Recognizing Human Action from a Far Field of View

Chia-Chih Chen and J. K. Aggarwal
Computer & Vision Research Center / Department of ECE
The University of Texas at Austin

{ccchen|aggarwaljk}e@mail .utexas.edu

Abstract

In this paper, we present a novel descriptor to character-
ize human action when it is being observed from a far field
of view. Visual cues are usually sparse and vague under this
scenario. An action sequence is divided into overlapped
spatial-temporal volumes to make reliable and comprehen-
sive use of the observed features. Wthin each volume, we
represent successive poses by time series of Histogram of
Oriented Gradients (HOG) and movements by time series of
Histogram of Oriented Optical Flow (HOOF). Supervised
Principle Component Analysis (SPCA) is applied to seek a
subset of discriminantly informative principle components
(PCs) to reduce the dimension of histogram vectors with-
out loss of accuracy. The final action descriptor is formed
by concatenating sequences of SPCA projected HOG and
HOOF features.

A Support Vector Machine (SVM) classifier is trained
to perform action classification. We evaluated our algo-
rithm by testing it on one normal resolution and two low-
resolution datasets, and compared our results with those of
other reported methods. By using less than 1/5 the dimen-
sion a full-length descriptor, our method is able to achieve
perfect accuracy on two of the datasets, and perform com-
parably to other methods on the third dataset.

1. Introduction

Recognition of human actions from a distant view is
a challenging problem in computer vision. It is of sig-
nificant interest in many applications, such as automated
surveillance, aerial video analysis, sport video annotation
and search. Various visual cues have been shown to be ef-
fective for representing human actions, including motion
[8, 9], contours [3, 12], extremities [22], and body parts
[5, 18], etc. Most of these features can be reliably extracted
from image sequences of medium to high-resolution.

Similar to[8], our goal isto recognize actionsfrom video
sequences where human figures are less than 40 pixels in
height. Thisis usually the case when actions are being im-

aged from a far field of view. Therefore, not only is the
image resolution greatly reduced, but also the quality of vi-
sual cuesis adversely effected due to turbulence. As shown
in Figure 1(a), a person is waving both hands with optical
flow vectors superimposed. The average width of his limbs
is about 3 pixels, and the boundary between the body parts
and background is vague. As aresult, the computed optical
flow israther sparse and noisy. In our problem, we find that
action classification with a single type of feature is easily
subject to background noise and missing features. More-
over, there are certain human actions where one type of fea-
ture cannot fully capture their properties. For example, it
is difficult to distinguish ‘standing’ from ‘pointing’ using
optical flow alone. Therefore, instead of describing action
by a single type of measure, we propose a novel descriptor
which combines both human poses and motion information
within a spatial-temporal volume.

We use Histogram of Oriented Gradients (HOG) to rep-
resent human poses. The HOG descriptor was originally
proposed for human detection [ 7]. Due to its robustness,
HOG has been successfully applied in the problem of action
recognition[11, 16, 17, 21] and object recognition[4]. Sim-
ilar to the gradient, optical flow is aso adirectional feature
with magnitude. Therefore, we adopt the similar descriptor
arrangement of HOG, and characterize human motion by
Histogram of Oriented Optical Flow (HOOF).

To synthesize the action descriptor, sequences of HOG
and HOOF features are extracted from overlapped space-
time window of action frames. Asin [8], we assume sta-
bilized videos with human tracks are available to us. How-
ever, direct concatenation of the time series of both features
will end up with avery lengthy descriptor vector. Hence we
extend the technique of Supervised Principle Component
Analysis (SPCA) [19] to perform feature selection based on
thetraining data. Unlike regular PCA, SPCA aims at select-
ing a subset of PCs which best separate samples projected
from different classes.

