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Abstract—Detecting objects in cluttered scenes and estimating articulated human body parts from 2D images are two challenging

problems in computer vision. The difficulty is particularly pronounced in activities involving human-object interactions (e.g., playing

tennis), where the relevant objects tend to be small or only partially visible and the human body parts are often self-occluded. We

observe, however, that objects and human poses can serve as mutual context to each other—recognizing one facilitates the

recognition of the other. In this paper, we propose a mutual context model to jointly model objects and human poses in human-object

interaction activities. In our approach, object detection provides a strong prior for better human pose estimation, while human pose

estimation improves the accuracy of detecting the objects that interact with the human. On a six-class sports data set and a 24-class

people interacting with musical instruments data set, we show that our mutual context model outperforms state of the art in detecting

very difficult objects and estimating human poses, as well as classifying human-object interaction activities.

Index Terms—Mutual context, action recognition, human pose estimation, object detection, conditional random field.

Ç

1 INTRODUCTION

USING context to aid visual recognition is recently
receiving more and more attention. Psychology experi-

ments show that context plays an important role in recogni-
tion in the human visual system [1], [2]. In computer vision,
context has been used in problems such as object detection
and recognition [3], [4], [5], scene recognition [6], action
classification [7], and image segmentation [8]. While the idea
of using context is clearly a good one, a curious observation
shows that most of the context information has contributed
relatively little to boost performances in recognition tasks. In
the recent Pascal VOC challenge [9], the difference between
context-based methods and sliding window-based methods
for object detection (e.g., detecting bicycles) is only within a
small margin of 3-4 percent [10], [11].

One reason to account for the relatively small margin is, in
our opinion, the lack of strong context. While it is nice to
detect cars in the context of roads, powerful car detectors [12]
can nevertheless detect cars with high accuracy no matter
whether the cars are on the road or not. Indeed, for the human
visual system, detecting visual abnormality out of context is
crucial for survival and social activities (e.g., detecting a cat in
the fridge or an unattended bag in the airport) [13].

So is context oversold? Our answer is “no.” Many
important visual recognition tasks critically rely on context.
One such scenario is the problem of human pose estimation

and object detection in human-object interaction (HOI)
activities [14], [15]. As shown in Fig. 1, the two difficult
tasks can benefit greatly from serving as context for each
other. Without knowing that the human is making a
defensive shot with the cricket bat, it is not easy to
accurately estimate the player’s pose (Fig. 1a); similarly,
without seeing the player’s pose, it is difficult to detect the
small ball in the player’s hand, which is nearly invisible
even to the human eye (Fig. 1b).

In this paper, we propose to model the mutual context
between objects and human poses in HOI activities so that
each can facilitate the recognition of the other. Specifically,
two contextual information are considered in our mutual
context model. The co-occurrence context models the co-
occurrence statistics between objects and specific types of
human poses within each activity. The types of human
poses, termed “atomic poses” [16] (shown in Fig. 6), can be
thought of as a dictionary of human poses where the human
poses represented by the same atomic pose correspond to
similar configurations of body parts. We also consider the
spatial context, which models the spatial relationship
between objects and different human body parts. We show
that our algorithm significantly improves the performance
of both object detection and human pose estimation on a
six-class sports data set [14] and a 24-class people
interacting with musical instruments (PPMI) data set [15].
Furthermore, putting object detection and pose estimation
together, our method also achieves higher accuracy in
classifying HOI activities.

Modeling the mutual context of objects and human poses
has its theoretical basis in psychology. In [17] and [18], it has
been shown that humans have a better perception of human
gestures when the objects are presented and vice versa. In
[19], the authors confirmed the spatial and functional
relationships of objects and human poses in HOI activities.
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In our work, we explicitly model these relationships so that
the recognition of objects and human poses can mutually
benefit from each other. This makes our method signifi-
cantly different from most previous activity recognition
approaches, where activity recognition is treated as a pure
image or video classification problem [20], [21], [22], [23],
without detailed analysis of the objects and human poses
that are involved in these activities.

The rest of this paper is organized as follows: Section 2
describes related work. Details of our model, as well as
model learning and inference, are elaborated in Sections 3,
4, and 5, respectively. Experimental results are given in
Section 6. Section 7 concludes the paper.

2 RELATED WORK

Human pose estimation and object detection have been
studied in computer vision for many years. Most of the pose
estimation approaches model the human body parts in a
tree structure and use the pictorial structure method [24],
[25] for efficient inference. The pictorial structure approach
and its derivations [26], [27], [28], [29] work very well on the
images with clean backgrounds and have improved the
pose estimation performance in complex scenes such as TV
shows. In order to capture more complex human body
articulations, some nontree models have also been pro-
posed [30], [31]. More recently, a real-time human pose
estimation system has been built by applying the random
forest [32] method to depth images [33]. Nevertheless,
human pose estimation on 2D images remains a challenging
problem, especially when the human body parts are highly
articulated and occluded.

