
Recognizing Interspersed Sketches Quickly

Tracy A. Hammond∗

Sketch Recognition Lab

Department of Computer Science

Texas A&M University

Randall Davis†

Computer Science and Artificial

Intelligence Lab

Massachusetts Institute of

Technology

ABSTRACT

Sketch recognition is the automated recognition of hand-drawn di-
agrams. When allowing users to sketch as they would naturally,
users may draw shapes in an interspersed manner, starting a sec-
ond shape before finishing the first. In order to provide freedom to
draw interspersed shapes, an exponential combination of subshapes
must be considered. Because of this, most sketch recognition sys-
tems either choose not to handle interspersing, or handle only a
limited pre-defined amount of interspersing. Our goal is to elimi-
nate such interspersing drawing constraints from the sketcher. This
paper presents a high-level recognition algorithm that, while still
exponential, allows for complete interspersing freedom, running in
near real-time through early effective sub-tree pruning. At the core
of the algorithm is an indexing technique that takes advantage of
geometric sketch recognition techniques to index each shape for ef-
ficient access and fast pruning during recognition. We have stress-
tested our algorithm to show that the system recognizes shapes in
less than a second even with over a hundred candidate subshapes
on screen.

Index Terms: H5.2 [Information interfaces and presentation]:
User Interfaces - Graphical user interfaces—

1 INTRODUCTION

As computers have become an integral part of our lives, it is becom-
ing increasingly important to make working with them easier and
more natural. Our long-term vision is to make human-computer in-
teraction as easy and as natural as human-human interaction. Part
of this vision is to have computers understand a variety of forms of
interaction that are commonly used between people, such as sketch-
ing. Computers should, for instance, be able to understand the in-
formation encoded in diagrams drawn by and for scientists and en-
gineers.

Ordinary paper offers the freedom to sketch naturally; e.g., draw-
ing objects with any number of strokes in any order. But sketches
are of limited utility to the computer unless they can be interpreted.
In an attempt to combine the freedom provided in a paper sketch
with the processing capabilities of an interpreted diagram, sketch
recognition systems that automatically recognize hand-drawn dia-
grams have been developed for many domains, including Java GUI
creation [CGFJ02], UML class diagrams [HD02] [LTC00], and me-
chanical engineering [Alv00]. Sketch interfaces have a number of
advantages. They: 1) interact more naturally than a traditional
mouse-and-palette tool by allowing users to hand-sketch the dia-
gram; 2) allows a computer to automatically understand a drawing
and connect to a back-end system (such as a CAD tool) to offer
real-time design advice directly from the designer’s hand-drawn di-
agrams, thus avoiding a reproduction of work otherwise common

∗e-mail: hammond@cs.tamu.edu
†e-mail:davis@csail.mit.edu

in design; 3) recognize the shape as a whole to allow for more pow-
erful editing; 4) beautify diagrams, removing mess and clutter; and
5) notify the sketcher that the shapes have been recognized.

Sketch recognition systems tend to recognize shapes by one of
three methods (or some combination): gesture, vision, or geometry.
Gesture recognition methods recognize shapes by the path of the
stroke [Rub91] [Lon01] [WWL07]. In gesture-based recognition
methods, either a user must learn how to draw in the style required
by the system (such as in the Graffiti system used by the Palm Pilot),
or each user must train the system with his or her particular draw-
ing style. Vision-based methods allow for more drawing freedom,
as shapes are recognized by what they look like rather than how
they are drawn. However, in vision-based methods, shapes must
be mappable to a predefined bitmap-like template. Vision-based
recognition methods don’t take advantage of stroke-based infor-
mation that may be necessary to recognize shapes with markedly-
different, but perceptually-allowable variations, such as those of an
arrow. Thus, vision-based recognition methods constrain users to
draw shapes so that they look similar to the template at a pixel level.
Geometry-based recognition methods allow users to draw shapes
as they would naturally, by recognizing shapes by the perceptu-
ally important geometric constraints that hold for a shape [AD04].
Because the authors of this paper believe in a ‘walk up and draw’
mentality, geometry-based recognition methods are the focus of this
paper.

In geometry-based sketch recognition higher-level shapes are
recognized as the combination of low-level strokes. These higher-
level shapes are defined by the subshapes of which they are com-
posed and constraints specifying how the subshapes fit together. If
complete interspersing drawing freedom is allowed, in order to rec-
ognize all higher-level shapes, the recognition system must examine
every possible combination of subshapes, as well as every permu-
tation of these subshapes. This implies that any straightforward al-
gorithm would take exponential time, which is clearly impractical
for any non-trivial sketch.

Mahoney et al. [MF02] have discussed the inherent complex-
ity involved in the structural matching search task, explaining how
the problem is theoretically reducible to a constraint satisfaction
subgraph problem, and thus requires exponential time to deliver a
solution that effectively examines all possible interpretations. Ham-
mond and Davis [HD05] have created a geometric-based sketch
recognition system that allows complete interspersing drawing free-
dom. However, the system described in [HD05] quickly slows
down to a halt when several ungrouped strokes (on the order of
one hour of computation for 30 strokes) remain on the screen due
to the exponential number of computations necessary.

To combat this problem, recognition systems have placed draw-
ing requirements on the user, such as forcing users to draw each
shape in a single stroke, such as in gesture-based recognition sys-
tems [Rub91] [Lon01] [WWL07], or requiring users to draw each
shape in its entirety before starting the next shape. Some systems
exist that allow limited amount of interspersing. [HD02] allows in-
terspersing, but requires that shapes be composed of only the last 7
strokes drawn on the screen. [Sez06] allows for interspersing, but
requires that examples of all possible interspersings be part of the

157

Graphics Interface Conference 2009
25-27 May, Kelowna, British Columbia, Canada
Copyright held by authors.  Permission granted to CHCCS/SCDHM 
to publish in print form, and ACM to publish electronically.