The major contribution of this work is two-fold. First
we present a compact action descriptor which combines
cues of human poses and motion. Our action descriptor is



shown to outperform similar descriptors which uses a sin-
gle type of action feature, applies PCA for dimension re-
duction, or does not perform SPCA projection. Second, we
extend SPCA to perform dimensionality reductionin amul-
ticlass case. This step significantly speeds up the runtime of
recognitionwithout sacrificing accuracy. With the combina-
tion of radial basis function (RBF) kernel SVM, we achieve
perfect accuracy on the Weizmann dataset [ 2] and our own
low-resolution dataset called the Tower dataset. For another
low-resolution dataset, the Soccer dataset [ 8], our perfor-
mance is comparabl e to other tested methods.

This paper is organized as follows: Section 2 briefly re-
views the related work. Our action descriptor and classi-
fication method are detailed in section 3. We discuss our
experimental resultsin section 4, and concludein section 5.

2. Related Work

The survey papers by Aggarwa and Cai [1], Gavrila
[10], and Hu et al. [13] provide an extensive review of al-
gorithms and systems for human tracking, motion analysis,
action representation, and behavior recognition. In this sec-
tion, we look at specifically the work which addresses the
similar problem or adopts similar representation.

Efroset al. [8] propose an optical flow based motion de-
scriptor for recognizing human action at a distance. Their
descriptor is formed by rectified optical flow components
in a spatio-temporal volume. They use k-nearest-neighbor
classifier to perform action recognition and synthesis. As
mentioned before, the use of motion feature aone is in-
sufficient to characterize certain ‘static’ actions. Moreover,
they computethe optical flow feature between figure-centric
frames, which implicitly removes the velocity information
of human movement.

In[17], Lu and Little employs the subspace projected
HOG descriptor in a hybrid HMM classifier for the joint
task of athlete tracking and action recognition. The space
searched by PCA provides an efficient representation of the
data, but it does not necessarily allow better separation of
descriptor vectors from different actions.

Similar to our work, Ikizler et al. [14] use both human
contour and motion features for action recognition. They
characterize human contours by histograms of Hough trans-
formed edges, and use coarse orientation bins to compute
optical flow distribution. They train separate shape and mo-
tion classifiers and combine both classification results by
averaging them. However, there is no evidence that shape
and motion features are equally useful for distinguishing ac-
tions. Therefore, the linear combination of single feature
trained classifiers may not be the optimal way of improving
joint decision.

Figure 1. (a) Motion feature presented in a far-field of view (b)
given the track coordinate (white square) the bounding box for
HOG extraction (red) is centered on the human figure by searching
in the space of scale and translation (¢) ahuman gradient map with
our HOG geometry imposed (d) optical flow is computed between
the union bounding boxes (red) of two consecutive frames.

3. Action Recognition

Our approach for recognizing action from a distant view
video is outlined in Figure 2. In the following subsections,
we first introduce the preprocessing step to acquire figure-
centric frames. Then we briefly review the HOG and HOOF
action features. From each feature space, we explain the
method to select the top discriminative principle compo-
nents. Finally, we present the action classifier.

3.1. Preprocessing and action features

Preprocessing. Given a stabilized video with tracks
of human actors, the purpose of our preprocessing stage
is to acquire figure-centric action sequences from the
tracks. This step is critical, because in low-resolution
video frames, even a minor misalignment of a bounding
box can cause the loss of body parts or a large inclusion
of background. To overcome this difficulty, we take the
approach similar to [7] for human figure centralization.
The major difference is that, instead of searching for all
people in the entire frame, it is assumed that the person
of interest is somewhere around the track coordinate.
We train our figure centralization detector with HOG
descriptors extracted from manually cropped figure-centric
bounding boxes and negative samples from descriptors of
patches around the figures. During runtime, within the
neighborhood of interest, the detection window searches
in the space of scale and trandation (Figure 1.(b)). For
a specific scale and translation which the SYM window
classifier provides the highest probability estimate, the
corresponding HOG vector and the window coordinates
are stored. The recorded coordinates are then passed to the
calculation of HOOF.

HOG. We use the HOG descriptor to characterize details
of human poses. The essence of HOG is to describe local
edge structure or appearance of object by local distribution
of gradients[7]. Without directly using noisy gradient vec-
torsas pixel-wisefeatures, HOG gainsrobust representation
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Figure 2. Flow diagram of our action recognition scheme. The focus of our method isin solid-line rectangles.

by presenting them as directional patterns over coarser spa-
tial regions.