Sliding window is one of the most successful strategies
for object detection. Some techniques have been proposed
to avoid exhaustively searching the image [34], [35], which

makes the algorithm more efficient. While the most popular
detectors are still based on sliding windows [34], [36], more
recent work has tried to integrate context to obtain better
performance [3], [4], [5]. However, in most of the works the
performance is improved by a relatively small margin.

It is out of the scope of this paper to develop an object
detection or human pose estimation method that generally
applies to all situations. Instead, we focus on the role of
context in these problems. Our work is inspired by a
number of previous works that have used context in vision
tasks [6], [37], [8], [3], [4], [5], [7]. In most of these works,
one type of scene information serves as contextual facilita-
tion to a main recognition problem. For example, ground
planes and horizons can help to refine pedestrian detec-
tions. Specifically, while object context has been widely
used to help the recognition of the other objects [3], [10],
people have shown that object context can also improve the
performance of human pose estimation [38], [39]. Mean-
while, human poses have also been treated as context for
many tasks such as motion capture [40] and inferring
surface contact (such as joint torques and gravity) [41].

Other than simply treating one task as the main
recognition problem and the other one as the contextual
facilitation, in this work we explore the mutual context
between two seemingly unrelated problems—object detec-
tion and human pose estimation. Our approach allows the
two tasks to serve as context for each other so that the
recognition performance of both tasks are improved. We
study the two problems in the activities of human-object
interactions in still images, where the mutual context plays
key roles for understanding the interactions between
humans and objects.

Recognizing human activities in still images is a new
problem, yet it has received much attention in recent years
[14], [15], [42], [43], [44], [45], [46].Whilemanyworks treat the
task as an image classification problem, more and more
people have tried to obtain a detailed understanding of the
humans and the objects as well as their interactions. In [47],
action recognition is carried out after recognizing the human
faces and gestures. In [48], the role of human poses and
objects in human activities are analyzed. In [49], the authors
propose to directly learn the interactions between humans
and objects (or between objects and objects) in a discrimina-
tive way, termed as “visual phrases.” Our work takes a
further step by explicitly modeling the human poses and
objects as well as their mutual contexts in HOI activities.
Furthermore, we test the performance of object detection,
human pose estimation, and activity classification in differ-
ent domains of human activities, including people doing
sports [14] and interacting with musical instruments [15].

A preliminary version of our paper was described in [50]
and extended in [16]. The model described in this paper is
based on [16], which differs from [50] in the following ways:
1) By introducing a set of “atomic poses,” we learn an overall
relationship between different activities, objects, and human
poses, rather than modeling the human-object interactions
for each activity separately as in [50]. 2) Instead of limiting to
the onehuman andone object interaction as in [50], themodel
presented in this paper can dealwith the situationswhere the
human interacts with any number of objects (e.g., people
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Fig. 1. Objects and human poses can serve as mutual context to
facilitate the recognition of each other. In (a), the human pose is better
estimated by seeing the cricket bat, which provides a strong prior for the
pose of the human. In (b), the cricket ball is detected with the help of
understanding the human pose of bowling the ball.



interacting with a tennis ball and a tennis racket in “playing
tennis”). 3) The new model incorporates a discriminative
action classification component and uses state-of-the-art
object and body part detectors [36], which further improves
the recognition performance. Furthermore, in this paper we
further test the performance of our method on a people
interacting with musical instrument data set, which is
relatively large scale and involves different interactions
between the human and the same object (e.g., playing a violin
versus holding a violin but not playing).

3 THE MUTUAL CONTEXT MODEL

Given an HOI activity, our goal is to estimate the human
pose and detect the objects that the human interacts with
(shown in Fig. 1). Fig. 2 illustrates that both tasks are
challenging. On one hand, the relevant objects are often
small, partially occluded, or tilted to an unusual angle by
the human. The human poses, on the other hand, are
usually highly articulated, where many body parts are self-
occluded. Furthermore, even in the same activity, the
configurations of body parts might have large variations
in different images due to different human gestures or
shooting angles of the cameras.

Here, we propose a novel model to exploit the mutual
context of human poses and objects in one coherent
framework, where object detection and human pose
estimation can benefit from each other. Our model deals
with the situations where the human interacts with any
number of objects.

3.1 The Model Representation

A graphical illustration of our model is shown in Fig. 3. Our
model can be thought of as a conditional random field [51].
For an image I of a human-object interaction activity, our
approach jointly models the overall activity class A, the
objects O ¼ fO1; . . . ; OMg interacting with the human, and
the human pose H. M is the number of object bounding
boxes in the image (M ¼ 2 in Fig. 3), andOm is the class label
of the mth box. H indicates the atomic pose (Section 4.1)
label that the human pose belongs to. As shown in Fig. 6, the
human poses described by the same atomic pose have
similar layouts of human body parts. The overall human

pose is further decomposed into the spatial layout of some
body parts (e.g., head, torso, upper-left arm, lower-right leg,
etc.), denoted by P 1; . . . ; PL. Here, we assume that the set of
atomic poses are given. How to obtain the atomic poses will
be introduced in Section 4.1.

