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Recognizing Large Isolated 3-D Objects through

Next View Planning using Inner Camera Invariants
Sumantra Dutta Roy, Santanu Chaudhury, and Subhashis Banerjee

Abstract— Most model-based 3-D object recognition systems
use information from a single view of an object. However, a
single view may not contain sufficient features to recognize it
unambiguously. Further, two objects may have all views in com-
mon with respect to a given feature set, and may be distinguished
only through a sequence of views. A further complication arises
when in an image, we do not have a complete view of an object.
This paper presents a new on-line scheme for the recognition
and pose estimation of a large isolated 3-D object, which may
not entirely fit in a camera’s field of view. We consider an
uncalibrated projective camera, and consider the case when
the internal parameters of the camera may be varied either
unintentionally, or on purpose. The scheme uses a probabilistic
reasoning framework for recognition and next view planning. We
show results of successful recognition and pose estimation even
in cases of a high degree of interpretation ambiguity associated
with the initial view.

Index Terms— Active 3-D Object Recognition, Next View
Planning, Pose Estimation, Inner Camera Invariants

I. INTRODUCTION

IN this paper, we present a new next view planning-based

recognition and pose estimation scheme for an isolated

large 3-D object. Our approach can handle the situation when

a large 3-D object does not fit into a camera’s field of view.

Fig. 1(a) shows an image of a portion of a building obtained

using an active camera (one whose parameters can be changed

purposively e.g., as in Fig. 2). Such a view could have come

from any of the three models, in Fig. 1(b), (c) and (d),

respectively. Further, even if the identity of the object were

known, the same view could occur at more than one place in

the object – it is not possible to know the exact pose of the

camera with respect to the object from one view alone.

We present a new reactive object recognition scheme

which uses a hierarchical part-based knowledge representation

scheme, and a probabilistic framework for both recognition

and planning. The planning scheme is independent of the

particular nature of a 2-D/3-D part, and the method used to

detect it. A novel feature of our work is the use of Inner

Camera Invariants [1], [2], [3] for pose estimation – image-

computable functions which are independent of the internal

parameters of a camera.

Most model-based object recognition systems use informa-

tion from a single view of an object [4], [5], [6]. However,
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Fig. 1. (a) The given view of an object: only a portion of it is visible. This
could have come from any of the models: (b), (c) and (d)

Fig. 2. A robot with an attached camera, observing a building. The entire
object does not fit in the camera’s field of view. Not only is the identity of
the object unknown, the robot also does not know its pose with respect to the
object. This example shows 4 degrees of freedom (DOF) between the object
and the camera.
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a single view may not contain sufficient features to recognize

an object unambiguously. In fact, two objects may have all

views in common with respect to a feature set, and may be

distinguished only through a sequence of views [7]. Further,

in recognizing 3-D objects from a single view, recognition

systems often use complex feature sets [5], [6]. For object

recognition, one needs an effective representation of properties

(geometric, photometric, etc.) of objects from images which

are invariant to the view point, and should be computable

from image information. Invariants may be colour-based (e.g.,

[8]), photometric (e.g., [9]) or geometric (e.g., [6], [10],

[11], [12]). Although Burns, Weiss and Riseman prove a

theorem in [13] that invariants cannot be computed for a

set of 3-D points in general position, from a single image,

geometric invariants have been proposed for a constrained

set of 3-D points [6], [10], [11], [12]. Such approaches use

the inherent symmetry present in an object, or a particular

configuration of objects to compute invariants for recognition

(e.g., rotationally symmetric objects, translationally repeated

objects, canal surfaces, quadrics, etc.) However, we often need

to recognize 3-D objects which because of their inherent

asymmetry, cannot be completely characterized by an invariant

computed from a single view. Beis and Lowe [14] propose

a kd-tree-based alternate indexing strategy, as against using

invariants. Lowe’s early work e.g., [15] focuses on the use

of perceptual grouping for locating features ‘invariant’ over

a wide range of viewpoints. Most of the work is limited

to specific geometric information alone. However, the basic

premise in all the above methods is in using information from a

single image. In many cases, it may be possible to achieve the

same, incurring less error and smaller processing cost, using

a simpler feature set and suitably planned multiple observa-

tions [16], [17]. The purposive control over the parameters of

a sensor (both internal as well as external) characterizes an

Active Sensor. Papers on Active Vision and Sensor Planning

include the works of Aloimonos et al. [18], Bajcsy [19],

Ballard and Brown [20], Tarabanis, Allen and Tsai [21], and

the authors’ own work [22].