In HOG implementation, one action frame is divided
into non-overlapping spatial grids (cells). For each pixel
in the cell, we calculate its gradient vector g(z,y) =
[9:(7,y) gy(x,y))]T.  The magnitude and orientation
(four-quadrant tangent inverse) of a gradient vector are ex-
pressed as

m(z,y) = (9:(z,9)* + g, (z,9)%)* (1)
0(z,y) = tan™" (gy(2, )/ g (2, y)) @)

Based on 0(x,y) and (x,y), every m(z,y) is weighted
to vote for the nearest local orientation bins and also the
adjacent cell histograms, respectively. Note that 0(zx,y)
should be insensitive to the order of contrast change,
because the color variationsin clothing and background do
not provide extra information for the recognition task. To
achieve this, 0(z,y) is further divided by the modulus ™
before binning. After accumulating the gradient histogram
at each cell, for better invariance to the illumination
changes, the concatenated histogram vector is normalized
by the L2-norm. Figure 1(c) illustrates our HOG geometry.

HOOF. We characterize optical flow by the similar descrip-
tor arrangement of HOG. In addition to the fact that both
gradient and optical flow features are measured by 2D vec-
tors, the accuracy of optical flow computation is very sus-
ceptible to the quality of image sequence. Therefore, in our
scenario, representing optical flow by its local directional
distribution is a more reliable option than using it by its ex-
act value.

In the preprocessing step, we have aready obtained the
accurate estimates of bounding boxes which center on the
human figures. Using this information, we are able to lo-
cate the minimum rectangular areawhich coversthe moving
person between two successive frames. As shown in Figure
1(d), the minimum rectangular areaisin red and we name
it union bounding box. Optical flow is then computed be-
tween pairs of successive union bounding boxes. Contrary
to [8], we preserve the important information of human fig-
ure trandlations between frames. Therefore, computed op-
tical flow vectors also carry the velocity information of hu-
man action. The procedureit takes to extract HOOF feature
is the same as the magjor steps to compute HOG, except the
use of the optical flow feature. We briefly review theimpor-
tant steps and explain the difference.

From thefield of optical flow between two union bound-
ing boxes, we extract vectors over the area covered by the
first bounding box (dashed box, bottom frame of Figure
1(d)). The corresponding optical flow matrix is divided
into non-overlapping spatial regions. We measure an opti-
cal flow vector by its magnitude m ¢ (z, y) and orientation
Oof(z,y). Inaspatial cell, every m,¢(x,y) is interpolated
and aggregated into a local orientation histogram and the
histograms nearby. The concatenated motion histogram is
normalized to be moreinvariant to the scale of motion.

Similar to HOG feature, we need to take care of the is-
sue with orientation mapping. In general applications, we
do not use directions of actions as a cue to separate them.
Therefore, a proper mapping of flow vectorsis required so
that different directions of the same action are treated as
equivalent. The mapping is done by

o = { 0o =) N =5

Oo, otherwise

By assuming that the profile view of human actions is
being observed, this angular transformation makes motion
representation symmetric about the vertical axis. However,
there are applications where the direction of action is of in-
terest. For example, in a soccer game, the player’s action
together with his’/her motion of direction is usually consid-
ered as awhole. In this case, we can adjust the orientation
mapping to meet the requirements accordingly.

3.2. Feature selection and action descriptor

Because of the high dimensionality of HOG and HOOF
features in space-time, we perform dimensionality reduc-
tion for each type of the feature vectors before the final
concatenation of the descriptor. In general, dimensional-
ity reduction is carried out by feature extraction and selec-
tion. Classical approaches like PCA search for the direc-
tions which best represent the sample space. Even though
the PCs found by PCA provide an efficient representation
of the data, there is no evidence that the projected samples
become more separable between classes.

