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Abstract

We consider the problem of recognizing human actions

from still images. We propose a novel approach that treats

the pose of the person in the image as latent variables

that will help with recognition. Different from other work

that learns separate systems for pose estimation and action

recognition, then combines them in an ad-hoc fashion, our

system is trained in an integrated fashion that jointly con-

siders poses and actions. Our learning objective is designed

to directly exploit the pose information for action recogni-

tion. Our experimental results demonstrate that by inferring

the latent poses, we can improve the final action recognition

results.

1. Introduction

Consider the two images shown in Fig. 1(left). Even

though only still images are given, we as humans can still

perceive the actions (walking, playing golf) conveyed by

those images. The primary goal of this work is to recognize

actions from still images. In still images, the information

about the action label of an image mainly comes from the

pose, i.e. the configuration of body parts, of the person in

the image. However, not all body parts are equally impor-

tant for differentiating various actions. Consider the poses

shown in Fig. 1(middle). The configurations of torso, head

and legs are quite similar for both walking and playing golf.

The main difference for these two actions in terms of the

pose is the configuration of the arms. For example, “playing

golf” seems to have very distinctive V-shaped arms, while

“walking” seems to have two arms hanging on the side. A

standard pose estimator tries to find the correct locations of

all the body parts. The novelty of our work is that we do

not need to correctly infer complete pose configuration in

order to do action recognition. In the example of “walking”

versus “playing golf”, as long as we get correct locations of

the arms, we can correctly recognize the action, even if the

locations of other body parts are incorrect. The challenge is

Figure 1. Illustration of our proposed approach. Our goal is to infer

the action label of a still image. We treat the pose of the person

in the image as “latent variables” in our system. The “pose” is

learned in a way that is directly tied to action classification.

how to learn a system that is aware of the importance of dif-

ferent body parts, so it can focus on the arms when trying to

differentiate between “walking” and “playing golf”. We in-

troduce a novel model that jointly learns poses and actions

in a principled framework.

Human action recognition is an extremely important

and active research area in computer vision, due to its

wide range of applications, e.g. surveillance, entertainment,

human-computer interaction, image and video search, etc.

Space constraints do not allow an extensive review of the

field, but a comprehensive survey is available in [9]. Most

of the work in this field focuses on recognizing actions from

videos [13, 15, 18] using motion cues, and a significant

amount of progress has been made in the past few years.

Action recognition from still images, on the other hand, has

not been widely studied. We believe analyzing actions from

still images is important. Progress made here can be directly

applied to videos. There are also applications that directly

require understanding still images of human actions, e.g.

news/sports image retrieval and analysis.

Not surprisingly, recognizing human actions from still

images is considerably more challenging than video se-
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quences. In videos, the motion cue provides a rich source of

information for differentiating various actions. But in still

images, the only information we can rely on is the shape (or

the pose) of the person in an image. Previous work mainly

focuses on building good representations for shapes and

poses of people in images. Wang et al. [20] cluster different

human poses using distances calculated from deformable

shape matching. Thurau and Hlaváč [19] represent ac-

tions using histograms of pose primitives computed by non-

negative matrix factorization. Ikizler et al. [10] recognize

actions using a descriptor based on histograms of oriented

rectangles. Ikizler-Cinbis et al. [11] learn actions from web

images using HOG descriptors [3]. A limitation of these

approaches is that they all assume an image representation

based on global templates, i.e. an image is represented by

a feature descriptor extracted from the whole image. This

representation has been made popular due to its success in

pedestrian detection, in particular the work on histogram of

oriented gradient (HOG) by Dalal and Triggs [3]. This rep-

resentation might be appropriate for pedestrian detection,

since most pedestrians are upright. So it might be helpful

to represent all the pedestrians using a global template. But

when it comes to action recognition, global templates are

not flexible enough to represent the huge amount of varia-

tions for an action. For example, consider the images of the

“playing golf” action in Fig. 4. It is hard to imagine that a

single global template can capture all the pose variations of

this action. Recently, Felzenszwalb et al. [6] show that part-

based representations can better capture the pose variations

of an object, hence outperform global template representa-

tions. In this paper, we operationalize on the same intuition

and demonstrate that part-based representations are useful

for action recognition in still images as well. A major dif-

ference of our work from [6] is that we have ground-truth

labeling of the pose on the training data, i.e. our “parts” are

semantically meaningful.