In our mutual context model, the activity classes, objects,
and human poses all contribute to the recognition and
detection of each other. We also make this modeling
conditioned on the visual features of the corresponding
image regions so that the components that are harder to
recognize play less important roles. Putting everything
together, our model is represented as

�ðA;O;H; IÞ ¼ �1ðA;O;HÞ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

co-occurrence context

þ �2ðO;HÞ
|fflfflfflfflffl{zfflfflfflfflffl}

spatial context

þ �3ðO; IÞ
|fflfflfflfflffl{zfflfflfflfflffl}

modeling objects

þ �4ðH; IÞ
|fflfflfflfflffl{zfflfflfflfflffl}

modeling human pose

þ �5ðA; IÞ
|fflfflfflffl{zfflfflfflffl}

modeling activity

;
ð1Þ

where �1 models the co-occurrence compatibility between
A, O, and H (magenta edges in Fig. 3); �2 considers the
spatial relationship between objects and human body parts
(red edges in Fig. 3); �3�5 models the image evidence based
on state-of-the-art object detection, human pose estimation,
and activity classification approaches (green, blue, and cyan
edges in Fig. 3, respectively). We now enumerate the
potentials of this model:

Co-occurrence context. �1ðA;O;HÞ models the compat-
ibility between the class labels of A, O, andH in terms of co-
occurrence frequency. For example, the objects “tennis ball”
and “tennis racket” always appear in the activity of “tennis
serve,” and people usually serve in tennis in some specific
poses. �1ðA;O;HÞ is parameterized as

�1ðA;O;HÞ

¼
XNh

i¼1

XM

m¼1

XNo

j¼1

XNa

k¼1

1ðH¼hiÞ � 1ðOm¼ojÞ � 1ðA¼akÞ � �i;j;k;
ð2Þ
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Fig. 2. Challenges of object detection and human pose estimation in HOI
activities.

Fig. 3. A graphical illustration of our model. A denotes an HOI activity
class, H the atomic human pose class, P a body part, and O the object.
We have two Os here because there are two objects in the image (tennis
racket and tennis ball). The edges are denoted by different colors as
they correspond to different components of our model (detailed in
Section 3.1).



where Nh is the total number of atomic poses (see
Section 4.1) and hi represents the ith atomic pose; similarly
for No and oj, as well as Na and ak. 1ð�Þ is an indicator
function, e.g., 1ðH¼hiÞ ¼ 1 if H equals hi, otherwise 0. �i;j;k
represents the strength of the co-occurrence interaction
between hi, oj, and ak: The larger �i;j;k is, the more likely it is
that hi, oj, and ak co-occur.

Spatial context. The other context we consider is the
spatial relationship between objects and different body
parts of the human. As shown in Fig. 4, in HOI activities,
the human pose and object category usually provide a
strong and reliable prior for the location of the object with
respect to human body parts. We therefore model �2ðO;HÞ
by considering each pair of atomic pose and object category.
�2ðO;HÞ is parameterized as

�2ðH;OÞ

¼
XM

m¼1

XNh

i¼1

XNo

j¼1

XL

l¼1

1ðH¼hiÞ � 1ðOm¼ojÞ � �
T
i;j;l � b

�
x
l
I ; O

m
�
;

ð3Þ

where x
l
I is the location of the center of the human’s

lth body part in image I, bðxl
I ; O

mÞ denotes the spatial
relationship between x

l
I and the mth object bounding box,

and �i;j;l encodes the set of weights for this relationship
when the object class of Om is oj. We use a binary feature
similar to that in [10] to represent bðxl

I ; O
mÞ. As shown in

Fig. 5, the relative location of the center of object Om with
respect to x

l
I is discretized to a set of disjoint regions. Then,

bðxl
I ; O

mÞ is a sparse binary vector with only one 1 for the
element that corresponds to the relative location of Om with
respect to x

l
I .

Modeling objects. Inspired by Desai et al. [10], we model
objects in the image using object detection scores in all the
object bounding boxes and the spatial relationship between
these boxes. Denoting the vector of scores of detecting all
the objects in the mth box as gðOmÞ, �3ðO; IÞ is parameter-
ized as

�3ðO; IÞ ¼
XM

m¼1

XNo

j¼1

1ðOm¼ojÞ � �
T
j � gðOmÞ

þ
XM

m¼1

XM

m0¼1

XNo

j¼1

XNo

j0¼1

1ðOm¼ojÞ � 1ðOm0¼oj0 Þ
� �Tj;j0 � bðO

m; Om0

Þ;

ð4Þ

where �j is the weight for the detection scores correspond-
ing to object oj. �j;j0 encodes the set of weights for the
geometric configurations between oj and oj0 . bðO

m; Om0
Þ is a

binary feature vector that models the spatial relationship
between the mth and m0th bounding boxes. We use the
same approach as in Fig. 5 to obtain bðOm; Om0

Þ. Note that in
different images, the number of objects (the value of M) can
be different.