Grimson [23] proposes sensing strategies for disambiguat-

ing between multiple objects in known poses. Madsen and

Christensen [24] propose a method for viewpoint planning,

but for polyhedral objects alone. Further, the authors assume

a knowledge of camera internal parameters. Examples of

active object recognition systems include those of Maver

and Bajcsy [25], Hutchinson and Kak [26], Gremban and

Ikeuchi [7], Dickinson et al. [27], Callari and Ferrie [28],

Borotschnig et al. [29], Schiele and Crowley [30], and the

authors’ own earlier work [16], [17]. We compare different

active 3-D object recognition systems on the basis of the

following properties:

1) Features used for modeling and view recognition

While many approaches such as those of Hutchinson and

Kak [26] and Liu and Tsai [31] use geometric features,

appearance-based methods such as that of Borotschnig

et al. [29] use pixel information from an entire image.

Dickinson et al. [32], [27] use volumetric primitives,

which are associated with a high feature extraction cost.

The same is true for the super-ellipsoids of Callari and

Ferrie [28]. The scheme of Gremban and Ikeuchi [7]

and our earlier work [16], [17] can work with any set

of features.

2) The system setup and viewing geometry

Most multiple view-based approaches using geometric

features, implicitly or otherwise, assume the camera

model to be orthographic. Most experimentation is with

a single (rotational) degree of freedom (DOF, hereafter)

between the object and the camera.

3) Efficient representation of domain knowledge

Dickinson et al. [32], [27] use a hierarchical representa-

tion scheme based on volumetric primitives. Borotschnig

et al. [29] use a parametric eigenspace-based represen-

tation, which is associated with a high storage and pro-

cessing cost. In our earlier work[16], [17], the hierarchy

itself enforces different constraints to prune the set of

possible hypotheses. Due to the non-hierarchical nature

of Hutchinson and Kak’s system [26], many redundant

hypotheses are proposed, which have to be later removed

through consistency checks.

4) Speed and efficiency of algorithms for both hypothesis

generation and next view planning

In Hutchinson and Kak’s system [26], the polynomial-

time formulation overcomes the exponential time com-

plexity associated with assigning beliefs to all possible

hypotheses. However, their system still has the overhead

of intersection computation in creating common frames

of discernment. Consistency checks have to be used to

remove the many redundant hypotheses produced earlier.

Though Dickinson et al. [32], [27] use Bayes nets for

hypothesis generation, their system incurs the overhead

of tracking the region of interest through successive

frames. Our earlier work [16], [17] uses a novel hierar-

chical knowledge representation scheme which not only

ensures a low-order polynomial-time complexity of the

hypothesis generation process, it also plays an important

role in planning the next view.

5) Nature of the next view planning strategy

The system should, preferably be on-line and reactive

– the past and present inputs should guide the planning

mechanism at each stage. While schemes such as [29],

[16], [17] are on-line, that of Gremban and Ikeuchi [7]

is not. An off-line approach may not always be feasible,

due to the combinatorial nature of the problem. An

on-line scheme may result in significant reduction of

the search space. An on-line scheme has the additional

capability to react to unplanned situations, such as

errors.

6) Uncertainty handling capability of the hypothesis gen-

eration mechanism

Approaches such as those of Goldberg and Mason [33],

Gremban and Ikeuchi [7], and Liu and Tsai [31] are

essentially deterministic. An uncertainty-handling mech-

anism makes the system more robust and resistant to

errors compared to a deterministic one. Dickinson et

al. [32], [27], Borotschnig et al. [29] and our earlier

system [16], [17] use Bayesian methods to handle
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uncertainty, while Hutchinson and Kak [26] use the

Dempster-Shafer theory. In the work of Callari and

Ferrie [28], the ambiguity in super ellipsoid-modeled

objects is a function of the parameters estimated, on the

basis of which the next move is determined. Schiele and

Crowley [30] use a transinformation-based mechanism

to propose the next move.