Another important goal of this paper is to bridge the gap

between human action recognition and human pose esti-

mation. Those are two closely related research problems.

If we can reliably estimate the pose of a person, we can

use this information to recognize the action. However, in

the literature, they are typically touted as two separate re-

search problems and there has been only very little work

on combining them together. There is some work on trying

to combine these two problems in a cascade way, e.g. by

building an action recognition system on top of the output

of a pose estimation system. For example, Ramanan and

Forsyth [17] annotate and synthesize human actions in 3D

by track people in 2D and match the track to an annotated

motion capture dataset. Their work uses videos rather than

still images, but the general idea is similar. Ferrari et al. [8]

retrieve TV shots containing a particular 2D human pose by

first estimating the human pose, then searching shots based

Figure 2. Difference between previous work and ours. (Top) Pre-

vious work typically approaches pose estimation and action recog-

nition as two separate problems, and uses the output of the former

as the input to the latter. (Bottom) We treat pose estimation and

action recognition as an single problem, and learn everything in

an integrated framework.

on a feature vector extracted from the pose. But it has been

difficult to establish the value of pose estimation for action

recognition in this cascade manner, mainly because pose es-

timation is still a largely unsolved problem. It is question-

able whether the output of any pose estimation algorithm is

reliable enough to be directly used for action recognition.

In this paper, we propose a novel way of combining ac-

tion recognition and pose estimation together to achieve

the end goal of action recognition. Our work is different

from previous work in two perspectives. First, instead of

representing the human pose as the configuration of kine-

matic body parts [16], e.g. upper-limb, lower-limb, head,

etc., we choose to use an exemplar-based pose representa-

tion, “poselet”. This notation of “poselet” is first proposed

in [2] and used to denote a set of patches with similar 3D

pose configuration. In this paper, for the purpose of ac-

tion recognition, we further restrict those patches not only

to have similar configuration, but also from the same action

class. Second, as illustrated by the diagram in Fig. 2 (top),

previous work typically treats pose estimation and action

recognition as two separate learning problems, and uses the

output of a pose estimation algorithm as the input of an ac-

tion recognition system [8, 10]. As pointed out earlier, the

problem with this approach is that the output of the pose es-

timation is typically not reliable. Instead, as illustrated by

the diagram in Fig. 2 (bottom), we treat pose estimation and

action recognition as two components of a single learning

problem, and jointly learn the whole system in an integrated

manner. But our learning objective is designed in a way that

allows pose information to help action classification.

The high-level idea of our proposed approach can be

seen from Fig. 1. Our goal is to infer the action label of a

still image. We treat the pose of the person as intermediate

information useful for recognizing the action. But instead

of trying to infer the pose correctly using a pose estimation

algorithm, we treat the pose as latent variables in the whole

system. Compared with previous work on exploiting pose

for recognition [17, 8], the “pose” in our system is learned

in a way that is directly tied to our end goal of action clas-

sification.



2. Pose Representation

In this paper, we treat human pose as latent information

and use it to assist the task of action recognition. Since

we do not aim to obtain good pose estimation results in the

end, the latent pose in our approach is not restricted to any

specific type of pose representation. Because our focus is

action recognition, we decide to choose a coarse exemplar-

based pose representation. It is an action-specific variant of

the “poselet” proposed in [2]. In this paper, we use the no-

tation of “poselet” to refer to a set of patches not only with

similar pose configuration, but also from the same action

class. Fig. 3 illustrates the four poselets of a walking image.

As we can see, the poselet normally covers more than one

semantically meaningful part in terms of limbs and thus it is

distinct from the background. So, the detection of poselets

is more reliable than limb detection, especially with clut-

tered backgrounds.

In [2], a dataset is built where the joint positions of each

human image are labeled in 3D space via a 2D-3D lifting

procedure. We simply annotate the joint positions of hu-

man body in the 2D image space, as shown in Fig. 4. From

the pose annotation, we can easily collect a set of patches

with similar pose configuration. Based on the intuition that

action-specific parts contain more discriminative informa-

tion, we decide to select the poselets per action. For ex-

ample, we would like to select a number of poselets from

running-legs, or walking arms. The procedure of poselet

selection for a particular action (e.g. running) is as follows:

1. We first divide the human pose annotation of the run-

ning images into four parts, legs, left-arm, right-arm, and

upper-body; 2. We cluster the joints on each part into sev-

eral clusters based their normalized x and y coordinates; 3.

