1, d1, wa1,c1}, and C3 = {b1, c1, d1, wb1,c1}. Obviously, C1 through C3 are 3-sharing
with C, and they together satisfy Statement 2. To finish the proof of the claim, it remains
to show that no MC4 C4 of G other than C1, C2, C3 is 3-sharing with C. For a contradiction,
assume that such C4 exists in G. Then, by Figure 9.1(2), C4 ∩ C = {a1, b1, c1}. Let x be the
unique country in C4 − C. Since countries a1, b1, c1 pairwise weakly touch in M (according
to Figure 9.1(2)), Corollary 9.2 (applied to MC4 C4) implies that one of the two holes of
M|a1,b1,c1 is completely occupied by country x in atlas M. However, by Figure 9.1(2), one
hole of M|a1,b1,c1 is completely occupied by country d1 in atlas M, and the other hole is partly
occupied by countries wa1,b1 , wa1,c1 and wb1,c1 in atlas M; so, neither hole of M|a1,b1,c1 could
be completely occupied by country x in atlas M, a contradiction.

Whether Statements 1 and 2 in Claim 9.3 hold can be checked in linear time. So, we
assume that Statements 1 and 2 in Claim 9.3 hold; otherwise, Figure 9.1(2) does not display
M|C (and we are done).

Claim 9.4 If Figure 9.1(2) displays M|C , then the following hold:

1. Country d1 in Figure 9.1(2) must be the unique country in C1 ∩ C2 ∩ C3.

2. For every Ci ∈ {C1, C2, C3}, 〈u, v, w, x〉 is a correct 4-pizza in G, where {u, v, w, x} = Ci,
{u} = C1 ∩ C2 ∩ C3, and w 6∈ C.

Proof: Suppose Figure 9.1(2) displays M|C . For a contradiction, assume that Statement 1
in the claim is false. Then, exactly one of a1, b1, and c1 in Figure 9.1(2) is the unique country
in C1∩C2∩C3. We assume that a1 in Figure 9.1(2) is the unique country in C1∩C2∩C3; the
other two cases are similar (e.g., when b1 in Figure 9.1(2) is the unique country in C1∩C2∩C3,
it suffices to swap a1 and b1 in the proof). Then, there are countries x, y, z ∈ V (G) − C such
that C1 = {a1, b1, c1, x}, C2 = {a1, b1, d1, y}, and C3 = {a1, c1, d1, z}. Since countries a1, b1, c1

pairwise weakly touch in M (according to Figure 9.1(2)), Corollary 9.2 (applied to MC4 C1)
implies that one of the two holes of M|a1,b1,c1 is completely occupied by country x in atlas M.
However, by Figure 9.1(2), one hole of M|a1,b1,c1 is completely occupied by country d1 in atlas
M, and the other hole is partly occupied by countries y and z; so, neither hole of M|a1,b1,c1

could be completely occupied by country x in atlas M, a contradiction. So, Statement 1
holds. Statement 2 follows from Statement 1 immediately.

We assume that d is the unique country in C1 ∩C2 ∩C3; the other cases are similar (e.g.,
when a is the unique country in C1 ∩ C2 ∩ C3, it suffices to modify Figures 9.1(1) and (2) by
swapping countries d1 and a1, and to modify the following discussions by swapping a and d
and swapping a1 and d1). Then, by Claim 9.4, d1 = d in Figure 9.1(2). Let C1 = {a, b, d, e},
C2 = {a, c, d, f} and C3 = {b, c, d, g}. Note that e, f, g are distinct (otherwise, G would have
a 5-clique). Let U = {a, b, . . . , g}.

Recall that we want to distinguish Figures 9.1(1) and (2). If Figure 9.1(1) displays M|C ,
then it remains so even after we set d1 = d in it (because we still have the freedom to permute
countries a, b, c). So, we may assume that d1 = d in Figure 9.1(1).
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Figure 9.3: (1) A possible display of G[U ] when {e, f, g} is a clique. (2) A possible display of
G[U ] when {e, g} 6∈ E(G). (3) Another possible display of G[U ] when {e, g} 6∈ E(G).

To distinguish Figures 9.1(1) and (2), first consider the case where {e, f, g} is a clique of G.
In this case, C4 = {e, f, g, d}, C5 = {a, d, e, f}, C6 = {c, d, f, g}, and C7 = {b, d, e, g} are MC4’s
of G; we can claim that Figure 9.1(2) does not display M|C . For a contradiction, assume that
Figure 9.1(2) displays M|C . Then, Corollary 9.2 (applied to MC4’s C5, C6, C7) implies that
Figure 9.3(1) displays M|U . However, by the figure, C4 is a rice-ball, a contradiction. Thus,
Figure 9.1(2) does not display M|C , and we are done.