However, all the above systems do not consider the follow-

ing issues:

1) To the best of our knowledge, no existing object recog-

nition system handles the case when the complete object

does not fit into the camera’s field of view. This changes

the domain of the problem completely – necessitating a

completely new knowledge representation scheme, and

a next view planning strategy.

2) Further, no existing system handles the case when the

internal parameters of the camera are changed, either

unintentionally, or on purpose.

We propose a novel on-line active 3-D recognition scheme

using an uncalibrated camera. It uses a hierarchical part-

based representation scheme in conjunction with a probabilis-

tic framework for recognition and planning. Our active next

view planning-based scheme is suited for situations where the

camera sees only a portion of a large 3-D object. (This allows

the system to operate very close to an object of interest, for

example.) An important feature of our work is the use of Inner

Camera Invariants [1], [2] – this allows the recognition system

to work in spite of unintentional or purposive changes in the

internal parameters of an uncalibrated camera. We assume that

an object is represented by a set of identifiable parts. Our

system uses simple geometrical features in conjunction with

any other type of feature (geometrical, colour, photometric,

etc.) for characterizing parts. In contrast to our approach,

volumetric primitives used in [27] are associated with a high

feature extraction cost, while appearance-based methods [34],

[35] require the object of interest to be segmented out from

the background. The system setup and viewing geometry is

the most general – 6 degrees of freedom between the camera

and the object, and it is based on a commonly used projective

camera model. The paper [36] presents a preliminary version

of our system, while detailed explanations may be found in [3].

The authors’ earlier work on active 3-D object recogni-

tion [16], [17] looks at a different problem - the entire objects

lies in the camera’s field of view. These papers consider a

1-DOF uncalibrated camera, and propose an aspect graph-

based knowledge representation scheme and a probabilis-

tic active recognition strategy. This paper tackles a harder

problem, where the object may not fit into the camera’s

field of view. Moreover, this approach is independent of

intentional/accidental changes in camera internal parameters,

unlike the previous approach. The authors propose a novel

hierarchical part-based knowledge representation scheme, and

a new probabilistic active recognition scheme for this problem.

The rest of the paper is organized as follows. Section II

describes our method of pose estimation using Inner Camera

Invariants. We describe our hierarchical part-based knowledge

representation scheme in Section III. Section IV describes our

scheme of object recognition through next view planning. We

present results of experiments with our system, in Section V.

II. 3-D EUCLIDEAN POSE ESTIMATION USING INNER

CAMERA INVARIANTS

We use Inner Camera Invariants to estimate the pose of

parts present in a view of an object. The system uses this

information to plan the next view, if the given view does not

correspond to a unique pose of a particular object.

A commonly used projective camera model is [37]:

λm = PM = A [R | t]M (1)

Here, M = (X,Y, Z,W )T is a 3-D world point, and m =
(x, y, 1)T is the corresponding image point. R (3 × 3) and

t (3 × 1) are the rotation and translation aligning the world

coordinate system with the camera coordinate system (the

external camera parameters), and A is the matrix of the

internal parameters of the camera (the focal lengths in the

x and y directions fx and fy , the skew parameter s, and the

principal point (u0, v0)):

A =





fx s u0

0 fy v0
0 0 1



 , (2)

The skew parameter s may often be considered to be negli-

gible [37], [38]. Suppose we know three 3-D points, Mp =
(Xp, Yp, Zp, 1)T and their images mp = (up, vp, 1)T , p ∈
{i, j, k}. Eliminating the internals of the camera,