Modeling human pose. �4ðH; IÞ models the atomic pose
that H belongs to and the likelihood of observing image I

given that atomic pose. We have

�4ðH; IÞ

¼
XNh

i¼1

XL

l¼1

1ðH¼hiÞ �
�
�T
i;l � p

�
x
l
I

�
�x

l
hi

�
þ �T

i;l � f
lðIÞ

�
;

ð5Þ

where �i;l and �i;l are the weights for the location and
appearance of the lth body part in atomic pose hi. pðxl

I jx
l
hi
Þ

is the Gaussian likelihood of observing x
l
I , the joint of the

lth body part in image I, given the standard joint location of
the lth body part in atomic pose hi. The joints of all the body
parts are defined in the same way as in [24]. f lðIÞ is the
output for detecting the lth body part in its current location
in this image.

Modeling activities. �5ðA; IÞ takes the global image as
features and trains an activity classifier to model the HOI
activity. It serves as the activity (or scene) context to
understand the interactions between humans and objects.
We have

�5ðA; IÞ ¼
XNa

k¼1

1ðA¼akÞ � �
T
k � sðIÞ; ð6Þ

where sðIÞ is an Na-dimensional output of a one-versus-all
discriminative classifier. �k is the set of feature weights
corresponding to activity ak.

1694 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 9, SEPTEMBER 2012

Fig. 4. In HOI activities, the human pose and object category usually
provide a strong and reliable prior for the location of the object with
respect to human body parts.

Fig. 5. Visualization of the binary feature bðxl
I ; O

mÞ. We first divide the
space into 13 disjoint regions based on a coordinate frame defined by
x
l
I . The image area closer to x

l
I is divided with a finer resolution. Then,

bðxl
I ; O

mÞ is a 13-dimensional binary vector, with a 1 in the region that
the center of Om falls in (filled by gray color).



3.2 Properties of the Model

Central to our model formulation is the hypothesis that both
human pose estimation and object detection can benefit
from each other in HOI activities. We highlight here some
important properties of our model.

Co-occurrence context for the activity class, object, and
human pose. Given the presence of a tennis racket, the
human pose is more likely to be playing tennis instead of
playing croquet. This is to say, co-occurrence information
can be beneficial for jointly modeling the object, the human
pose, and the activity class.

Spatial context between objects and body parts. With-
out knowing the location of the arm, it is difficult to spot the
location of the tennis racket in tennis serving. Without
seeing the croquet mallet, the heavily occluded arms and
legs can become too obscured for robust pose estimation. In
HOI activities, different atomic poses imply that the object
is handled by the human in different manners, which are
modeled by �2ðO;HÞ. The modeling is conditioned on the
image features so that we can pay less attention to the
objects or human body parts whose corresponding detec-
tors are unreliable.

Flexible to extend to larger scale data sets and other
activities. Our model jointly models all the objects and
atomic poses in all the HOI activities. Comparing to the
original method [50], where the objects and human poses in
each HOI activity are modeled separately, our model is
easier to extend to larger scale data sets and other activities.
Having more activities does not necessarily introduce more
atomic poses or objects in our model representation.

Relations with the other models. Our model has drawn
inspiration from a number of previous works, such as
modeling spatial layout of different image parts [24], [25],
[26], using agreement of different image components [3],
using multiple models to describe the same concept (human
pose in our problem) [52], and discriminative training [26].
Our model integrates all the properties in one coherent
framework to perform two seemingly unrelated tasks,
human pose estimation and object detection, to the benefit
of each other.

4 MODEL LEARNING

This section describes our approach for learning different
aspects of our model. We first introduce our method of
obtaining the atomic poses in Section 4.1. We then give
details of how to train the object and body part detectors, as
well as activity classifiers in Section 4.2. We show how we
estimate the model parameters in Section 4.3.

4.1 Obtaining Atomic Poses

Fig. 6 shows three atomic poses. The atomic poses can be
thought of as a dictionary of human poses where the human
poses described by the same atomic pose have similar
layouts of human body parts. In this paper, the atomic
poses play an important role for modeling human and
object interactions. Because humans usually manipulate an
object in some specific gestures, each HOI activity usually
corresponds to some specific atomic poses. Furthermore,
human pose estimation can be made much easier if we
know which atomic pose the image corresponds to and

hence have a strong and reliable prior of the layout of body
parts, as compared to relying on a single model for all the
images.

Given a set of training images of HOI activities, we
obtain the atomic poses by clustering the configurations of
human body parts. We denote the annotation of the human
body parts in an image I as fx1; . . . ;xLg, where L is the
number of body parts and each x

l is a vector indicating the
position and orientation of the lth body part. We first align
the annotations so that the torsos in all the images have the
same position and size, and normalize the range of
variations of both position and orientation to ½�1; 1�. If
there is a missing body part due to occlusion in an image,
we use the annotations of visible body parts to find this
image’s nearest neighbor, which is used to fill in the
annotation of the missing body part. We then use
hierarchical clustering with the maximum linkage measure
to obtain a set of clusters. Each cluster represents an atomic
pose. Given two images Ii and Ij, their distance is measured
by

PL
l¼1 w

T jxl
i � x

l
jj, where w is a weight vector (0.15 and

0.1 for location and orientation components, respectively).
Our method for obtaining atomic poses is based on the

annotations of human body parts. Therefore, it is a “weakly
supervised” approach for clustering human poses as
compared to the previous work where no annotation is
used [53] or the clustering is performed within each activity
class separately [50], [43]. Compared to the unsupervised
approach, the human poses described by each atomic pose
are tightly clustered in terms of configurations of body
parts, which makes it possible to use the atomic poses for
better pose estimation. Compared to the clusters obtained
within each activity class separately, our atomic poses are
shared by all the activities and are therefore easier to extend
to more activity classes.