The goal of SPCA isto select a subset of PCs which is
most useful for discriminating data projected from different
classes. In[19], the task isto detect sources of combustion
from infrared imagery. In their binary class problem, PCs
are first extracted from positive samples (sources of com-
bustion). To evaluate the capability of a PC to distinguish



different classes of data, the discriminative value of aPC is
definedasd = o7 /o~ , where o™ and o~ are the standard
deviation of the projected positive and negative samples, re-
spectively. Therefore, the two classes of data are better sep-
arated in the space spanned by PCs with top d.

We extend SPCA to our multiclass action recognition
problem. In the feature extraction step, for each action class
i, the training samples are divided into H* and H" 1} ac-
cording to the labels. Here H* denotes an s-by-n; feature
matrix wheren s isthe length of feature vector and »; isthe
number samples from class . From the autocorrelation ma-
trix of H*, we extract the matrix of principle components
PC’ € R™*"s by eigen value decomposition. The dis-
criminative value of the j* component (row) of PC' is

i _ iy V—{i}
d; =03/o; 4
oh = o(PCj(H' — H')) (5)
H')) (6)
and each column of H' is the mean vector of training sam-
plesfrom class i. In our implementation, we select the sub-
set of PCs, spc?, of which the discriminative val ues of com-

ponents are greater than one. Given a feature vector h, its
projection in the new spaceis

v—{i} _ i (ppv—{i
o, " =oPCiH"T -

h={[(spc'(h—h")" ... (spe(h —h"™))T]" (V)

where h’ isthe mean vector of the samplesin classi and .
is the number of total action classes.

To characterize an action sequence, we divide the se-
guence into overlapped ‘chunks of frames, where each
chunk is composed of sequential images of fixed duration.
Time series of of HOG and HOOF features are extracted
from every chunk of frames. After projecting them onto
the corresponding subspaces, we denote each type of the
transformed HOG and HOOF vectors by h and hof, re-
spectively. The action descriptor extracted from framet+1
tot + N + 1 (coversN frames of optical flow field) is rep-
resented as

PSR LI ;)

which is further normalized by L2-norm before being em-
ployed by the classifier.

T T T
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3.3. Action classification

To perform action classification, a multiclass SVM clas-
sifier is trained with labeled action descriptors. We adopt
the implementation [6], of which the classifier predictionis
made by a collection of one-against-one SVM classifiers.
In the training phase, each binary SVM classifier leads to
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Figure 3. Sample framesfrom each action of (a) Weizmann dataset
(b) Soccer dataset (c) Tower dataset.

an inequality constrained quadratic optimization problem.
We choose radial basis function (RBF) kernel for our SVM
classifier because of the nonlinear relation between action
classes and histogram features.

To estimate the best classifier for a dataset, grid searchis
performedin the space of parameter C and ~, whereC' isthe
weight of error penalty and v determines the width of RBF
kernel. The SVM classifier is decided by the set of (C,~)
which maximizes the cross-validation rate in the space of
search. In the test phase, a preprocessed action sequence
is segmented into intersected chunks of frames, where each
chunk is characterized by an action descriptor. After SYM
classification, descriptors are evaluated by the probability
estimates of actions. We accumulate the probabilities over
component descriptors, and classify the sequence as the ac-
tion which gains the maximum votes.

4. Experimental Results

We have tested our method on three datasets, which in-
clude the normal resolution Weizmann dataset [ 2], the low-
resolution Soccer dataset [ 8], and the low-resolution Tower
dataset. We evaluate the performance on each dataset by



| Method | Accuracy (%) |
Our method 100
Fathi and Mori [9] 100
Blank et al. [2] 99.6
Jhuang et al. [15] 98.8
Hutan and Duygulu [ 11] 92.0

Table 1. Reported per-sequence accuracy on the Weizmann
dataset.

leave-one-out cross validation, where one single action se-
guenceis selected for testing at atime.

In general, good recognition results are achieved by set-
ting the side of spatial cell to be the width of human limbs.
The resolution of orientation binsisranged from 10 ° to 20°
depending on the dataset. To ensure the distribution of opti-
cal flow is not too sparse, we reduce the frame rate by half.
Each chunk of frames covers 5 frames, and overlaps with
the previous chunk by 4 frames.