nira
Text Box
In Graphics Interface Conference 2009, pp.157-166



Figure 1: Five snapshots in the design of a car on a hill in mechanical engineering. Note that the top of the ground is drawn first, followed by the car base, to

ensure that they are parallel. Then wheels (which act as the connection between the car and the ground) were added. The wheels were attached to the car only

after the car was completed. The first started object, the ground, was completed last since its purpose in completion was more in terms of general functioning

when attaching it to a CAD system than in design.

training set.
While the systems above allow limited amounts of interspersing,

they still restrict the user in a way that seems unnecessary, given
the fact that humans don’t require such restrictions in order to rec-
ognize shapes. We cannot simply ignore the need for interspersing.
In many domains, users will intersperse strokes, starting to draw
one shape, before finishing another. In our experience observing
users sketch in a variety of domains, we have found it not uncom-
mon for someone to draw part of a shape, stop, continue drawing
other objects in diagram, and then come back to finish the origi-
nal shape. For example, In UML class diagrams, users interspersed
strokes to improve overall layout. Additionally, the authors have
witnessed interspersing in software design, where UML class dia-
gram designers sometimes initially draw connections as simple de-
pendency associations, until most of the classes have been drawn, at
which point they will have a better understanding of the emerging
design, and make a better decision about the type of association that
would be appropriate between two objects. This will cause them to
add different kinds of arrowheads to the associations drawn earlier,
producing an interspersed sketch. The authors have also witnessed
interspersing in electrical engineering; sketchers often add voltage
directions only later in the design process after most of the circuit
has been drawn. In finite state machines, arrow heads were often
added as an afterthought. Figure 1 shows an example of interspers-
ing in mechanical engineering.

Our goal is to make sketch systems as natural as possible by
placing as few requirements on the user as possible. Recognition
errors due to interspersing tend to be more disturbing to users than
those due to messy drawing since, from the human’s perspective,
the shape is clearly drawn and obvious. This paper presents an
indexing technique for sketch recognition that examines all possible

subsets within the 2|S| powerset space (where |S| is the number of
shapes on the screen) when attempting to recognize new shapes,
but uses efficient indexing to keep recognition performance close
to real-time through fast pruning. This paper also reports timing
data that supports the claim that the recognition of new shapes can
be kept close to real-time even when all possible shape subsets are
considered.

2 RECOGNITION

We have chosen to perform recognition using a geometric method
that composes shapes hierarchically from their subshapes, testing
the geometric constraints between them. For the most part, the
recognition paradigm is similar to those used in [HD05]. However,
our approach in that our recognition algorithm does not place inter-
spersing requirements on the user, but still performs recognition is
real-time despite an exponential query space.

2.1 Geometric Constraints

Our indexing technique works by indexing the geometric prop-
erties of a shape for use in recognition. We have created a vo-
cabulary of geometric constraints (Table 2.1), somewhat similar
to those used by [HD05], with which to describe shapes, such as

Orientation-
Dependent
Con-
straints:

HORIZONTAL, VERTICAL, NEGS-
LOPE, POSSLOPE, ABOVE, LEFTOF,
HORIZALIGN, VERTALIGN, POINTS-
DOWN, POINTSLEFT, POINTSRIGHT, and
POINTSUP

Orientation-
Independent
constraints:

ACUTE, ACUTEDIR, ACUTEMEET, BI-
SECTS, COINCIDENT, COLLINEAR, CON-
CENTRIC, CONNECTS, CONTAINS, DRA-
WORDER, EQUALANGLE, EQUALAREA,
EQUALLENGTH, INTERSECTS, LARGER,
LONGER, MEETS, NEAR, OBTUSE, OB-
TUSEDIR, OBTUSEMEET, ONONESIDE,
OPPOSITESIDE, PARALLEL, PERPENDICU-
LAR, and SAMESIDE.

Composite
Constraints
(subset):

SMALLER, BELOW, RIGHTOF,
ABOVELEFT, ABOVERIGHT, BELOWLEFT,
BELOWRIGHT, CENTEREDABOVE, CEN-
TEREDBELOW, CENTEREDLEFT, CEN-
TEREDRIGHT, CENTEREDIN, LESSTHAN,
and LESSTHANEQUAL

Other Con-
straints:

EQUAL, GREATERTHAN,
GREATERTHANEQUAL, OR and NOT.

Table 1: Geometric Constraints

PERPENDICULAR. Constraints may be either orientation-dependent
or orientation-independent. The vocabulary also includes EQUAL,
GREATERTHAN, and GREATERTHANEQUAL, allowing compari-
son of any two numeric properties of a shape (e.g., stating that the
height is greater than the width). The vocabulary also contains a
number of constraints that can be composed from other constraints.
We include these to simplify descriptions and to make them more
readable. The constraint modifiers OR and NOT are also present to
allow description of more complicated constraints.

Figure 2: An arrow with an open head.

Figure 3 shows the geometric components (three lines) and the
constraints that make up an OPENARROW. New shapes are defined
hierarchically in terms of previously-defined shapes and the con-
straints between them. For example, Figure 5 shows a shape de-
scription for a TRIANGLEARROW created from an OPENARROW

and a line1. Geometric constraints define the relationships between

1An aliases section in a shape definition is available to simplify

hierarchically-defined descriptions, allowing components to be renamed for

ease of use later. For example, the OPENARROW definition has aliases for

158



define shape OpenArrow

description

"An arrow with an open head"

components

Line head1

Line shaft

Line head2

constraints

coincident shaft.p1 head1.p1

coincident shaft.p1 head2.p1

coincident head1.p1 head2.p1

equalLength head1 head2

acuteMeet head1 shaft

acuteMeet shaft head2

aliases

Point head shaft.p1

Point tail shaft.p2

Figure 3: The geometric description to recognize an arrow with an open

head, as shown in Figure 2.

Figure 4: An arrow with a triangle head.

those components. For example, the OPENARROW shape definition
requires that the HEAD1 and SHAFT meet at a single point and form
an acute angle from line HEAD1 to line SHAFT when traveling in a
counter-clockwise direction.

2.2 Signal Noise versus Conceptual Variations

Shapes are automatically recognized based on the geometric de-
scription of the shape. The recognition handles signal noise, but
conceptual variations must be included in the shape descriptions.