Jijk =
ui−uj

ui−uk
=

r1Mi
r3Mi

−

r1Mj

r3Mj

r1Mi
r3Mi

−

r1Mk
r3Mk

Kijk =
vi−vj

vi−vk
=

r2Mi
r3Mi

−

r2Mj

r3Mj

r2Mi
r3Mi

−

r2Mk
r3Mk

, (3)

where Jijk and Kijk are image measurements that are func-

tions of [R | t] (= [r1 r2 r3]T ) and Mp (p ∈ {i, j, k}), and

are independent of camera internals.
{

Jijk = fijk(R, t,Mi,Mj ,Mk)
Kijk = gijk(R, t,Mi,Mj ,Mk)

(4)

Jijk and Kijk are Inner Camera Invariants – image-

computable invariants of the homography A. We describe

Inner Camera Invariants in detail, in earlier works [1], [2],

[3]. We show that Inner Camera Invariants can be used for

many diverse visions applications – without going through an

often cumbersome process of camera calibration, or explicitly

estimating camera internal parameters (self-calibration). Two

prominent areas are 3-D Euclidean pose estimation from

knowledge about landmarks, and 3-D Euclidean reconstruction

from known ego-motions. Such techniques are important for

autonomous robot navigation, for example. In [1], [2], [3], we

additionally show uses of Inner Camera Invariants in related

applications – interpolation of camera motion, interpolation

of image measurements, and obtaining both the motion and

structure in special cases.

We emphasize that Inner Camera Invariants are a new

class of invariants, not to be confused with Projective In-

variants [13], [6], etc. Our method relies directly on 3-D
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Fig. 3. The knowledge representation scheme: an example

pose estimates (obtained through Inner Camera Invariants)

to check consistency relations between a group of parts. In

this paper, we use Inner Camera Invariants for estimating the

pose of a part (R and t). Suppose we know the Euclidean

coordinates (Xi, Yi, Zi, 1)T of 5 points (in general position)

in the world coordinate system. Six independent Inner Camera

Invariant measurements give us six equations (of the type in

(3)) in 6 unknowns: 3 rotations and translations each. We

solve these equations to get the pose, using a suitable non-

linear optimization routine (constr/fmincon in MATLAB).

In [1], [2], [3], we also show two special cases where it

is possible to obtain closed-form linear solutions for pose

estimation. These, however impose a special structure on the

landmarks used for pose estimation. For a 4-DOF system

(e.g., a setup with one rotational and all three translational

DOF) as in Fig. 2, we adopt the same procedure with four

independent (inner camera) invariant measurements from four

equations. We discuss issues related to the robustness and

stability of Inner Camera Invariants in a separate work [2]. For

example, we show that to reduce the effect of pixel noise on

the computation of Jijk and Kijk, the triplet of points must be

appropriately chosen – the numerator and denominator should

be of comparable order, and neither is too small. We also

consider the effect of varying pixel noise (of the order of 1 and

2.5 pixels) on computations involving Inner Camera Invariants.

We show that such pixel errors do not result in unbounded

errors in the constraint equations for the optimization process.

III. THE KNOWLEDGE REPRESENTATION SCHEME

Two major components of an active recognition scheme are

– a planning algorithm (to plan the ‘best’ next view), and

a suitable organization and representation of the objects in

the model base (to facilitate planning and recognition). We

propose a part-based hierarchical knowledge representation

scheme that encodes domain knowledge about the objects in

the model base. Fig. 3 illustrates an example of our knowledge

representation scheme. We use the knowledge representation

scheme for probability calculations, as well as planning the

next view.

We consider a view of an object to contain 2-D or 3-D parts

(which are detectable using 2-D or 3-D projective invariants,

for example), and other ‘blank’ or ‘featureless’ regions (which

the given set of feature detectors cannot identify). Thus,

according to our formulation, an object is composed of parts,

(a)

(b)

Fig. 4. (a) An example of an object O1 with 4 parts. (b) A pair of parts
is related by a rigid-body transformation R and t – three rotation and three
translation parameters (details in text).

but is not partitioned into a collection of parts. Fig. 4(a) shows

an example of an object O1 (of Fig. 3), with parts ρ1,1, ρ1,2,

ρ1,3 and ρ1,4. Let us consider vertices as the only features –

O1 is composed of the above 4 parts, and other ‘featureless’

regions.