Our atomic poses are discovered is a way similar to that
of poselets [54]. However, while poselets are local detectors
for specific body parts, the atomic poses are a dictionary of
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Fig. 6. Examples of three atomic poses. Each row shows images of an
atomic pose, and the left-most image outlines the representative body
parts layout in this atomic pose. Notice the similarity of human poses in
each atomic pose. This figure also shows that similar poses might
represent different activities. For example, the last atomic pose
corresponds to three different activities.



the overall human poses. They provide a strong prior of the
configuration of human body parts, and therefore can be
directly used for better human pose estimation. Fig. 7
illustrates all the atomic poses that are obtained from the
sports data set [14]. Fig. 10 shows the distribution of the
images of some HOI activities over the set of atomic poses
obtained from the PPMI data set [15]. For each atomic pose,
we estimate the spatial relationship between different body
parts as in the pictorial structure model [24]. These
relationships will be used in the inference stage (Section 5).

4.2 Training Detectors and Classifiers

Our mutual context model is based on a set of object
detectors and human body part detectors, as well as an
overall activity classifier. In (4), gðOmÞ is the score vector of
detecting all the objects in the mth object bounding box. In
(5), f lðIÞ is the score of detecting the lth body part in
location x

l
I . We train a detector for each object and each

human body part using the deformable part model [36].
The deformable part model is a mixture of some discrimi-
natively trained latent SVM classifiers based on the
histogram of gradient [55] image features. In our approach,
each human body part detector contains one mixture
component, while each object detector contains two mixture
components unless the aspect ratio of the object does not
change at all (e.g., balls). gðOmÞ and f lðIÞ are the values of
the detection score divided by the threshold of the
corresponding detector.

The activity classier is trainedbyusing the spatial pyramid
matching (SPM) method [56]. We extract SIFT features [57]
and apply the histogram intersection kernel on a three layer
image pyramid. In (6), sðIÞ is Na-dimensional confidence
scores obtained from an SVM classifier, where Na is the
number of activity classes.

4.3 Estimating Model Parameters

In the training stage, we assign each human pose to its
closest atomic pose. Given the annotations of human body
parts and object bounding boxes, we apply the object and
human body part detectors to the corresponding image

regions to get detection scores. Therefore, our model (1) is a
standard conditional random field with no hidden vari-
ables. We use a maximum likelihood approach with zero-
mean Gaussian priors to estimate the model parameters
f�; �; �; �; �g. Figs. 7 and 10 visualize some of our learning
results.

5 MODEL INFERENCE

Given a new image, inference on (1) gives us the results of
activity classification, object detection, and human pose
estimation. We initialize the model inference with the SPM
action classification results [56], object bounding boxes
obtained from independent object detectors [36], as well as
initial pose estimation results from a pictorial structure
model [28] obtained from all training images, regardless of
the belongingness of human poses to different atomic poses.
To reduce false negatives in object detection, we keep the
detection bounding boxes if the scores are larger than 0.9 of
the detection threshold after nonmaximum suppression. We
then iteratively perform the following steps.

Updating the layout of human body parts. From the
current inference result, we compute the marginal
distribution of the human pose over all atomic poses:
fpðH ¼ hiÞg

Nh

i¼1. From this distribution, we refine the prior of
the joint location of each body part l in this image using a
mixture of Gaussians

PNh

i¼1½pðH ¼ hiÞ � N ðxl
hi
Þ�, where

Nðxl
hi
Þ is the prior distribution for body part l in the

ith atomic pose estimated in Section 4.1. Because the
pictorial structure inference can be very efficient if the part
dependencies are Gaussians, we further use a Gaussian
distribution to approximate each mixture of Gaussians.
Then, we use pictorial structure with these new Gaussian
distributions to update the pose estimation results.

Updating object detection results.With the current pose
estimation result as well as the marginal distribution of
atomic poses and activity classes, we use a greedy forward
search method [10] to update the object detection results.
We use ðm; jÞ to denote the score of assigning themth object
bounding box to object oj, which is initialized as
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Fig. 7. The learned strength of connectivity between activities, human poses, and objects on the sports data set [14]. Thicker lines indicate stronger
connections. We did not show the connections between activities and objects because they are tricky (e.g., “tennis serving” connects with “tennis
ball” and “tennis racket”). We also ignore connections that are very weak.