By signal noise we mean the unintentional deviations introduced
into a shape by the imprecision of hand control. For instance, when
drawing a square, all four sides may turn out to be of different
lengths even though the sketcher meant for them to be the same
length. By conceptual variations, we mean the allowable variations
in a symbol that are drawn intentionally. For example, a capacitor
in an electronic circuit may be drawn as two parallel lines, or as one
straight and one curved line (see Figure 6).

In our system, signal noise is handled by the recognition system.
For example, the system can successfully recognize a quadrilateral
with uneven sides as a square because the EQUALLENGTH con-
straint has some built-in tolerance (discussed below). Thus, shapes
should be described to the system without accounting for signal
noise, i.e., as if drawn perfectly (e.g., a square should be described
as having equal length sides). As the system does not automatically
take into account the possible conceptual variations, they must be
provided for in the shape descriptions (e.g., the two different ways a
capacitor can be drawn must be specified in the shape descriptions).

Other signal noise includes a sketcher intending to draw a single
line, but using several strokes to do so. In order for the system to
deal with these phenomena, it first joins lines by merging overlap-
ping and connecting lines. Figure 7 shows the steps that go into
recognizing a square. Figure 7a shows the original strokes. Fig-
ure 7b shows the original strokes broken down into primitives. The
system has recognized the strokes as lines or polylines; the figure
shows the straightened lines that were recognized by the recogni-

the HEAD and TAIL to simplify the TRIANGLEARROW description.

define shape TriangleArrow

description

"An arrow with a triangle-shaped head"

components

OpenArrow oa

Line head3

constraints

coincident head3.p1 head1.p2

coincident head3.p2 head2.p2

aliases

Line shaft oa.shaft

Line head1 oa.head1

Line head2 oa.head2

Point head oa.head

Point tail oa.tail

Figure 5: The geometric description to recognize an arrow with a triangle-

shaped head, as shown in Figure 4.

Figure 6: A capacitor can be drawn with two lines or a line and a curve.

tion system. (The dots represent their endpoints.) Figure 7c shows
the primitives (line segments, in this example) joined together to
form larger primitives (again lines, in this example) using the merg-
ing techniques described above. Figure 7d shows the higher-level
recognition performed on the recognized shapes; the method for
this is described int the next section. A higher-level shape can then
use the square as one of its components.

2.3 Constraint Tolerances

In our approach, signal noise is handled by the shape recognizer by
giving each constraint its own error tolerance, chosen to be as close
as possible to perceptual tolerance, i.e., the tolerance that humans
use. Human perceptual tolerance is context-dependent, depending
on both the shape in question and other shapes on the screen. Ta-
ble 2.3 shows constraints and the error tolerances we use. Note that
some constraints have an absolute tolerance, while others are rela-
tive. Some constraints have a negative tolerance, which means the
constraint has to be not only geometrically satisfied, but also per-
ceptually satisfied, meaning that humans have to be able to perceive
that the constraint is true. To give an example, a shape that is left of
another shape by one pixel is geometrically left of another shape,
but is not perceptually left of another shape, as it difficult for a hu-
man to perceive such a small distance. To ensure that a constraint
is perceptually satisfied, we add a buffer zone to the tolerance.

Perceptual error tolerances were determined empirically and
based from grouping rules and singularities from gestalt princi-
ples [Gol72]. Grouping rules attempt to mimic how people percep-
tually group objects, using concepts such as connectedness, near-
ness, and other principles. Singularities describe which geomet-
rical shape properties are most noticeable. For instance, humans
are particularly sensitive to horizontal and vertical lines and can
quickly label a line as horizontal or not horizontal, and identify if
a line deviates from horizontal or vertical by as little as five de-
grees. Humans have considerably more difficulty identifying lines
at other orientations, such as 35 degrees, and would have a much
more difficult time determining if a particular line was 30, 35, or 40
degrees. Humans tend to group together the angles between 15 and
75 degrees as positively-sloped lines [Gol72].

159



Figure 7: Stages of square recognition; a) original strokes, b) primitive

shapes, c) joined/cleaned primitives, and d) higher-level recognition. [HD02]

To calibrate how sensitive people are, we showed nine people
a total of 116 lines in a random orientation between 0 and 180 de-
grees. Users were asked to report the orientation of the line as accu-
rately as possible. We grouped the lines into two groups 1) angles
with orientations within 10 degrees of horizontal or vertical (0-10,
80-100, and 170-180 degrees) and 2) angles with orientations not
within 10 degrees of horizontal or vertical (10-80, 100-170). When
labeling lines from group 1 (near horizontal or vertical), users had
a mean error (absolute value of the reported angle minus the actual
angle) of 2.8 degrees and a variance of 4.95. When labeling lines
from group 2 (far from horizontal or vertical), the users had a mean
error of 7.64 and a variance of 25.77. As shown by the variance,
large errors between the actual orientation and the correct orienta-
tion were common: 24 lines had an error greater than 10; 8 lines
had an error greater than 15; and 2 lines had an error greater than
20. The two groups were significantly different with a p value of
less than .001. Our user group contained both women and men, as
well as a variety of computer scientists, other engineers, and non-
mathematically concentrated professionals in the study. The groups
were not statistically different in our small sample.

When drawing an ideal positively-sloped line, users tend to draw
an angle close to 45 degrees and when drawing a ideal horizontal
line they tend to draw an angle close to 0 degrees. However, since
differences are much more perceptually important close to hori-
zontal, we have mad the tolerance less for near singularities (such
as HORIZONTAL, VERTICAL, PARALLEL, and PERPENDICULAR).
Based on the mean error of only 2.8 degrees for angle singularities
shown in the footnote, one may expect the singularity tolerances to
be even smaller. However, because the perceptual error tolerances
are used to remove possible shapes from our recognition results, we
choose error tolerances that are slightly smaller.

3 INDEXING ALGORITHM

Our current implementation is done in three stages: 1) domain-
independent primitive finding, 2) domain-independent constraint
indexing, and 3) domain-dependent shape formation.