• O represents the set of all objects {Oi}. An object node

Oi stores its probability, P (Oi)
• An object Oi is composed of Ni parts. Thus, a part ρi,j

(1 ≤ j ≤ Ni) has a PART-OF relationship with its parent

object Oi. A part node stores the 3-D Euclidean structure

of its n constituent vertices (Xi, Yi, Zi)
T , 1 ≤ i ≤ n.

(e.g., n ≥ 5 for a 6-DOF case and n ≥ 4 for a 4-DOF

case: Section II). Each part has a local coordinate system

associated with it, with respect to which the coordinates

are stored (Fig. 4(b)).

• A part node has R and t links with its nodes corre-

sponding to its neighbouring parts. Fig. 4 (b) shows two

of these parts, with the R and t relations between them –

represented by the three rotation parameters θ1,2:3, φ1,2:3

and ψ1,2:3, and the three translation parameters t x1,2:3,

t y1,2:3 and t z1,2:3.

• We define a Part-Class as a set of parts, equivalent with

respect to a feature set. The set of parts is partitioned

into different equivalence classes with respect to a given

feature set: these equivalence classes are part-classes. C
represents the set of all part-classes {C1, C2, . . . Ck} for

all parts belonging to the objects in the model base.

• We assume a function PART CLASS to map the set of

parts to the set of part-classes i.e.,

PART CLASS : {ρi,j} −→ C

There is an IS-A relationship between a part, and its

associated part-class. Thus, a part node ρi,j has exactly

one link with its corresponding part-class node Ck, and

the node for the object Oi, to which it belongs. In the
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ALGORITHM identify object and pose

(* ------ FIRST PHASE ------ *)

1. initialize object probs(); (* 1/N *)

2. img:=get image();

3. part class info:=identify part classes(img);

IF NO part class observed THEN

make random movement; GOTO step 2;

4. search tree root:=

const search tree node(part class info,[I|0]);
5. compute hypothesis probs(search tree root);

(* Eq. 6 *)

6. IF the prob of some hypothesis ≥ a

pre-determined thresh THEN exit:success;

7. expand search tree node(search tree root,

MAX LEVELS); (* Sec IV-C *)

(* ------ SECOND PHASE ------ *)

previous:=search tree root;

expected:=get best leaf(search tree root);

8. {[R|t]}:=find movement(expected,previous);

make movement({[R|t]}); img:=get image();

9. part class info:=identify part classes(img);

IF NO part class observed THEN

undo movement({[R|t]}); (* backtrack *)

expected:=get next best leaf(previous);

GOTO step 8;

10. IF obs view 6≡ expected THEN

new node:=const search tree node(

part class info,{[R|t]}); ELSE

modify search tree node with observation(

expected,part class info);

new node:=expected;

11. compute hypothesis probs(new node);

12. IF the prob of some hypothesis ≥ a

pre-determined thresh THEN exit:success;

13. expand search tree node(new node,MAX LEVELS);

expected:=get best leaf(previous);

previous:=new node;

14. GOTO step 8

Fig. 5. The Object Recognition and Pose Identification Algorithm

example of Fig.s 3 and 4, parts ρ1,1 and ρ1,3 belong to

part-class C1.

IV. THE OBJECT RECOGNITION SCHEME

The system starts with an arbitrary view of an object in our

model base. Our aim is to identify the given object, and the

viewer pose with respect to it. There are two main components

of our recognition scheme:

1) Hypothesis generation, and

2) Next view planning

Our scheme is independent of the particular technique to

identify a part-class. The only requirement is that it should

contain at least n points of interest for pose computation,

n = 5 for the 6-DOF case, and n = 4 for the 4-DOF

case (Section II). Fig. 5 describes the main steps in our

algorithm. The first phase begins with initialization of all

object probabilities. The system then takes an image of the

given view, and identifies the part-classes corresponding to

the parts present in the image. The next step is the formation

of hypotheses about the identity of the observed parts. We

describe our probabilistic hypothesis generation scheme in

detail in Section IV-A. If the probability of some hypothesis

is above a pre-determined threshold, then we exit and declare

success. Otherwise, we invoke our search process to decide the

best move from the current viewpoint, which will disambiguate

between the competing hypotheses. Section IV-C describes the

search process and the second phase of the object recognition

algorithm, in detail.