We remove clusters with very few examples; 4. Based on

the pose clusters, we crop the corresponding patches from

the images and form a set of poselets for the running ac-

tion. Representative poselets from the running action are

shown in Fig. 5. As we can see, among each poselet the ap-

pearance of each patch looks different, but they have very

similar semantic meaning. As pointed in [2], this is also

one advantage of using poselets. We repeat this process for

other actions and obtain 90 poselets in total in the end.

In order to detect the presence of each poselet, we train a

classifier for each poselet. We use the standard linear SVM

and the histograms of Oriented Gradients feature proposed

by Dalal and Triggs [3]. The positive examples are the

patches from each poselet cluster. The negative examples

are randomly selected from images which have the different

action label to the positive examples. For example, when we

train the classifier for one of “running-legs” poselets, we se-

lect the negative examples from all other action categories

except for the running action. The learned running poselet

templates are visualized in the last column in Fig. 5.

Figure 3. Visualization of the poselets for a walking image.

Ground-truth skeleton is overlayed on image. Examples of pose-

lets for each part are shown.

(a)

(b) (c)

(d) (e)
Figure 4. Sample images of the still image action dataset [11], and

the ground truth pose annotation. The locations of 14 joints have

been annotated on each action image. (a) Running; (b) Walking;

(c) Playing Golf; (d) Sitting; (e) Dancing.

3. Model Formulation

Let I be an image containing a person. In this paper,

we consider a figure-centric representation where I only

contains one person centered in the middle of the image.

This representation can be obtained from a standard pedes-

trian detection system. Let Y be the action label of the

person, and L be the pose of the person. We denote L as

L = (l0, l1, ..., lK−1), where K is the number of parts. In

this paper, we choose K = 4 corresponding to upper-body,

legs, left-arm, and right-arm. The configuration of the k-th

part lk is represented as lk = (xk, yk, zk), where (xk, yk)
indicates the (x, y) locations of the k-th part in the image,

and zk ∈ Zk is the index of the chosen poselet for the k-th

part. We have used Zk to denote the poselet set correspond-

ing to the part k. In this paper, we use |Zk| as 26, 20, 20, 24

for the four parts: legs, left-arm, right-arm, and upper-body,

based on our clustering results.

Similar to the standard pictorial structure models [7, 16]

in human pose estimation, we use an undirected graph

G = (V, E) to constrain the configuration of the pose L.



Figure 5. Examples of poselets for each part from the running ac-

tion. Each row corresponds to one poselet. The last column is the

visualization of the filters for each poselet learned from SVM +

HOG.

Figure 6. The four part star structured model. We divide the pose

into four parts: legs, left-arm, right-arm, and upper-body.

Usually the kinematic tree of the human body is used. A

vertex j ∈ V corresponds to the configuration lj of the j-th
part, and an edge (j, k) ∈ E indicates the dependency be-

tween two connected parts lj and lk. In this paper, we use

a simple four part star structured model, as shown in Fig. 6.

The upper-body part is the root node of G and other parts

are connected to the root node. We emphasize that our al-

gorithm is not limited to the four part star structure and can

be easily generalized to other types of tree structures.

Our training data consists of images with ground-truth

labels of their action classes and poses (i.e. (x, y) location

of each part and its chosen poselet). The ground-truth pose-

let of a part is obtained by tracing back the poselet cluster

membership of this part. Given a set of N training exam-

ples {(I(n), L(n), Y (n))}N
n=1, our goal is to learn a model

that can be used to assign the class label Y to an unseen

test image I . Note that during testing, we do not know the

ground-truth pose L of the test image I .