3.1 Domain-Independent Primitive Finding

Low-level recognition is performed on each stroke when it is drawn.
During processing, each stroke is broken down into a collection of
primitive shapes, including line, arc, circle, ellipse, curve, point,
and spiral, using techniques from Sezgin [SSD01]. Corners used

horizontal angle 10 degrees
vertical angle 10 degrees
posSlope angle 35 degrees
negSlope angle 35 degrees
coincident x location 10 pixels
coincident y location 10 pixels
bisects x location (length / 4) pixels
bisects y location (length / 4) pixels
near x location 50 pixels
near y location 50 pixels
concentric x location (width / 5) + 10 pixels
concentric y location width / 5 + 10
sameX x location 20 pixels
sameX width 20 pixels
sameY y location 20 pixels
sameY height 20 pixels
equalSize size (size / 4) + 20 pixels
parallel angle 15 degrees
perpendicular angle + 90 15 degrees
acute angle + 40 30 degrees
obtuse angle + 130 30 degrees
contains min X,Y &

max X,Y
-5 pixels

above y location -5 pixels
leftOf x location -5 pixels
larger size -5 pixels

Table 2: Constraints and their error tolerances. (Note: size = length of diag-

onal of bounding box. We use this formula instead of the area to enable us

to compare lines to two-dimensional shapes. Rubine uses the same formula

for size when calculating feature number five. [Rub91])

for segmentation are found using a combination of speed and cur-
vature data (as in Sezgin [SSD01]). By breaking strokes down into
these primitives, and performing recognition with primitives, we
can recognize shapes drawn using multiple strokes, and handle sit-
uations in which a single stroke was used to draw multiple shapes.

If a stroke has multiple primitive interpretations, all interpreta-
tions are added to a pool of interpretations, but a single interpreta-
tion is chosen for display. For example, both the LINE and ARC

interpretation of the STROKE in Figure 8A will be added to the
pool for recognition using any of the interpretations. (Appropriate
bookkeeping is performed to ensure that multiple interpretations are
effectively managed.)

In cases when a stroke is determined to be composed of several
primitives, (e.g., the POLYLINE interpretation in Figure 8B), the
STROKE is segmented, the segmented substrokes added as compo-
nents of the original full STROKE. Further interpretations can use
either the full stroke, as the CURVE does in Figure 8B, or one or
more of the segmented substrokes. This allows several shapes to be
drawn with a single stroke.

3.2 Domain-Independent Constraint Indexing

We would prefer to place as few drawing requirements as possible
on the sketcher, and must as a consequence find a way to deal with
the exponential. While our solution does not eliminate the expo-
nential, we can use indexing to help prune a significant number of
shape possibilities quickly.

The indexing process occurs only once for each shape, when it
stroke is drawn or new shape is recognized. Each low level shape
is indexed according only to its own properties and not in terms of
those around it, and thus, the time it takes to index all of the shapes
is logarithmic in terms of the number of shapes on the screen. (It is
logarithmic because indexing involves the insertion of shapes into a
sorted hash map, which take time of O(logn).) For each new shape
that is recognized, a significant portion of the recognition time is

160



Figure 8: Multiple interpretations and their identifiers are added to the recognition pool. In A, Stroke 0 has two interpretations; Line 1 and Arc 2 are each

composed from Stroke 0. In B, Stroke 0 can be broken down into three Strokes (1,2,3). Stroke 0 has two interpretations, Curve 4 composed of Stroke 0 (and

thus also Strokes 1,2,3) and three lines: Line 5 composed of Stroke 1, Line 6 composed of Stroke 2, and Line 7 composed of Stroke 3.

spent performing the shape indexing. The recognition process is
still exponential, as it must be if we are still to consider all possible
subshapes. However, in practice, it is very fast because most of
the recognition work is being performed in the indexing stage. As
the work that is performed in the indexing stage need not take into
account other shapes on the screen, as more shape candidates are
present on the screen, recognition time increases more slowly than
it would otherwise.

When a new shape is recognized, the system computes its prop-
erties, including its orientation, angle, location, and size, and places
that shape in a hash map with the key being the value. Each shape
property (such as x-location) has its own hash map, permitting
quick retrieval of shapes with the desired property value. For in-
stance, the angle hash map is used when searching for horizontal
lines or lines of equal angle. When a line is recognized, its angle
is measured and categorized as HORIZONTAL, POSSLOPE, VERTI-
CAL, or NEGSLOPE. The category is used as the key for a hash map
whose values are a linked list of shapes. This allows constant-time
insertion and retrieval of a list of all of the lines in a particular orien-
tation. We also want to find parallel lines, so exact angles are used
to add the shape to a sorted map list. This allows for a logarithmic-
time insertion and retrieval of the list of lines that are close to a par-
ticular angle. Similarly, location and size are also stored in a both a
categorized hash map as well as a continuous sorted hash map list
since it is often convenient to get a range of values depending on the
constraint. Since it is faster to retrieve shapes with angles close to
our predefined categories, the system does so for those constraints
where it is appropriate.

The complete list of properties are indexed for each shape and for
each of its components. The components are shape specific, but to
give an example, the components for a line are the two endpoints,
the center, and the bounding box. The list of properties for each
shape is: shape type, shape name, shape angle, center-x location
(note that the center-x location of an endpoint is just the x location
of the endpoint itself), center-y location, min-x location, min-y lo-
cation, max-x location, max-y location, size (actually the length of
the diagonal of the bounding box), height, width, and stroke length.