A. Hypothesis Generation

Let the given view of an object contain m parts – ρi,j1 ,

ρi,j2 , . . . ρi,jm
. This view could correspond to any of the

n objects in the model base. Further, this configuration of

parts could have come from many different positions within

the same object Oi. From the image information, we can

only identify the part-classes Ck1
, Ck2

, . . . Ckm
(where Ckp

and Ckq
are not necessarily different) corresponding to each

observed part, respectively (PART CLASS(ρi,jp
) = Ckp

). The

part-classes may be identified by using 2-D or 3-D projective

invariants, possibly in conjunction with some other non-

geometric features such as grey level or colour information,

reflectance ratio values, etc. One can also use to advantage

Lowe’s work on perceptual grouping e.g., [15] – The basic

aim is to derive groupings or structures in an image that

are likely to be invariant over wide ranges of viewpoints. A

more recent publication [14] describes an approach to indexing

without using (projective) invariants – this can also be used to

advantage in identifying a part-class. We emphasize however,

that our scheme is independent of the particular technique to

identify a part-class.

The system generates different part configuration hypothe-

ses corresponding to the given view: We compute the estimated

pose of each part (Section II), and check if the relative poses

of each part in the configuration are consistent with the R

and t values in the knowledge base, within error limits (for

our experiments with the architectural models for example,

we use ± 5◦ and ± 20mm, respectively). Thus, the part

pose estimation phase itself helps in a first-level pruning of

the list of competing view interpretation hypotheses. This

also offers a simple method to offset small inaccuracies in

the part pose estimation process (Section II). Thus, one does

not need to use joint projective invariants between observed

parts – our method relies directly on 3-D pose estimates to

check consistency relations between a group of parts. The

next section describes the process of computing probabilities

associated with each part configuration hypothesis.

B. a priori Probability Calculations

For N objects in the model base, the a priori probability

of each object before taking the first observation, is 1/N .

We need estimates of the a priori probabilities of different

configurations of parts that may occur (Step 1 in Fig. 5)

P (ρi,j1 , ρi,j2 , . . . ρi,jm
) =

P (Oi) · P (ρi,j1 , ρi,j2 , . . . ρi,jm
| Oi) (5)

We may form estimates of P (ρi,j1 , ρi,j2 , . . . ρi,jm
| Oi)

from a very large number of views of the given object from

different positions, and different values of the internals of the

camera (the focal length, for example on which the field of

view of the camera depends) — this is done off-line, before

taking the first observation.
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However, a satisfactory estimation of a priori probabilities

using this method, may not be easy. If we make some

assumptions about the nature of the 3-D object models, we

can formulate an approximate method to estimate the a priori

conditional part-configuration probabilities. Let us consider the

domain of objects with planar parts. For such a case, one may

approximate the a priori probability of a part configuration

by its relative area in the 3-D model, not on any image-based

features. The rationale behind this approximation is as follows.

Ideally one would need a very large number of observations

to get satisfactory a priori probability estimates. The camera

pose would need to be sampled from the space of internal

and external camera parameter values. For external parameters

for example, one would have as many observations with the

camera looking at the object from the right side, as would be

from the left. Hence, one may have a good estimate of the a

priori probability by looking at the part configuration head-

on. The camera field of view depends on its focal length, an

internal parameter. Intuitively, a larger part is more likely to

be visible in a larger number of observations, as compared to

a smaller one. Thus, one may consider the a priori probability

of observing the part proportional to its area in the 3-D model.

We emphasize that the probabilistic analysis in this paper

(Section IV-B) does not depend on the specific method used

to compute a priori probabilities - any method would do.

Our implementation of a prototype system uses the above

approximation (Section V).