We are interested in learning a discriminative function

H : I × Y → R over an image I and its class label Y ,

where H is parameterized by Θ. During testing, we can

predict the class label Y ∗ of an input image I as:

Y ∗ = arg max
Y ∈Y

H(I, Y ; Θ) (1)

We assume H(I, Y ; Θ) takes the following form:

H(I, Y ; Θ) = max
L

ΘT Ψ(I, L, Y ) (2)

where Ψ(I, L, Y ) is a feature vector depending on the im-

age I , its pose configuration L and its class label Y . We

define ΘT Ψ(I, L, Y ) as follows:

ΘT Ψ(I, L, Y ) =
∑

j∈V

αT
j φ(I, lj , Y )

+
∑

(i,j)∈E

βT
jkψ(lj , lk, Y ) + ηTω(l0, Y ) + γTϕ(I, Y ) (3)

The model parameters Θ are simply the concatenation

of the parameters in all the factors, i.e. Θ = {αj : j ∈
V} ∪ {βj,k : (j, k) ∈ E} ∪ {γ}. The details of the potential

functions in Eqn. (3) are described below.

Part appearance potential αT
j φ(I, lj , Y ): This poten-

tial function models the compatibility between the action

class label Y , the configuration lj = (xj , yj , zj) of the j-th
part, and the appearance of the image patch extracted from

the location (xj , yj). It is parameterized as:

αT
j φ(I, lj , Y ) =

∑

a∈Y

∑

b∈Zj

αT
jab · 1a(Y ) · 1b(zj) · f(I(lj)) (4)

where 1a(X) is an indicator that takes the value 1 if X =
a, and 0 otherwise. We use f(I(lj)) to denote the feature

vector extracted from the patch defined by lj = (xj , yj , zj)
in the image I . The poselet set for the j-th part is denoted as

Zj . The parameter αjab represents a template for the j-th
part if the action label is a and the chosen poselet for the

j-th part is b.

Instead of keeping f(I(lj)) as a high dimensional vec-

tor, we simply use the output of a SVM classifier trained

on a particular poselet as the single feature. We append a

constant 1 to f(I(lj)) to learn a model with a bias term. In

other words, let fab(I(lj)) be the score of the SVM trained

with action a and poselet b. Then the parameterization can

be re-written as:

αT
j φ(I, lj , Y ) =
∑

a∈Y

∑

b∈Zj

αT
jab · 1a(Y ) · 1b(zj) · [fab(I(lj)); 1] (5)

This trick greatly speeds up our learning algorithm. Similar

tricks are used in [4].



Pairwise potential βT
jkψ(lj , lk, Y ): This potential func-

tion represents the dependency between the j-th and the k-

th part, for a given class label Y . Similar to [16], we use dis-

crete binning to model the spatial relations between parts.

We define this potential function as

βT
jkψ(lj , lk, Y ) =

∑

a∈Y

βT
jka · bin(lj − lk) · 1a(Y ) (6)

where bin(lj − lk) is a feature vector that bins the relative

location of the j-th part with respect to the k-th part accord-

ing to the (x, y) component of lj and lk. Hence bin(lj − lk)
is a sparse vector of all zeros with a single one for the occu-

pied bin. Here βjka is a model parameter that favors certain

relative bins for the j-th part with respect to the k-th part for

the action class label a.

Root location potential ηTω(l0, Y ): This potential

function models the compatibility between the action class

label Y and the root location. Here l0 denotes the config-

uration of the “root” part, i.e. upper-body in our case. It is

parameterized as:

ηTω(l0, Y ) =
∑

a∈Y

ηT
a · bin(l0) · 1a(Y ) (7)

We discretize the image grid into h × w spatial bins, and

ω(l0) is a length h × w sparse vector of all zeros with a

single one for the spatial bin occupied by the root part. The

parameter ηa favors certain bins (possibly those in the mid-

dle of the image) for the location of the root part for the

action label a. For example, for the running and walking

actions, the root part may appear in the upper-middle part

of the image with high probability, while for the sitting or

playing golf action, the root part may appear in the center-

middle or lower-middle part of the image. This potential

function deals with different root locations for different ac-

tions. It also allows us to handle the unreliability caused by

the human detection system.

Global action potential γTϕ(I, Y ): This potential

function represents a global template model for action

recognition from still images without considering the pose

configuration. It is parameterized as follows:

γTϕ(I, Y ) =
∑

a∈Y

γT
a · 1a(Y ) · f(I) (8)

where f(I) is a feature vector extracted from the whole im-

age I . The parameter γa is a template for the action class

a. This potential function measures the compatibility be-

tween the model parameter γ and the combination of image

observation f(I) and its class label Y . Similar to the part

appearance model, we represent f(I) as a vector of outputs

of a multi-class SVM classifier.