3.3 High Level Shape Recognition

Once properties are computed and indexing has been done, the sys-
tem tries to see whether a higher-level shape can be made from this
new shape and shapes already on the screen. We need to check
whether this new shape can be a part of any of the shapes defined
in the domain description. For each shape template in the domain,
the system assigns the new shape to each possible slot component.
If there are n domain shapes, and each shape S is composed of m
components (C1 to Cm), then the just processed shape is assigned
to each slot separately in different shape templates. Figure 9 shows
an example. A newly interpreted line is added to the system. The
system checks to see whether the newly interpreted line can be used

Figure 9: A template is made for each possible slot.

to create any of the shapes in the domain. (In this example, we are
checking only the domain shape OPENARROW.) The system cre-
ates three templates, one for each component of the OPENARROW

of the correct type (in this case a line), assigning the just processed
line to a different component to see whether an OPENARROW can

be formed with that component. 2

The system then computes the function Li j = f (Si,C j), which
returns a list Li j of shapes of type Si and the components that make
up these shapes, which can be formed with the just processed shape
assigned to component C j. For example, if the domain description
includes 10 shape descriptions, and OPENARROW is the third de-
scription, S3 = OPENARROW (shown in Figure 3). An arrow has
three slots (one for each line). If the system puts the recently drawn
shape into slot 2, then C2 = SHAFT. Thus, L32 returns a list of all
of the possible OPENARROW’s with the most recently drawn shape
acting as the SHAFT of the stroke. The length of Li j may be 0 (no
such interpretations are possible), 1 (one interpretation is possible),
or > 1 (multiple interpretations are possible, see Figure 10).

The new shape can be placed in any slot in any template provided
it is of the right type. (An arc can’t be placed in a line slot.) P is the

2We use three templates here for explanation simplicity, but in actuality,

when a single line is drawn, the system creates six arrow templates. The

recognition creates two copies of every line, one in each direction. (i.e., the

second is equal to the first with the endpoints flipped.) Each directional line

is assigned one at a time to each component of three arrow templates. This

is actually not a phenomenon applied specifically to lines, but any group of

multiple interpretations using a single subshape.

161



Figure 10: Multiple OPENARROW interpretations are possible using the cen-

ter stroke as the SHAFT.

union of all the possible shapes formed with the new shape.

P =
Sn

i=1

Sm
j=1(Li j = f (Si,C j))

At this point, each template currently has only one slot filled
(with the new shape). To compute Li j = f (Si,C j), the system as-
signs a list of all of the other shapes on the screen to the other slots
on the template, so that each slot on the template holds the possi-
bilities for that slot.

The next stage is to reduce the possibilities for each slot. This is
done from the indexing data structures that were created previously.
The fundamental idea behind the use of the indexed values is to
allow quick pruning to prevent the templates from branching (which
helps to limit the inherent exponential).

The system holds a list of unchecked constraints. One main fea-
ture of our algorithm is the smart ordering of constraint test based
on the number of components in each slot. In order to remove a
shape from the list of possible shapes in a slot, we have to be sure
a shape cannot be formed using that shape. If only one of the com-
ponent slots referenced by the constraint contains more than one
possible shape, then we can determine for certain which shapes sat-
isfy that constraint, and are allowed in the final shape composition.
Let Ti be the list of constraints from Si that are not yet solved. Let
Ot be the number of slots for constraint t with more than one com-
ponent in the possibilities list. For each constraint with only one
slot (or no slots) with more than one component (Ot <= 1), we
compute the constraint t for each possible combination (which is a
linear number of computations since only one slot of the constraint
has multiple possibilities). We then remove all of the shapes from
the appropriate slot that would make constraint t false and then re-
move constraint t from the list of unsolved constraints Ti.

3.4 Pruning Possibilities by Preventing Branching

Figure 11 walks through an example. Line L7 has been added to
the screen where previous shapes L1, L2, L3, L4, L5, and L6 al-
ready exist. In this example, there are several shape templates, with
the smallest shape template that of the OPENARROW, composed of
three lines. The reader may be left to wonder what happens be-
fore L7 is added to the screen. Initially L1 is added to the screen,
but no shape templates exist that contain only a single subshape, so
nothing happens. Next, L2 is drawn, and again, there are no shape
templates with only two subshapes, so nothing happens. Subse-
quently, when L3 is drawn, there does exist a shape template with
three subshapes (the OPENARROW). Up to this point we have al-
ready determined that it is impossible to make a shape with only L1
and L2 (as there weren’t enough components to make up a single
shape). At this point we know that if a shape exists on the screen
it must contain all three lines since no shape templates exist with
fewer than three lines. But more importantly and more generaliz-
ably to other cases, since all attempts have failed to make shapes
out of the previously existing shapes on the screen, any shape that
now exists on the screen must contain shape L3. Thus, the algo-
rithm only attempts to make shape templates with L3. Three dif-
ferent shape templates (x2, see previous footnote) are created for

the OPENARROW, where L3 is set as the only possibility for the
SHAFT, LINE1, and LINE2 respectively. We then add both L1 and
L2 to both of the other remaining two slots, leaving us with:

• Template 1:

– shaft L3

– head1 L1 L2

– head2 L1 L2

• Template 2:

– shaft L1 L2

– head1 L3

– head2 L1 L2

• Template 3:

– shaft L1 L2

– head1 L1 L2

– L3

Figure 11: An example showing how the constraint templates are pruned.

The system then runs the algorithm described in Figure 11, and
finds that there are no shapes on the screen. At this point, all of

162



the previously performed work is thrown out, and the process is
repeated for L4, and so on. Note that with L4, since we were unable
to make a shape with the subshape L1, L2, and L3, we know that
any shape that may exist on the screen must contain L4.

Eventually, L7 is added to the screen, and we arrive at the situ-
ation in Figure 11. The top right shows the initial template when
assigning the new line (with a particular orientation) to the HEAD2
slot of the arrow. Note that all other shapes on the screen are added.
The system then attempts to satisfy each of the constraints, remov-
ing shapes that do not satisfy a constraint from the template. 1)
The system tries to satisfy the constraint EQUALLENGTH and re-
moves all shapes in the HEAD1 slot of the template that are not of
equal length to L7. The EQUALLENGTH constraint is now com-
pleted and removed from the list of constraints yet to be satisfied.
2) The system attempts to satisfy the LONGER constraint, but since
both arguments have more than one shape in the slot, the constraint
is postponed. 3) The system tries to satisfy the COINCIDENT con-
straint and removes L2, L3, and L5 from the HEAD1 slot. Because
L4 is now the only possibility for the HEAD1 slot, it is removed
from the SHAFT slot, since the same shape cannot be used for both
slots. 4) The system tries to satisfy the second COINCIDENT con-
straint, but since none of the shapes in the SHAFT slot can be coin-
cident with L4, the SHAFT slot is empty, and the system determines
that an OPENARROW cannot be formed with the new shape filling
in the HEAD1 slot.