So, in the sequel, we assume that {e, f, g} is not a clique of G. In case Figure 9.1(1)
displays M|C , a simple inspection shows that one country in {e, f, g} (the one adjacent to
a1, c1, d) is adjacent to the other two. So we assume that only one edge is missing among
{e, f, g}, for otherwise Figure 9.1(2) must display M|C . We suppose the absent edge is {e, g};
the other two cases are similar (e.g., when the absent edge is {e, f}, it suffices to modify
the following discussions by swapping g and f and swapping a and b). Then, {a, d, e, f}
and {c, d, f, g} are MC4’s in G. Moreover, Corollary 9.2 (applied to these two MC4’s and
C1 through C3) implies that Figure 9.1(1) (respectively, Figure 9.1(2)) displays M|C iff Fig-
ure 9.3(2) (respectively, Figure 9.3(3)) displays M|U . Figure 9.3(3) does not display M|U if
{d, f} is a marked edge. Also, if {d, b} is a marked edge, then Figure 9.3(2) does not display
M|U and so Figure 9.3(3) displays M|U . Thus, we may assume that neither {d, b} nor {d, f}
is a marked edge.

To distinguish Figures 9.3(2) and (3), we perform the following three steps in turn:
Step 1. We check whether at least one of the edges {a, b}, {c, b}, {e, f}, and {g, f} is

marked in G. If at least one of these edges is marked in G, then Figure 9.3(3) does not display
M|U and our task of distinguishing Figures 9.3(2) and (3) is done.

Step 2. We check whether at least one of the edges {a, f}, {c, f}, {e, b}, and {g, b} is
marked in G. If at least one of these edges is marked in G, then Figure 9.3(2) does not display
M|U and our task of distinguishing Figures 9.3(2) and (3) is done.

Step 3. We do a case-analysis as follows: (Comment: During the case-analysis, once we
reach the conclusion that one of Figures 9.3(2) and (3) does not display M|U , or the conclusion
that Figure 9.3(3) displays M|U , then we quit the case-analysis immediately because our task
of distinguishing Figures 9.3(2) and (3) is done.)

Case 1: There is no h ∈ V (G) − U with {a, b, e} ⊆ NG(h) or there is no i ∈ V (G) − U with
{b, c, g} ⊆ NG(i). Then, Figure 9.3(2) does not display M|U . Note that whether h and i
exist can be decided in O(1) time (assuming that G’s adjacency matrix is available), because
|NG(a)| = |NG(c)| ≤ 6 by Figures 9.3(2) and (3).

Case 2: There are h ∈ V (G) − U and i ∈ V (G) − U such that {a, b, e} ⊆ NG(h) and
{b, c, g} ⊆ NG(i). Then, if f 6∈ NG(h) or f 6∈ NG(i), Figure 9.3(3) does not display M|U . So,
we may assume that f ∈ NG(h) and f ∈ NG(i). Let αe,f and αg,f be the endpoints of the
path shared by country f and the hole of the layout in Figure 9.3(2), where αe,f (respectively,
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αg,f ) is on the boundary of country e (respectively, g). Similarly, let βe,b and βg,b be the
endpoints of the path shared by country b and the hole in the layout in Figure 9.3(3), where
βe,b (respectively, βg,b) is on the boundary of country e (respectively, g). If Figure 9.3(2)
displays M|U , then Corollary 9.2 (applied to MC4’s {a, e, f, h} and {c, f, g, i}) implies that
αe,f is the unique (h, f)-node in M and αg,f is the unique (i, f)-node in M; so, h 6= i (by the
well-formedness of M) and NG(f) 6⊆ U ∪ {h, i} (by the absence of holes in M). Similarly, if
Figure 9.3(3) displays M|U , then Corollary 9.2 (applied to MC4’s {a, e, f, h} and {c, f, g, i})
implies that βe,b is the unique (h, b)-node in M and βg,b is the unique (i, b)-node in M; so,
h 6= i (by the well-formedness of M) and NG(b) 6⊆ U ∪ {h, i} (by the absence of holes in M).
Thus, we always have h 6= i. Moreover, if NG(f) ⊆ U ∪ {h, i}, then Figure 9.3(2) does not
display M|U . Similarly, if NG(b) ⊆ U ∪ {h, i}, then Figure 9.3(3) does not display M|U . So,
we may assume that NG(f) 6⊆ U ∪ {h, i} and NG(b) 6⊆ U ∪ {h, i}. Let W = U ∪ {h, i}.
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Figure 9.4: (1) A possible layout of G[W ] when {h, i} ∈ E(G). (2) Another possible layout of
G[W ] when {h, i} ∈ E(G). (3) A possible layout of G[W ] when {h, i} 6∈ E(G). (4) Another
possible layout of G[W ] when {h, i} 6∈ E(G).