4. Learning and Inference

We now describe how to infer the action label Y given

the model parameters Θ (Sec. 4.1), and how to learn the

model parameters from a set of training data (Sec. 4.2)

4.1. Inference

Given the model parameters and a test image I , we can

enumerate all the possible action labels Y ∈ Y and predict

the action label Y ∗ of I according to Eqn. (1). For a fixed

Y , we need to solve an inference problem of finding the best

pose Lbest as follows:

Lbest = arg max
L

ΘT Ψ(I, L, Y )

= arg max
L

(∑

j∈V

αT
j φ(I, lj , Y ) +

∑

(i,j)∈E

βT
jkψ(lj , lk, Y )

+ηTω(l0, Y )
)

(9)

Note for a fixed Y , the global action potential function is a

constant and has nothing to do with the pose L, so we omit

it from above equation. Since we assume a star model on L,

the inference problem in Eqn. (9) can be efficiently solved

via dynamic programming.

In this paper, we choose the size of relative location bin-

ning bin(lj − lk) as 32 × 15. With such a discrete binning

scheme, the inference can be directly solved by dynamic

programming efficiently even without using the generalized

distance transform [7]. The inference for a fixed Y on an

image only takes 0.015s with our MATLAB/MEX imple-

mentation.

4.2. Learning

Now we describe how to train the model parameters Θ
from N training examples {In, Ln, Y n}n=1,2,...,N . If we

assume the pose L is unobserved on the training data, we

can learn Θ using the latent SVM formulation [6, 21] as

follows:

min
Θ,ξn≥0

ΘT Θ + C
∑

n

ξn

s.t. max
L

ΘT Ψ(In, L, Y n)
︸ ︷︷ ︸

H(In,Y n;Θ)

−max
L

Θ⊤Ψ(In, L, Y )
︸ ︷︷ ︸

H(In,Y ;Θ)

≥ ∆(Y, Y n) − ξn, ∀n, ∀Y ∈ Y (10)

where ∆(Y, Y n) is a function measuring the loss incurred

by classifying the example In to be Y , while the true class

label is Y n. We use the 0-1 loss defined as follows:

∆(Y, Y n) =

{
1 if Y 6= Y n

0 otherwise
(11)

The constraint in Eqn. (10) specifies the following in-

tuition. For the n-th training example, we want the score



H(In, Y ; Θ) = arg maxL ΘT Ψ(In, L, Y ) to be high when

Y is the true class label, i.e. Y = Y n. In particular, we want

the score H(In, Y n; Θ) to be higher than the score associ-

ated with any hypothesized class label H(In, Y ; Θ) by 1 if

Y 6= Y n.

Now since L is observed on training data, one possi-

ble way to learn Θ is to plug-in the ground-truth pose in

Eqn. (10), i.e. optimize the following problem:

min
Θ,ξn≥0

ΘT Θ + C
∑

n

ξn

s.t. ΘT Ψ(In, Ln, Y n) − max
L

Θ⊤Ψ(In, L, Y )

≥ ∆(Y, Y n) − ξn, ∀n, ∀Y ∈ Y (12)

Our initial attempt of using Eqn. (12) suggests it does not

perform as well as Eqn. (10). We believe it is because the

learning objective in Eqn. (12) assumes that we will have

access to the correct pose estimation at run-time. This is

unrealistic. On the other hand, the learning objective in

Eqn. (10) mimics the situation at run-time, when we are

faced with a new image without the ground-truth pose. So

we will use the formulation in Eqn. (10) from now on. But

we would like to point out that Eqn. (10) does not ignore the

ground-truth pose information on the training data. That in-

formation has been implicitly built into the features which

are represented as outputs of SVM classifiers. Those SVM

classifiers are learned using the ground-truth information of

the pose on the training data.

The training problem in Eqn. (10) can be solved by the

non-convex cutting plane algorithm in [5], which is an ex-

tension of the popular convex cutting plane algorithm [12]

for learning structural SVM [1]. We briefly outline the al-

gorithm here.