ðm; jÞ ¼
XNh

i¼1

XL

l¼1

pðH ¼ hiÞ � �
T
i;j;l � b x

l
H ; O

m
� �

þ
XNh

i¼1

XNa

k¼1

pðH ¼ hiÞ � pðA ¼ akÞ � �i;j;k þ �Tj � gðOmÞ:

ð7Þ

Initializing the labels of all the windows to be background
(i.e., no object in the bounding box), the forward search
repeats the following steps:

1. Select ðm�; j�Þ ¼ argmaxfðm; jÞg.
2. Label the m�th object detection window as oj� and

remove it from the set of detection windows.
3. Upd a t e ðm; jÞ ¼ ðm; jÞ þ �Tj;j� � bðO

m; Om�
Þ þ �Tj�;j �

bðOm�
; OmÞ.

until ðm�; j�Þ < 0. After this step, all the bounding boxes are
assigned to either an object or the background.

Updating the activity and atomic pose labels. Based on
the current pose estimation and object detection results, we
optimize �ðA;O;H; IÞ by enumerating all possible combi-
nations of A and H labels.

In this paper, we perform the above three steps for two
iterations to obtain the inference results.

6 EXPERIMENTS

In this section, we evaluate the performance of our method
on two known data sets of HOI activities: a six-class sports
data set [14] and a 24-class people interacting with musical
instrument data set [15].

6.1 The Sports Data Set

The data set.The sports data set contains images of six sports
activities. Instead of limiting to one human and one object
interaction as in [50], here we consider all the objects that are
involved in the activities. The objects that we consider are:
cricket bat, ball, and stump in “cricket batting” and “cricket
bowling”; croquet mallet, ball, and hoop in “croquet shot”;
tennis racket and ball in “tennis forehand” and “tennis
serving”; volleyball and net in “volleyball smash.” These
objects are either directly manipulated by humans, such as
cricket bat and tennis racket, or are highly related to the scene
context of the activities, such as croquet hoop and volleyball
net. There are 50 images in each activity class. We use the
same setting as in [14]: 30 images for training and 20 for
testing. In all the experiments of this section, all training
phases are performed on this training set, including training
the detectors for objects and body parts.

We train an upper body detector on this data set using
the deformable part model [36] based on annotations on
training images. The detector works almost perfectly on
testing images because of the relatively clean image back-
ground. We normalize all the images based on the size of
the detection boxes such that we do not need to search over
different scales in human pose estimation.

Model visualization. On this data set, there are six
activities, 10 objects, and 12 atomic poses. Conditioned on
the image evidence (�3�5 in (1)), our model learns the co-
occurrence statistics (�1 in (1)) between these components
as well as the spatial relationship (�2 in (1)) between objects
and different body parts. Fig. 7 visualizes the model

parameters estimated from �1, i.e., the strength of the co-
occurrence relationship between the set of activities, objects,
and atomic poses. Each connection is obtained by margin-
alizing � in (2) with respect to the other concept. For
example, the strength of the connection between pose hi

and object oj is estimated by
PNa

k¼1 expð�i;j;kÞ.
Fig. 7 shows that our method learns meaningful activity-

pose-object interactions in HOI activities, such as the strong
connection between “tennis forehand” and the fourth
atomic pose, which is a reasonable gesture for the action,
the object “volleyball” and the last atomic pose, etc. Fig. 7
also demonstrates the complex property of the interactions,
as the interactions are not simple one-to-one mappings.
Humans can manipulate the same object in more than one
pose, while the same pose might correspond to many
different objects. However, the human-object context does
provide very useful information for understanding HOI
activities. For example, it is more likely that the first atomic
pose should connect to a cricket bat than a tennis racket.
Fig. 7 shows that our model successfully captures such
information.

Object detection. One of our goals is to detect the
presence and location of the objects involved in HOI
activities. The experiment setting in this paper is different
from that of [50] in two ways. Here, we evaluate the
performance of detecting each object in all the testing
images, while in [50] only the images of the activity classes
that could contain the object are considered (e.g., detecting
volleyball in “volleyball smash” images). Furthermore, in
this paper we adopt a more standard experiment setting
where the orientation of the objects is not considered.

We use the deformable part model [36] as the baseline for
our object detection experiments. This is also the detection
method used for initializing object detection scores in (4) of
our model. We further compare our method with two other
control experiments with object context and person context,
respectively. For object context, we use the method in [10],
where the spatial configurations between different objects
serve as contextual information to improve the detection
results. For person context, the upper body detector
provides the rough location of the human, which can be
used to prune the object detection results lie in invalid
geometric locations, e.g., cricket stump above the human.
Detection performance is measured by average precision, as
in [9]. A detection bounding box is considered correct if the
area of overlap between the detection box and the ground-
truth box exceeds 50 percent of the union of the two boxes.
In our method, the confidence scores of the detection boxes
are measured by (7).

Table 1 shows the results of different methods. We
observe that our detection method achieves the best
performance. Compared with the other approaches without
or with limited context, our method explores very detailed
spatial relationship between different image parts, which
helps to detect objects that are traditionally very difficult. For
example, in the case of cricket ball and croquet ball, the
deformable partmodelwithout context gives performance of
24 and 50 percent,while ourmethod yields 32 and 58 percent.
The reason might be that, on the one hand, the detailed
human gesture helps to localize the balls, which are almost
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impossible to detect by a simple sliding window approach,
e.g., a cricket ball in a human’s hand when he is bowling the
ball. On the other hand, our method distinguishes different
sport activities (cricket batting or bowling versus croquet
shot) and hence is less likely to confuse the two types of balls.