Weizmann dataset. The Weizmann human action
dataset contains 10 types of human actions performed by
9 different people. Every action isrepested 9 to 10 times so
that there are 93 sequences in this dataset. The snapshots
of action categories are shown in Figure 3(a). We use the
provided foreground masks to extract human figures with
fixed aspect ratio. Our method achieves 100% accuracy on
this dataset. We list other reported resultsin Table 1 as a
comparison.

Soccer dataset. The Soccer dataset is a low-resolution
dataset collected by Efros et al. [8] from several minutes
of World Cup soccer game. This dataset contains 66 action
sequences from 8 classes. As shown in Figure 3(b), actions
are distinguished by both action categories and the proceed-
ing directions. Due to the high confusion between ‘walk
infout’” and ‘run infout’, we treat them as the same action
asin [9]. We also change the orientation mapping so that
the in and out directions of the same action are recognized
as the mirror of each other. Our performance and other re-
ported per-descriptor accuracy on each action are presented
inTable 2.

Besides the low-resolution video frames, the Soccer
dataset poses other challenges to the recognition task. For
example, in Figure 3(b), even a human observer may find it
difficult to differentiate between ‘runleft’ and ‘runleft 45°”.
In addition, this dataset provides unstabilized figure-centric
frames. Therefore, the computed optical flow does not con-
tain the information of figure translation between frames.
The unbalanced number of samples per class aso reduces
the classification accuracy on the minor classes. To alevi-
ate these problems, we use background subtracted frames
and randomly select the same number of descriptors from
each class for training.

Except for ‘run left/right 45°’, our descriptor is compa-

| Action | Our Method | Efros[] | Fathi [9] ]
run left 45° 0.47 0.67 0.63
run left 0.59 0.58 0.59
walk left 0.78 0.68 0.86
walk/run in/out 0.88 0.85 0.89
walk right 0.81 0.68 0.85
run right 0.58 0.58 0.65
run right 45° 0.52 0.66 0.53
Overdll 0.66 0.67 0.71

Table 2. Comparison of descriptor level accuracy on each action
of the Soccer dataset.

rable or better than other tested methods in Table 2. From
the confusion matrix, substantial confusion occurs over the
pairsof ‘runleft’ versus‘runleft 45°’ and ‘runright’ versus
‘run right 45°". We assume that it is because of the nature
of histogram representation, and speculate that histogram
based descriptors may not be suitable for characterizing the
subtle difference between the same type actions with large
directional overlap. In most applications, it is expected that
the action descriptor is general enough so that, for example,
sequencesof ‘runleft 45°" can berepresented asthe outliers
of ‘runleft’ or even ‘run’ class.

To verify our assumption, we combine the two pairs of
actionswhich cause the most confusion and perform the ex-
periment under the same settings. Table 3 shows the de-
scriptor level confusion matrix when the number of classes
is reduced to 5. Significant improvement is found over the
the combined classes, while minor accuracy reduction is
observed from the original actions due do the unbalanced
number of samples per class after combination. Based on
the class probabilities of the component descriptors of each
seguence, the average accuracy per sequence is as high as
82.0%.

Tower dataset. To show the effectiveness of our method
on more variety of human actions in low-resolution sce-
nario, we created a dataset where human actions were being
filmed from a distance. We name it the Tower dataset be-
cause it was taken from the top of a tower building. The
Tower dataset contains 60 sequences of 5 different actions
performed by 6 individuals. Figure 3(c) shows the sam-
ple frames from each action. In this dataset human figures
are less than 40 pixels tall; therefore, trained with manu-
ally cropped figure-centric patches, the figure centralization
detector is applied to ensure that each action frame is well
centered on a figure. Following the similar settings of ori-
ented histograms and space-time window, we obtain 100%
accuracy on the Tower dataset as well.