Consider the following unconstrained formulation which

is equivalent to Eqn. (10):

Θ = arg min
Θ

ΘT Θ + C
∑

n

Rn(Θ) where

Rn(Θ) = max
Y

(∆(Y, Y n) +H(In, Y ; Θ))

−H(In, Y n; Θ) (13)

In a nutshell, the learning algorithm in [5] itera-

tively builds an increasingly accurate piecewise quadratic

approximation of Eqn. (13) based on the subgradient

∂Θ (
∑

nRn(Θ)). It can be shown that the subgradient

∂Θ (
∑

nRn(Θ)) is related to the most-violated constraint

of Eqn. (10). So in essence, the algorithm iteratively adds

the most-violated constraint of Eqn. (10) and solves a piece-

wise quadratic approximation at each iteration. It has been

proved that only a small number of constraints are needed

in order to achieve an reasonably accurate approximation to

the original problem [1].

Now the key issue is how to compute the subgradient

∂Θ (
∑

nRn(Θ)). Since

∂Θ

(
∑

n

Rn(Θ)

)
=
∑

n

∂ΘRn(Θ) (14)

all we need to do it to figure out how to compute ∂ΘRn(Θ).
Let us define:

(Y ∗, L∗) = arg max
Y,L

∆(Y, Y n) + ΘT Ψ(In, L, Y ) (15)

L̂ = arg max
L

ΘT Ψ(In, L, Y n) (16)

It can be shown that ∂ΘRn(Θ) can be calculated as

∂ΘRn(Θ) = Ψ(In, L∗, Y ∗) − Ψ(In, L̂, Y n) (17)

The calculation of the subgradient ∂ΘRn(Θ) involves solv-
ing two inference problems in Eqn. (15,16). As men-

tion in Sec. 4.1, the inference on arg maxL can be effi-

ciently solved via dynamic programming. The inference on

arg maxY is easy too, since the number of possible choices

of Y is small (e.g. |Y| = 5 in our case). So we can simply

enumerate all possible Y ∈ Y .

5. Experiments

We first test our algorithm on the still image action

dataset collected by Ikizler-Cinbis et al. [11]. This dataset

consists of still images from five action categories: running,

walking, playing golf, sitting, and dancing. The images of

this dataset are downloaded from the Internet. So there are

a lot of pose variations and cluttered backgrounds in the

dataset. In total, there are 2458 images in the dataset. We

further increase the size and pose variability of the dataset

by mirror-flipping all the images. Most of actions in the

dataset do not have axial symmetry. For example, running-

to-left and running-to-right appear very different in the im-

age. So mirror-flipping makes the dataset more diverse. We

manually annotate the pose with 14 joints on the human

body on all the images in the dataset, as shown in Fig. 41.

We select 1/3 of the images from each action category to

form the training set, and the rest of the images are used for

testing. We also ensure the testing set does not contain the

mirror-flipped version of any training image. Since we fo-

cus on action classification rather than human detection, we

simply normalize each image into the same size and put the

human figure in the center of the image, based on the pose

annotation information.

At the training stage, we create 90 poselets in total from

the training set following the method described in Sec-

tion 2. For each poselet, we train an SVM classifier based

on the HOG descriptors extracted from image patches at

1The annotations are available online

(http://www.sfu.ca/∼wya16/latent/latentpose.html)



(a)

(b)
Figure 7. Confusion matrices of the classification results on the

still image action dataset: (a) baseline (b) our approach. Horizon-

tal rows are ground truths, and vertical columns are predictions.

the ground-truth locations of the corresponding poselet in

the training set. Examples of trained templates for running

poselets are visualized in the last column of Fig. 5. We

compare our approach with a multi-classification SVM with

HOG descriptors as the baseline. Note that the outputs of

this baseline are also used to model the global action po-

tential function in our approach. The confusion matrices of

the baseline and our method on the testing set are shown in

Fig. 7 (a),(b). Table 1 summarizes the comparison between

our result and the baseline. Since the testing set is imbal-

anced, e.g. the number of running examples are more than

twice of the playing-golf and sitting examples, we report

both overall and mean per class accuracies. For both over-

all and mean per class accuracies, our method outperforms

the baseline.

We also apply our trained model on a Youtube video

dataset originally collected by Niebles et al. [14]2. Ikizler-

Cinbis et al. [11] have annotated 11 videos of this dataset.