Human pose estimation. Similarly to object detection, we
show in this experiment that human pose estimation is
significantly improved by object context. Here, we compare
our model with the state-of-the-art pictorial structure
method [26]. We consider two approaches for training
pictorial structures. One is to train a single model based on
all the training images. The other is to train a pictorial
structure model using training images of each activity class,
and apply this model on the testing images of the same class.

Following the convention proposed in [58], a body part is
considered correctly localized if the endpoints of its
segment lie within 50 percent of the ground-truth segment
length from their true positions. The missing body parts are
not considered in performance evaluation. Experimental
results are shown in Table 2. The percentage correctness
tells us that pose estimation still remains a difficult
problem, especially on the body parts that usually present
large articulations and occlusions, such as lower arms. Our
mutual context model outperforms the other approaches,

even showing a 3 percent average improvement over a
class-based pictorial structure model where ground-truth
activity class labels are used. Furthermore, the performance
of our mutual context model improves significantly
comparing to [50], mainly because in this paper we
normalize the testing images based on upper body
detection results and therefore searching over different
scales of body parts is avoided.

Activity classification. Besides inferring the human pose
and objects in the image, our model also gives a prediction of
the class label of the HOI activity. Fig. 8 compares the
activity classification performance of our method and the
results reported in [14], which also makes use of objects and
human poses. We observe that our method outperforms [14]
by 8 percent. Fig. 8 shows that our method also outperforms
the SPM approach, which we use to model the overall
activity in (6), demonstrating the effectiveness of human
pose estimation and object detection for better activity
classification. In Fig. 11, we show examples of our object
detection and pose estimation results in different activities.

1698 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 9, SEPTEMBER 2012

TABLE 1
Object Detection Results on the Sports Data Set

We use average precision to measure the performance. The best results
are marked by bold font in each experiment.

TABLE 2
Human Pose Estimation Results on the Sports Data Set

We use detection accuracy to measure the performance.“PS” stands for
“pictorial structure.” “Class-based PS” means training one pictorial
structure using the images of each class and applying the model to the
testing images of the same class. The best results are marked by bold
font.

Fig. 8. Action classification results of different methods on the sports
data set. We use classification accuracy to evaluate the performance.
“Overall” indicates the mean accuracy on all the classes.

Fig. 9. An illustration of the difference between images of people playing
musical instrument and people holding a musical instrument but not
playing. In images of people just holding the instrument, both human
poses and spatial relationships between humans and objects vary a lot.



6.2 The PPMI Data Set

The data set. The PPMI data set contains images of people

interacting with 12 classes of musical instruments. Images

of seven instruments, bassoon, erhu, flute, French horn,

guitar, saxophone, and violin, were collected in [15]. Images

of the other five instruments, cello, clarinet, harp, recorder,

and trumpet, were later added. A very important property

of this data set is, for each musical instrument, there are

images of people playing the musical instrument as well as

images of people holding the instrument but not playing it.

Therefore, there are 24 different human-object interactions

in this data set. This provides us the opportunity to analyze

different interactions between humans and the same object,

where the “playing” interaction usually corresponds to

specific human poses and carries very special meanings,

while the human gestures in the “not playing” interactions

are relatively random (shown in Fig. 9).

We use the “normalized images” of the data set, where
the humans interacting with the corresponding musical
instruments are cropped and normalized to the same size
(256� 256 pixels) based on annotations of human faces. The
full PPMI data set contains 100 normalized training images
and 100 normalized testing images for each interaction. In
our experiment, we use a subset of the full data set where
each image contains only one person. Therefore, for each
class of interaction, we have 50-90 images for training and
the similar number of images for testing.

Model visualization. As on the sports data set, we also
obtain 12 atomic poses on the PPMI data set. Our model
learns the compatibility between these atomic poses and the
set of activities and objects (�1 in (1)). For each musical
instrument, the PPMI data set contains two different
interactions: playing and holding the instrument but not
playing. Fig. 10 shows the distribution of images of different
interactions on the set of atomic poses. Intuitively speaking,
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Fig. 10. Demonstration of our model on the PPMI data set. For each instrument, the left bar figure illustrates the distribution of the number of images
in each interaction on the 12 atomic poses. The digits in the horizontal axis indicate the atomic poses. The y-axis is the percentage of the number of
images in the corresponding atomic pose. The right two images show the spatial relationship between the object and the human face. The location of
the human face is denoted by “�.” Darker color indicates that the object is more likely to appear in the location. The upper image is for playing the
instrument and the lower image is for holding the instrument but not playing.



humans usually play a musical instrument with some
specific poses, while a human can hold an instrument in
many possible poses when he is not playing it. This intuition
is demonstrated in Fig. 10. For eachmusical instrument,most
images of people playing the instrument falls in a very small
number of human poses, while the distributions of images of
people not playing the instrument are more uniform. From
Fig. 10, we can also see that pose variation in the images of
people playing the samemusical instrument is mainly due to
different shooting angles when the images are taken.
Furthermore, we observe from Fig. 10 that people might
play different musical instruments with very similar poses.
For example, images of playing erhu, guitar, and violin all
have large distribution values on the fourth atomic pose.