To understand the representation effectiveness of differ-
ent descriptor formats, weillustrate the corresponding ROC
curves on downsampled versions of the Tower data. We
havetested 4 combinations of action featuresand dimension
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Table 3. The descriptor level confusion matrix of the Soccer
dataset when the number of classes is reduced to 5 (the overall
accuracy is 78.66%).

reduction methods. They are denoted as PCA-HOG-[], []-
HOG-HOOF, PCA-HOG-HOOF, and SPCA-HOG-HOOF.
Here PCA-HOG-[] represents the PCA projected HOG de-
scriptor, []-HOG-HOOF stands for the full-length joint fea-
ture descriptor, and PCA-HOG-HOOF is PCA projected
HOG and HOOF time series. These descriptors all repre-
sent featuresin a spatio-temporal volume, and are employed
by the same SVM classifier (parameters are optimized sep-
arately) to perform action recognition.

We perform 3-fold cross validation in a modified way to
demonstrate descriptor performance on each action. That is
we randomly select 4 sequences from total 12 sequences of
each action for testing, and train on the labeled descriptors
from the rest of the sequences. For each scale of the image
resolution, we show only the ROC curves of action with the
least area under the ROC curve (AUC). Figure 4(a) illus-
trates the comparison of al the 4 descriptorsin the original
resolution. Figure 4(b) and 4(c) correspond to the descrip-
tor performancewhen frame resol utions are reduced to 36%
and 16% of the original, respectively.

Our action recognition algorithm is implemented with
MATLAB® and run on a Pentium 4 2.8GHz PC. Without
further optimization, the average time required to classify a
10-descriptor sequence is ranged from 0.2 to 0.5 seconds.
However, if we change the descriptor formation by neglect-
ing the SPCA projection step, it takes 1.3 seconds on av-
erage. Because of the use of SVM classifier, the run time
depends on the number of training samples [ 20].

5. Conclusions

When actions are being observed from afar field of view,
available visual cuesfrom human figures are usually sparse
and vague. Therefore, action recognition algorithmsthat re-
quire an exact description of human shapes or motion may
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Figure 4. For the Tower dataset, we plot the one-against-rest ROC
curve for the action with the minimum AUC. The performance of
descriptors is evaluated when the frame resolution is (a) original,
40-pixel tal figures (b) 36% of the original, 25-pixel tall figures
(c) 16% of the original, 15-pixel tall figures. The decimalsin the
parentheses represent the ratios of descriptor dimensions to the
dimension of a full-length joint feature descriptor. In 4(a), the
descriptor does not incorporate HOOF feature performs the worst.
Asshown in 4(b)(c), the ROC curves of the proposed SPCA-HOG-
HOOF descriptor occupy the largest AUC in the lower resolution
versions of the dataset. Note that as the frame resolution goes
down, larger set of spc (Eqg. (7)) is required from each class to
provide better separation of projected samples.



suffer from the quantity as well as the quality of features.
The proposed action descriptor is able to better accommo-
date these issues for two major reasons. First, the use of
local orientation histogramsto represent featuresis|ess sus-
ceptible to noisy data. Second, compared to asingle feature
descriptor, our descriptor is composed of two features so
that it is more robust against low quality or loss of features.

Even though a human figure occupies much fewer pixels
in alow-resolution video frame, the same amount of feature
dimension is still required to characterize an action frame.
In particular, our descriptor describes an action asatime se-
ries of poses and movements, which take considerable num-
ber of dimensions to represent. Moreover, blurry features
in low-dimensional imagery add to the difficulty in distin-
guishing them. To reduce dimensionality while maintain-
ing good accuracy, we extend an existing method to select
a subspace of the transformed feature space that provides
better separation of projected featuresfor multiple classes.

In our experiments, our method achieves perfect accu-
racy on both the Weizmann dataset and the Tower dataset.
We aso show that the proposed action descriptor outper-
forms other formats of descriptor even when the resolution
of figures is reduced to 16% of the origina (Figure 4(c)).
From the results on the Soccer dataset, it is shown that the
velocity of the figure as a whole plays an important role in
distinguishing directional actions.
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