Case 2.1: {h, i} ∈ E(G). Then, Corollary 9.2 (applied to MC4’s {a, e, f, h}, {a, e, b, h},
{c, b, g, i}, and {c, f, g, i}), Assumption 3 (the absence of separating triangles in G), and
Fact 7.10 (applied to 3-cliques {b, h, i} and {f, h, i}) together imply that Figure 9.4(1) (re-
spectively, Figure 9.4(2)) displays M|W iff Figure 9.3(2) (respectively, Figure 9.3(3)) displays
MU . By Figures 9.4(1) and (2), |NG(e)| = |NG(g)| = 6; let j be the country in NG(e) − W
and k be the country in NG(g) − W . In case j or k is not adjacent to f in G, Figure 9.4(1)
does not display M|W . Similarly, in case j or k is not adjacent to b in G, Figure 9.4(2) does
not display M|W . So, we may further assume that j and k are adjacent to both f and b in
G. Then, no matter which of Figures 9.4(1) and (2) displays M|W , we must have j = k and
V (G) = W ∪ {j}. Now, Figure 9.4(2) displays M|W (and hence Figure 9.3(3) displays M|U )
only if none of {a, b}, {b, c}, {b, h}, {b, i}, {e, f}, {f, g}, {f, j} is a marked edge in G. On
the other hand, if none of these edges is marked in G, then Figure 9.4(1) is transformable to
Figure 9.4(2) and hence Figure 9.4(2) displays M|W (and so Figure 9.3(3) displays M|U ).

Case 2.2: {h, i} 6∈ E(G). Then, by Corollary 9.2, Figure 9.4(3) (respectively, Figure 9.4(4))
displays M|W iff Figure 9.3(2) (respectively, Figure 9.3(3)) displays MU . Now, observe a
resemblance between Figure 9.3(2) and Figure 9.4(3), and a resemblance between Figure 9.3(3)
and Figure 9.4(4). We want to iterate the above three steps to distinguish Figures 9.4(3)
and (4). To this end, first observe that the above three steps are independent of country d and
edge {a, c}. Moreover, the above three steps can be viewed as a procedure CA(a, e, b, c, g, f)
where the input parameters are countries of G related as in Figure 9.3(2) or (3) except for the
possible absence of edge {a, c}. Thus, to distinguish Figures 9.4(3) and (4), it suffices to set
U = W and recursively call CA(g, i, f, e, h, b). (Comment: U is treated as a global variable.)

There can be a linear number of subsequent calls of procedure CA. Each call takes O(1)
time, so the overall time is linear.

38



9.3 Removing Pizzas

By the discussions in the last two subsections, we may assume that for every MC4 C =
{a, b, c, d} of G, only Figure 9.1(1) displays M|C . That is, the four countries of every MC4 of
G meet at a node in M.

Fix an MC4 C = {a, b, c, d} of G. C is 3-sharing with no MC4 C ′ of G because otherwise,
C ′ would have a non-pizza layout. By Figure 9.1(1), there are distinct countries e, f , g and
h in V (G) − C such that C ∩ NG(e) = {a1, b1}, C ∩ NG(f) = {b1, c1}, C ∩ NG(g) = {c1, d1}
and C ∩ NG(h) = {d1, a1}, because M has no hole. On the other hand, the existence of the
countries e, f , g and h ensures that the countries of C have to meet at a node in M in the
order w, x, y, z, where {w, x} = C ∩ NG(e), {x, y} = C ∩ NG(f), {y, z} = C ∩ NG(g) and
{z, w} = C ∩ NG(h). Thus, by finding out countries e, f , g and h, we can find and remove a
correct 4-pizza from G.

By this method we may identify a correct 4-pizza for every MC4 in G. Since these 4-pizzas
all exist in every well-formed atlas of G, we may remove them all in one step by the remarks
after Lemma 5.2.

10 Time Analysis

Let n and m be the number of vertices and edges in the input graph G, respectively. Suppose
this is not a base case; that is, n ≥ 9 and G has a 4-clique. Then we will show that the
algorithm can always make progress in O(n2) time. In each case, the time needed to produce
the subproblems from G dominates the time needed to recover a solution from the subproblem
solutions, so we ignore the latter.

By Lemma 2.1 (with k = 4) G has m = O(n) edges and arboricity α(G) = O(1), so we can
list its O(n) maximal cliques in linear time [5]. From the listed MC4’s, we can precompute
the sets E [a, b] for all unmarked edges {a, b}, again in linear time.

We claim that testing the existence of a separating triangle takes O(n2) time. Since G
has O(n) maximal cliques and no 7-clique, it has O(n) 3-cliques and these can be found in
linear time. For each 3-clique C, it takes O(n) time to test whether some (ordered) list of
the vertices in C is a separating triangle. So, the claim holds. A similar analysis applies for
finding a 3-cut (by Lemma 3.5(1)), a separating edge, or a separating triple.