Our approach also models the spatial relationship
between objects and human body parts (�2 in (1)). We
visualize in Fig. 10 the spatial relationship between different
objects and the human face. Our visualization is based on
the division of image regions that we use in (3). An image
region is filled with a darker color if the likelihood for the
corresponding object to be in that region is large. We
compute the likelihood by marginalizing � in (3) with
respect to all the atomic poses. For example,

PNh

i¼1 expð�i;j;lÞ �
pðhijakÞ measures the likelihood of the spatial relationships

for object oj with respect to the lth body part in action ak,
where pðhijakÞ is the proportion of images of activity ak in
pose hi. Similarly, we observe that the instruments fall in a
small number of image regions in the interactions of “playing
instrument,”while the locations of the instruments are more
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TABLE 3
Object Detection Results on the PPMI Data Set

We evaluate the performance of different methods on images of people
playing and not playing the instruments separately. As in Table 1, we
use average precision to measure the performance. The best results are
marked by bold font in each experiment.

TABLE 4
Human Pose Estimation Results on the PPMI Data Set

We estimate the performance on images of people playing and not
playing the musical instruments separately. As in Table 2, we use
detection accuracy to measure the performance of localizing each body
part in the images. The best results are marked by bold font.

TABLE 5
Activity Classification Results on the PPMI Data Set

The best performance is marked by bold font.



random if the interaction is “not playing.” Note that
although we do not distinguish different activity classes in
(3), the difference between different interactions between
humans and the same object can be captured by modeling
different atomic poses in (3).

Object detection. Here, we test the performance of
detecting the 12 musical instruments from the images. Since
the playing and not playing are two interactions that carry
different visual and functional meanings (Fig. 10), we
evaluate the object detection performance on images of the
two interactions separately. Note that training of the
instrument detectors and our model parameters is still done
on all the images of 24 interactions. All the other experiment
settings are the same as that on the sports data set.

The average precision obtained fromdifferent approaches
are listed inTable 3. There is onlyoneobject in each image that
weuse. So,wedonot compare ourmethodwith the approach
that uses the spatial relationships between different objects
[10]. Similarly to the results on the sports data set, ourmethod
largely outperforms the detector without context. Our
method also performs better than the weak person context
because we have a more detailed and accurate modeling of
the human pose as well as activity classes. Furthermore, we
observe that our model does a better job in improving
detection results on the images of people playing musical
instruments, where the objects are manipulated by the
humans in some specificways (shown in Fig. 9) and therefore
more structural information can be discovered. Specifically,
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Fig. 11. Example testing results of object detection and human pose estimation in different HOI activities. The color codes for the objects and
different body parts are: objects—red, head and torso—magenta, arms—green, legs—cyan.



our method obtains 7 percent performance gain in detecting
cello, flute, and recorder in the interactions of people playing
musical instruments.

Human pose estimation. Here, we evaluate the perfor-
mance of human pose estimation on images of people
playing and not playing musical instruments separately.
Experimental results are shown in Table 4. Similarly to the
object detection results, we observe that on the images of
people playing musical instruments, our method performs
much better than a single pictorial structure model. But, our
method is only slightly better than the pictorial structure
model on the images where people just hold the musical
instruments but are not playing. We also observe that
training a pictorial structure model for each class performs
on par with our mutual context model, which shows the
consistency of human poses when humans are playing
musical instruments (shown in Fig. 9). However, the
ground-truth labels of activity classes are used when testing
the performance of class-based pictorial structure, while our
method is fully automatic in the testing phase.

Activity classification. Table 5 shows the activity
classification result on the PPMI data set. By jointly
modeling the objects and human poses, our method
outperforms the spatial pyramid matching [56] and group-
let [15] approaches by a large margin.

7 CONCLUSION

In thiswork, we treat object and human pose as the context of
each other in different HOI activity classes. We develop a
conditional random field model that learns co-occurrence
context andspatial context betweenobjects andhumanposes.
Experimental results show that our model significantly
outperforms other state-of-the-artmethods in bothproblems.

One major contribution of this work is to demonstrate
the importance of context in visual recognition. Specifically,
we study a new problem (recognizing human-object
interaction activities) where context between objects and
human poses can significantly improve recognition perfor-
mance. Nevertheless, there are many other scenarios where
context plays critical roles, e.g., detecting the keyboard and
mouse near a computer monitor. It would be worthwhile to
design computer vision techniques that make use of context
in such situations.

One limitation of our work is we need to annotate the
human body parts and objects in each training image. One
direction of our future work is to study weakly supervised
or unsupervised approaches to understand human-object
interaction activities.
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