1) a posteriori Probability Computations: We use the Bayes

rule to compute the a posteriori probability of each hypothe-

sized configuration (Step 5 in Fig. 5)

P (ρi,j1 , ρi,j2 , . . . ρi,jm
| Ck1

, Ck2
, . . . Ckm

) =

P (ρi,j1 , ρi,j2 , . . . ρi,jm
) ·

P (Ck1
, Ck2

, . . . Ckm
| ρi,j1 , ρi,j2 , . . . ρi,jm

) /
∑

[ P (ρl,j1 , ρl,j2 , . . . ρl,jm
) ·

P (Ck1
, Ck2

, . . . Ckm
| ρl,j1 , ρl,j2 , . . . ρl,jm

) ] (6)

The summation above is for all objects Ol, and all possible

configurations of parts within the object. Because of the IS-

A relation between a part and a part-class in our knowl-

edge representation scheme (Section III), each of the terms

P (Ck1
, Ck2

, . . . Ckm
| ρl,j1 , ρl,j2 , . . . ρl,jm

) is 1 for all parts

belonging to a particular part-class and 0, otherwise.

We now compute the a posteriori probability of each object

in the model base:

P (Ol) =
∑

P (ρl,j1 , ρl,j2 , . . . ρl,jm
| Ck1

, Ck2
, . . . Ckm

)
(7)

The summation is for all configurations of parts

ρl,j1 , ρl,j2 , . . . ρl,jm
belonging to object Ol, which could

have given rise to the given view containing part-classes

Ck1
, Ck2

, . . . Ckm
. Each object node in the knowledge

representation scheme uses Equation 7 to update its

probability. In our hierarchical knowledge representation

scheme, each part is linked to its neighbouring parts through

R and t links. In the most general case, one may consider

every part as the neighbour of every other part. For a given

model base, we often observe that there are a large number

of part pairs which cannot appear together in a given view

(for example, parts which lie on opposite faces of an object).

This reduces the computation time to only a small fraction

of
(

Ni

m

)

which would otherwise have been required. The

corresponding search tree node stores the probability of each

part configuration. Hence, Equation 7 needs constant space

complexity.

C. Next View Planning

If the probability of no hypothesis (6) is above a prede-

termined threshold, we have to take the next view to try to

disambiguate between the competing hypotheses. One needs

to plan the best move out of the current state to disambiguate

between the competing hypotheses, subject to memory and

processing limitations, if any.

We describe the state of the recognition system in terms of

the following parameters:

1) The competing view interpretation hypotheses, and

2) The set of R and t movements made thus far.

We use a search tree node to represent the system state. Search

tree expansion proceeds according to the R and t relations in

the knowledge representation scheme. Each search tree move

is to get to the centre/centroid of the expected part. Thus, the

expected part is more likely to be in the camera’s field of view

even in the event of a zoom-in/zoom-out. Additionally, this

provides robustness to small movement errors. The planning

process aims to get to a leaf node of the corresponding search

tree – one corresponding to a unique part-configuration. One

may also employ a limited memory search tree expansion

(MAX LEVELS in Fig. 5) Search tree node expansion is

always finite because the number of parts in any object is

finite. Further, there are no cycles in the search tree. No part

is repeated along any path in the search tree. Thus, there can

be no search tree expansion indefinitely oscillating between a

set of parts.

We use three stages of filtering to get the best leaf node

(Step 7 in Fig. 5) There is a search tree node corresponding to

the current observation - we expand this node using the above

strategy. Each leaf node corresponds to a unique part-class

configuration. The first level of filtering considers the most

probable view interpretation in the observed node’s hypothesis

list, and takes the consequent leaf nodes. The algorithm assigns

a weight slevel to each search tree node, where s represents

the number of hypothesized view, and level is the search tree

level (depth) the node lies on. Each leaf node has a path weight

corresponding to the sum of all node weights along the path

from the observed node. The second level of filtering considers

those leaf nodes with the minimum path weight. We resolve

remaining ties in favour of one of with the least total rotational

movement. In what follows, we discuss various aspects of our

recognition strategy in relation to existing methods.