More generally, each time a new line is drawn, the system is
asking, "could this line be part of any known shape built from it
and all previous lines?" It does this by putting the new line is all
possible slots in each template, putting all uninterpreted previously
drawn lines in all the other slots, and treating the template as a con-
straint satisfaction problem, with the geometric constraints refining
the values (the lines assigned to the slots).

Note that a question may be asked as to why a previously drawn
impossible template are not already pruned from the list since these
previously computed values could be saved and checked first. All
previously computed templates are not saved for several reasons:

1. First off, all possible sub-templates consisting only of earlier
strokes are not actually computed, since many branches are
cut off very early. This means that we would first have to
look up each template combination to see if we have seen it
before. This lookup takes about the same amount of time as
computing the constraint itself (which is also just a lookup).

2. Second, in a system with many shape templates (>10 or >50),
saving all previously computed templates would require a sig-
nificant amount of space that could otherwise be used more
effectively. Any system that did this would either quickly run
out of heap space or take a significant time sink to read and
write to disk all of the necessary template information. This
saving of all templates is in fact what Jess does. Looking at
the Results section (Section 4) for timing comparison data, we
can see that the Jess method of saving all possible templates
along the way causes a time increase rather than a speed up.

3. Third, it is unclear what use, if any, previously computed
partially-filled templates would be. While users do sketch
in an interspersed manner, many shapes are drawn in a non-
interspersed manner. In this case, previously computed tem-
plates would be of limited value once a high-level interpreta-
tion was found using a subshape in the template. This would
imply that either the system takes the space-time hit for saving
the templates, or the system must do a significant amount of
garbage collection after every high-level interpretation, and it
is unclear what the time savings would actually be.

Using our method, all incomplete templates are discarded after each
shape template is examined after each stroke. This is a conscious

tradeoff of, sacrificing speed for space. The Results section shows
that our speed tradeoff still allows our algorithm to perform in real-
time. Future work is left to see if a more effective manner (such as
only a simple hashcode) of storing impossible subtemplates could
be used to improve both speed and space.

Finding the shapes that do not satisfy t is a quick process when
using the indexing tables formed above. For each constraint, since
Ot <= 1, only one slot is being refined at a time. Thus, the sys-
tem computes the value(s) that satisfy the constraint for that slot.
The system uses the indexing data structures to obtain a list of all
of the shapes on the screen with that particular value(s) (e.g., for
HORIZONTAL, it would retrieve all lines with an angle near 0). The
intersection of this list and the list of shapes in the slot is computed,
and shapes that are not in the intersection are removed from the slot.

It is possible that all shapes are removed from the slot, which
implies that this shape Si cannot be formed with the set of shapes
in the slot, and all processing on that template is halted. This cycle
is repeated until: 1) the template is determined impossible; 2) all
of the constraints are solved, and each slot has only one shape in
it; or 3) all of the remaining constraints have more than one com-
ponent (Ot > 1), and the cycle is stuck (see the next paragraph for
what happens). After each cycle, there are some slots that contain
only one shape; consistency checking occurs as the system removes
these shapes from all of the other slots to make sure the same shape
is not used in multiple slots.

It is possible that all of the remaining unsolved constraints have
more than one component remaining (Ot > 1). In this case, the
system branches the template, choosing the slot with more than one
remaining possible assignments that has the fewest such possible
assignments. It makes a new copy of the template for each of the
possible assignments for that slot, placing only one in each tem-
plate, then continues trying to solve the remaining unsatisfied con-
straints on each of the templates.

This branching process can of course cause its own exponential
slowdown. The system’s near real-time performance results from
the fact that 1) branching does not happen often because most of
the shapes on the screen do not obey the required constraints, and
thus, many shapes are removed from the possibility list at once.
(Consider the COINCIDENT constraint. It is uncommon for many
shapes to be drawn at the same location, so many possibilities are
removed simultaneously from the possibilities list.) And, 2) even
in the worst case where every query results in a branching factor,
the process of checking the constraints is a small proportion of the
overall running time (see the Results section below) This is because
the exponential part of the algorithm performs only list retrievals
(which has been made fast with the use of sorted hash maps and
other data structures) and list intersections.

At the end of this stage, we have a list P of all of the shape in-
terpretations and their components. All interpretations are added
to the recognition system, but a single interpretation is chosen for
display. The system chooses to display the interpretation that is
composed of the largest number of primitive shapes (i.e., the solu-
tion that accounts for more data). Creating shapes with the largest
number of primitive shapes also results in fewer more-complicated
shapes filling the screen. For example, in Figure 12, we choose the
square interpretations rather than the arrow for display purposes,
as the square accounts for four primitive, simplifying the diagram
to only two high-level shapes, whereas the arrow interpretation ac-
counts for only three lines, simplifying the diagram to three high-
level shapes.

The speedup of this algorithm is due to three things:

1. Most of the heavy computation is performed in the (linear-
time) indexing stage.

2. Rather than first creating a list of all possible interpretations
of a shape, subtrees are pruned as they are generated.

163



Figure 12: The left shows the originally drawn strokes. The middle interpre-

tation is made up of a line and a square. The right interpretation is made up

of an arrow and two lines.

3. Constraint testing uses a smart ordering of constraints; i.e., the
constraint that could cause the biggest pruning effect is tested
first.

4 RESULTS

4.1 Stress Test

When recognizing new shapes, it is the currently unrecognized
strokes that cause difficulties in recognition, as recognized strokes
can be pruned away from the recognition system. Thus we tested
out system through a stress test which measured the time it took
for a new symbol to be recognized when there is a large amount of
unrecognized strokes on the screen. All of our results were tested
and measured on a tablet PC with 1GB of RAM and a 1.73 GHz
processor.