In order to detect separating quadruples, we use an algorithm of Chiba and Nishizeki [5]
which implicitly lists all 4-cycles of G in O(m ·α(G)) = O(n) time. The algorithm produces
a list of triples (ui, vi, Si) with the following properties:

1. ui and vi are non-adjacent vertices of G.

2. Si is a set of vertices adjacent to both ui and vi.

3. Every induced 4-cycle in G occurs as 〈ui, x, vi, y〉 for some choice of i and x, y ∈ Si.

In particular, the sum of all |Si| is O(n).
We claim that testing the existence of a separating quadruple takes O(n2) time. It suffices

to show the following: for each triple (ui, vi, Si), we can test whether there is a separating
quadruple 〈ui, x, vi, y〉 or 〈vi, x, ui, y〉 (with x, y ∈ Si) in time O(|Si|n). By similarity, it suffices
to show how to find those quadruples starting with ui.

For x in Si, let Gx = G − {ui, vi, x} − E [ui, x]. In linear time we may compute Gx and
identify the set Sx of all cut vertices in Gx. Now there is a separating quadruple of the form
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〈ui, x, vi, y〉 precisely if Sx contains some y which is in S but not adjacent to x. By repeating
this for every x ∈ Si, we have the required time bound.

A similar analysis applies for finding separating 4-cycles in O(n2) time.
The case analysis for eliminating an MC5 in Section 8 may be executed in O(n) time. In

particular, we may identify an MC5 4-sharing with two other MC5’s in O(n) time as follows.
First, for each MC5 Ci and for each S ⊆ Ci with |S| = 4, create a pair (S, i). Next, bucket-sort
all the pairs, and use the result to count the number of 4-sharing MC5’s with each Ci.

When the graph has no MC5 but still has some MC4’s, we make progress in at most O(n2)
time as follows. First, we list the O(n) MC4’s in some arbitrary order. For each one, we
test the conditions of Lemma 9.1 in O(n) time; if we find such an MC4, then we remove
the identified 4-pizzas and we are done. Otherwise, we go through the list again, this time
applying the linear time decision procedure of Section 9.2; if we determine that some MC4

is a non-pizza, then we remove the identified 4-pizzas and we are done again. Otherwise, we
have established that all the MC4’s are pizzas, and so we can remove a 4-pizza for each MC4

by the method in Section 9.3.
Finally, if the algorithm reaches a base case, our graph G either has at most 8 vertices, or

no 4-clique. In the former case we solve the problem exhaustively in O(1) time. Otherwise,
G should be planar; we finish in linear time [6], as described in Section 6.

Let N = n + m be the size of our input graph, and let T (N) be the maximum running
time of the algorithm on any input of size N . We claim that there is a constant c such
that T (N) ≤ cN3. The claim is clearly true for the base cases, as argued above. In all
other cases, the algorithm makes progress in c1N

2 time for some constant c1. That is, the
algorithm produces one or more smaller marked graphs whose total size is larger than that
of G by a constant c2; the problem for G is reduced to solving the problem for each of these
smaller instances. More precisely, there are integers n1, . . . , nℓ ∈ {1, . . . , N − 1} such that
∑ℓ

i=1 ni ≤ N + c2 and T (N) ≤
∑ℓ

i=1 T (ni) + c1N
2. We prove our claim by induction. For

small N (N < c2
2), our claim is true simply by choosing c large enough. For larger N , we

have T (N) ≤
∑ℓ

i=1 cn3
i + c1N

2 by the inductive hypothesis. Note that
∑ℓ

i=1 cn3
i is maximized

when ℓ = 2, n1 = N − 1 and n2 = c2 + 1. Hence, by choosing c large enough (c1 + 2 suffices),
we have T (N) ≤ cN3.

11 Concluding Remarks

Our algorithm is complex. We would like to find a faster algorithm, with simpler arguments.
Perhaps such a simplification is possible using some of Thorup’s ideas. It would be interesting
to produce succinct certificates in the case that G has no desired map; here ”succinct” means
that we can check them asymptotically faster than we can run our decision algorithm.

The authors [2] claimed an algorithm for recognizing 4-map graphs (possibly with holes),
and subsequently produced a proof manuscript which is quite long even compared to the
present argument. We believe that the result is correct, but we prefer to pursue simpler
arguments rather than attempting to publish it as it stands.

Naturally, we are interested in polynomial-time algorithms for recognizing (hole-free or
not) k-map graphs with k ≥ 5. In view of the complication of our algorithm for hole-free 4-
map graphs, however, new insights seem necessary in order to make progress in this direction.
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