The action of each human figure on each frame has been

annotated by one of the five action categories. The bound-

ing box information of the human figure returned by a stan-

dard human detection algorithm is also provided by Ikizler-

Cinbis et al. [11]. In total, there are 777 human figures. We

normalize each human figure into the same size based on the

bounding box information and then run our model, which is

trained from the still image dataset. To show the generaliza-

tion power of our method, we use exactly the same model

learned from our previous experiment on the still image ac-

tion dataset without any re-training on the Youtube dataset.

The confusion matrix of our method is given in Fig. 8. Ta-

2http://vision.stanford.edu/projects/extractingPeople.html

Figure 8. Confusion matrix of the classification results of our ap-

proach on the Youtube dataset. Horizontal rows are ground truths,

and vertical columns are predictions.

method overall mean per-class

Baseline 56.45 52.46

Our approach 61.07 62.09

Table 1. Results on the still image action dataset. We report both

overall and mean per class accuracies due to the class imbalance.

method overall mean per-class

Baseline 46.98 40.52

Our approach 50.58 46.73

[11] (MultiSVM) 59.35 N/A

[11] (Best) 63.61 N/A

Table 2. Results on the Youtube dataset. We report both overall

and mean per class accuracies due to the class imbalance.

ble 2 shows the comparison of our method with the base-

line SVM classifier on HOG features trained from the same

training set. Our method performs much better in terms of

both overall and mean per-class accuracies. Our results are

lower than the best results without temporal smoothing re-

ported in [11]. This is likely because the method in [11]

uses an additional step of perturbing the bounding box on

the training set to account for the errors of human localiza-

tion. If we use the same trick in our method, the perfor-

mance will probably improve as well.

Visualization of Latent Pose: We can also visualize the

latent poses learned by our model. But first, we need to

point out that our model is trained for action classification,

not pose estimation. We simply treat the pose as latent in-

formation in the model that can help solve the action clas-

sification task. Since our model is not directly optimized

for pose estimation, we do not expect to get pose estimation

results that are “good” in the usual sense. When measur-

ing the performance of a pose estimation, people typically

examine how closely the localized body parts (torso, arm,

legs, etc.) match the ground-truth locations of the parts in

the image. But since our final goal is action classification,

we are not aiming to correctly localize the body parts, but

rather focus on localizing the body parts that are useful for

action classification.

Fig. 9 shows the visualization of the latent poses super-

imposed on the original images. For the k-th part with

lk = (xk, yk, zk), we place the chosen poselet zk at the



Figure 9. Example visualizations of the latent poses on test im-

ages. For each action, we manually select some good estimation

examples and bad examples. The action for each row (from top) is

running, walking, palying golf, sitting and dancing respectively.

location (xk, yk) in the image. The skeleton used for a par-

ticular poselet is obtained from the cluster center of the joint

locations of the corresponding poselet. In terms of pose es-

timation in the usual sense, those results are not accurate.

However, we can make several interesting observations. In

the “sitting” action, our model almost always correctly lo-

calizes the legs. In particular, it mostly chooses the poselet

that corresponds to the “A” shaped-legs (e.g. first two im-

ages in the fourth row) or the triangle-shaped legs (e.g. the

third image in the fourth row). It turns out the legs of a per-

son are extremely distinctive for the “sitting” action. So our

model “learns” to focus on localizing the legs for the sitting

action, in particular, our model learns that the “A” shaped-

legs and the triangle-shaped legs are most discriminative for

the sitting action. For the sitting action, the localized arms

are far from their correct locations. From the standard pose

estimation point of view, this is considered as a failure case.

But for our application, this is fine since we are not aiming

to correctly localize all the parts. Our model will learn not

to use the localizations of the arms to recognize the sitting

action. Another example is the “walking” action (the im-

ages in the second row). For this action, our model almost

always correctly localizes the arms hanging on the two sides

of the torso, even on the bad examples. This is because

“hanging arms” is a very distinctive poselet for the walking

action. So our model learns to focus on this particular part

for walking, without getting distracted by other parts.

6. Conclusion

We have presented a model that integrates action recog-

nition and pose estimation. The main novelty of our model

is that although we consider these two problems together,

our end goal is action recognition, and we treat the pose

information as latent variables in the model. The pose is

directly learned in a way that is tied to action recognition.

This is very different from other work that learns a pose es-

timation system separately, then uses the output of the pose

estimation to train an action recognition system. Our exper-

imental results demonstrate that by inferring the latent pose,

we can improve the final action recognition results.
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