To compare our algorithm against a standard caching system that
tries all subset possibilities, the authors implemented an alternate
version of the algorithm that instead uses the Rete algorithm in
Jess [FH01] to handle the caching and pruning in recognition. The
exponential inherent in testing all subsets overwhelmed the system,
which slowed unacceptably after about 30 individual strokes (tak-
ing one hour to recognize the next shape).

Using the indexing algorithm described above, we stress-tested
recognition results in the domain of mechanical engineering, a do-
main consisting of 15 distinct shapes. The the system recognized
a resistor containing six lines in less than a second, with 189 other
shapes (besides the six lines creating the resistor) on the screen (see
Figure 13(a)), 5 of which were higher-level shapes such as resistors,
and the other 186 were random lines on the screen.

Additionally, we wanted to see what percentage of recognition
time focuses on each part of recognition. Our goal was to make the
exponential part of the algorithm a small part of the running time
of recognition. As defined above, recognition consists of 1) Corner
detection or stroke fragmentation, where strokes are broken down
to their composite parts, which takes O(n) in terms of the number
of shapes on the screen. 2) Indexing, which takes O(logn) in terms
of the number of shapes on the screen. 3) High-level recognition, or
combining strokes to form high level objects, which is exponential
in terms of the number of shapes on the screen. The goal of this
paper was to minimize this third part of the algorithm.

The authors analyzed the running time of the recognition sys-
tem on a diagram of over a hundred shapes, using JProbe [QS06],
and determined that, with many unrecognized shapes on the screen,
approximately 74% of the time was spent on corner finding. Ap-
proximately, 25% of the time was spent indexing the lines drawn.
Less than 1% of the time was used to perform the high-level (ex-
ponential) recognition. Because of the indexing and early check-
ing of constraints, the system was able to perform effective pruning
and caching, and prevent the exponential aspect of recognition from
causing overwhelming lag in recognition. As a result, an exponen-
tial recognition algorithm runs in what can be considered close to
real-time, even with 186 shapes on the screen.

4.2 Multiple Domain Test

In additional to our stress test, we test our algorithm on three dif-
ferent additional domains in natural usage. Domain 1 was Japanese
Kanji, consisting of 27 shapes of up to 15 primitives per shape,
with an average of 10 primitives composing each shape. The total

time to recognize the shapes in Figure 13(b) was 3517 milliseconds.
Domain 2 was military course of action diagrams, consisting of 23
shapes, of up to 14 primitives per shape, with an average of > 7
primitives composing each shape. The total time to recognize the
shapes in Figure 13(c) was 8858 milliseconds. Domain 3 was bi-
ology diagrams, consisting of 6 shapes, of up to 10 primitives per
shapes, with an average of > 5 primitives composing each shape.
The total time to recognize the drawn shapes in the Figure 13(d)
was 481 milliseconds. Figure 13(e) shows the overall statistics
combined for all three domains, with the total time equaling 15660
milliseconds. Accuracy for all three domains was unfortunately /
fortunately 100%.

5 DISCUSSION

5.1 Limitations

This algorithm can be used to describe a wide variety of shapes, but
is limited to the following class of shapes.

• This algorithm relies on graphical descriptions of shapes. The
shapes must be drawn using the same graphical components
each time. For instance, we cannot describe abstract shapes,
such as people or cats, that would be drawn in an artistic draw-
ing.

• Likewise, since this algorithm requires geometric descrip-
tions, if a shape is highly irregular and complicated, so that it
cannot be broken down into subshapes that can be described,
it will be cumbersome to define.

• The shapes must be composed solely of the primitive con-
straints that we define in this paper, and these constraints must
be enough to ensure that all shapes are appropriately differen-
tiable from the other shapes in the domain.

• Pragmatically, it is difficult to describe complexly curved
shapes. Curves are inherently difficult to describe in detail be-
cause of the difficulty in specifying a curve’s control points.
Future work includes investigating more intuitive ways of de-
scribing curves.

5.2 Recognition Limitations

• We are currently limited to recognize only those shapes that
are describable using the constraints above.

• It is possible to contrive an example that will cause our ap-
proach to branch very often, causing significant slowdown.
This will arise if someone draws similar shapes repeatedly on
top of themselves. The system would have a very large num-
ber of branches, because it would be difficult to eliminate a
large number of possibilities in a slot for a single constraint.

• Shapes that are highly symmetric will cause many interpre-
tations that look identical but that have different line assign-
ments. For example, consider a square. The square can be
rotated and each of the lines flipped, and thus depending on
the form of the description, sixteen interpretations may ex-
ist. All of these interpretations must be kept because higher-
level shapes formed from that square may require the labeling
that occurs in any one of the recognitions. Thus, the number
of shapes in the recognition pool can grow exponentially as
shapes are recognized. Luckily, in practice, most interpreta-
tions are ruled out based on the shape description.

6 PREVIOUS WORK

Indexing data to provide speed-up is of course not a new idea. It
has been used, for example, in the closely related field of vision
object recognition [SAB97] [SM92] [AKJ02] [LVB∗93]. Indexing

164



(a) Recognition Stress Test

(b) Recognition times for Japanese Kanji (c) Recognition times for Military Course of Action Diagrams

(d) Recognition Times for Biology (e) Recognition times for all three domains collated

Figure 13: Recognition Results

165



sketches to search for photos has been done by [BP97] [KKOH92].
Indexing has also been used in sketch recognition to index software
design meetings [HGDS02]. This work appears to be the first use of
the idea in support of unconstrained sketch recognition. By break-
ing the strokes down to line, curve, and ellipse segments, we were
able to define shapes in geometric terms, then perform indexing on
these terms, a luxury not afforded when indexing photo images or
non-geometric sketches (such as an artist’s sketch).

7 FUTURE WORK

We would like to remove some of the limitations described above
by combining the techniques presented in this paper with those that
have proved useful in work in vision. By processing and indexing
vision features used for recognition, and concurrently indexing on
geometric properties as described in this paper, we can quickly ac-
cess shapes that have the needed visual and geometric features. As
a very simple example, vision recognition techniques can easily lo-
cate areas of high density ink, or shading, which we are currently
not able to recognize using our geometric recognition techniques.
We would like to combine vision- and sketch-based features to per-
form more robust recognition and perhaps recognize a larger class
of objects.

8 CONCLUSION

This paper describes an indexing algorithm for use in sketch recog-
nition. Shapes are indexed as they are being drawn or and when
they are recognized, using a vocabulary of geometric properties that
permits fast lookup subsequently. Geometric constraint indexing
allows us to search through all possible subsets of the shapes on
the screen quickly, facilitating recognition of higher-level shapes.
Because we can quickly search through all possible subset shapes,
we no longer have to limit the search space and can allow sketch-
ers to intersperse the drawing of incomplete shapes with little speed
penalty. By enabling a less constrained drawing style, we provide
a more natural sketch recognition user interface. Our results show
that the system continues to run in near real-time, even when a large
number of stroke candidates exist as possible sub-components of a
shape.

9 ACKNOWLEDGEMENTS

This paper is supported, in part, by NSF IIS Creative IT Grant
#0757557. Editing comments were appreciated from Jacob Eisen-
stein, Paul Bogen, Brandon Paulson, Katie Dahmen, Mark Eaton,
Henry Choi, and Joshua Peschel. The authors would like to thank
the help of Paul Taele and Brian Eoff in the completion of figures
for this paper. Additionally, they would like to thank the mem-
bers of the Sketch Recognition Lab at TAMU and the members and
alumni of the Design Rational Group at MIT. Additionally, as this
work was a significant part of [Ham07], the authors would like to
thank those who helped helped in that endeavor.

REFERENCES

[AD04] ALVARADO C., DAVIS R.: Sketchread: A multi-domain

sketch recognition engine. In Proceedings of UIST ’04 (2004),

pp. 23–32.

[AKJ02] ANTANI S., KASTURI R., JAIN R.: A survey on the use of

pattern recognition methods for abstraction, indexing, and re-

trieval of images and video. Pattern Recognition 35 (2002),

945–965.

[Alv00] ALVARADO C.: A Natural Sketching Environment: Bringing

the Computer into Early Stages of Mechanical Design. Mas-

ter’s thesis, MIT, 2000.

[BP97] BIMBO A. D., PALA P.: Visual image retrieval by elastic

matching of user sketches. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence 19(2) (1997), 121–132.

[CGFJ02] CAETANO A., GOULART N., FONSECA M., JORGE J.:

JavaSketchIt: Issues in sketching the look of user interfaces.

Sketch Understanding, Papers from the 2002 AAAI Spring

Symposium (2002).

[FH01] FRIEDMAN-HILL E.: Jess, the java expert system shell.

http://herzberg.ca.sandia.gov/jess, 2001.

[Gol72] GOLDMEIER E.: Similarity in visually perceived forms. In

Psychological Issues (1972), vol. 8:1.

[Ham07] HAMMOND T.: Ladder: A perceptually-based language to

simplify sketch recognition user interface development. PhD

Thesis, Massachusetts Institute of Technology, 2007.

[HD02] HAMMOND T., DAVIS R.: Tahuti: A geometrical sketch

recognition system for UML class diagrams. AAAI Spring

Symposium on Sketch Understanding (March 25-27 2002), 59–

68.

[HD05] HAMMOND T., DAVIS R.: LADDER, a sketching language

for user interface developers. Elsevier, Computers and Graph-

ics 28 (2005), 518–532.

[HGDS02] HAMMOND T., GAJOS K., DAVIS R., SHROBE H.: An agent-

based system for capturing and indexing software design meet-

ings. In Proceedings of International Workshop on Agents In

Design, WAID’02 (2002).

[KKOH92] KATO T., KURITA T., OTSU N., HIRATA K.: A sketch re-

trieval method for full color image databases - query by vi-

sual example. 11th IAPA International Conference on Pattern

Recognition (1992), 530–533.

[Lon01] LONG A. C.: Quill: a Gesture Design Tool for Pen-based

User Interfaces. EECS department, computer science division,

U. C. Berkeley, Berkeley, California, December 2001.

[LTC00] LANK E., THORLEY J. S., CHEN S. J.-S.: An interactive

system for recognizing hand drawn UML diagrams. In Pro-

ceedings for CASCON 2000 (2000), p. 7.

[LVB∗93] LADES M., VORBRUGGEN J., BUHMANN J., LANGE J.,

VON DER MALSBURG C., WURTZ R., KONEN W.: Distor-

tion invariant object recognition in the dynamic linkarchitec-

ture. IEEE Transactions on Computers 42(3) (March 1993),

300–311.

[MF02] MAHONEY J. V., FROMHERZ M. P. J.: Three main concerns

in sketch recognition and an approach to addressing them.

In Sketch Understanding, Papers from the 2002 AAAI Spring

Symposium (Stanford, California, March 25-27 2002), AAAI

Press, pp. 105–112.

[QS06] QUEST SOFTWARE I.: JProbe. website,

http://www.quest.com/jprobe, 2006.

[Rub91] RUBINE D.: Specifying gestures by example. In Computer

Graphics (1991), vol. 25(4), pp. 329–337.

[SAB97] STEVENS M. R., ANDERSON C. W., BEVERIDGE J. R.: Ef-

ficient indexing for object recognition using large networks. In

Proceedings of IEEE International Conference on Neural Net-

works (1997).

[Sez06] SEZGIN T. M.: Sketch Interpretation Using Multiscale

Stochastic Models of Temporal Patterns. PhD thesis, Mas-

sachusetts Institute of Technology, May 2006.

[SM92] STEIN F., MEDIONI G.: Structural indexing: Efficient 3-d

object recognition. IEEE Transaction on Pattern Analysis And

Machine Intelligence (1992), 125–125.

[SSD01] SEZGIN T. M., STAHOVICH T., DAVIS R.: Sketch based

interfaces: Early processing for sketch understanding. In

The Proceedings of 2001 Perceptive User Interfaces Workshop

(PUI’01) (Orlando, FL, November 2001).

[WWL07] WOBBROCK J., WILSON A., LI Y.: Gestures without li-

braries, toolkits or training: a $1 recognizer for user interface

prototypes. In Proceedings of UIST (2007).

166