1) The Search Process: A Discussion: Grimson [39] can-

onizes different philosophies behind object recognition. While

our technique has some similarities with the Hypothesize-

and-Test and Interpretation Tree paradigms, it differs on may

counts. Our stepwise refinement method is much more general

than the unary and binary constraints in [39]. Moreover, for
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the 3-D constraints in [39], the extraction of 3-D features from

images is not an easy task. Our method relies on the least

constrained of all geometric features - points, and also caters to

other non-geometric features. Lastly, the basic premise behind

a verification stage is to solve for a global interpretation, given

only local interpretations. In our case, we have complete 3-

D pose (through the Inner Camera Invariants-based method),

and global consistency, with respect to all information that we

have at any stage.

At any stage, the recognition algorithm has to determine

whether it might be better to take a next view. A decision the-

oretic agent [40] selects the action with the highest expected

utility – the Maximum Expected Utility (MEU) principle. The

computations involved are often prohibitive [40]. Rimey and

Brown [41] use decision theory for scene interpretation. They

state that the next action to execute requires sequences of

future actions to be considered, and that it is not feasible to

enumerate all sequences of actions.

Our search process is consistent with a decision theoretic

approach. We have a synergistic combination of reactive be-

haviour as well as planning. Intuitively, our utility is in getting

a move with a maximum discriminatory ability – through

the three levels of filtering to get to the best leaf node. We

emphasize here that our algorithm finds the next action using a

mechanism of look-ahead into possibilities, and not a sequence

of actions. This is because our planning mechanism obtains

the best distinguishing move at any particular stage, subject to

memory and processing limitations. An interesting extension

of our method may consider not just one best distinguishing

move, but a set of such possibilities – whose ‘cost’ is below a

particular threshold. Our strategy however, recovers from cases

of incomplete planning because of its reactive nature – the

re-planning after every observation. The decision on whether

to take a new view or not depends on the probability of the

interpretation hypotheses at any stage.

D. The Second Phase of the Object Recognition Algorithm

The previous section considers moves in the search space,

in order to obtain the best distinguishing move. This section

deals with the camera’s actual movement (in accordance with

the best distinguishing move).

The system makes the required movements

{〈 Rx, Ry, Rz, tx, ty, tz〉}, and takes an image at this position

(Step 8). Similar to the process in Section IV-A, we generate

different interpretation hypotheses corresponding to this view.

The non-detection of some parts in the vicinity of the expected

part (we do not predict a view) does not affect the system in

any way. This imparts robustness to the presence of clutter

in an image. If the current observation corresponds to the

expected search tree node, we compute the probabilities of

each view interpretation hypothesis. If the probability of some

hypothesis is above a the predetermined threshold, we declare

success, and exit (Step 12). If the current observation does

not correspond to the expected search tree node, the system

constructs a new node. This corresponds to the observed part-

class information and the movement made thus far (Step 10). If

no part-class is observed, we undo the current movements, get

the next best leaf node, and proceed (Step 9). If the probability

of no hypothesis is above the threshold, this node is expanded

further (Step 14).

This illustrates the reactive nature of our strategy. The

probabilistic hypothesis generation scheme (Section IV-A)

incorporates all previous observations. If the observed view

corresponds to the most probable view interpretation hypothe-

sis at a particular stage, our search process uniquely identifies

the object and its pose, in the following step (assuming no

feature detection error for the expected part). Even if the

observed view does not correspond to the most probable

view interpretation hypothesis, our algorithm refines the list

of hypotheses at each stage.

It is possible to compute an estimate of Tavg(n): the average

number of moves required for unique object and pose identi-

fication, given n competing part-configurations corresponding

to the first view. Let us assume the entire space around the

object to be divided into NV viewing positions. Each of the

NV possible moves from the starting position partitions the

part configuration hypothesis list, into equivalence classes.

In general, any change in camera parameters (both external

as well as internal) from a position could lead us to more

than one part configuration. To serve as a benchmark, we

can compute Tavg(n) for a simple case of exactly one part-

configuration being reachable from a point, and no errors

in feature detection, or movement. We choose a move that

partitions the initial set of part-configuration hypotheses into

more than one equivalence class. (Section V-A lists a relevant

case when such a move may not exist.) If the size of the part-

configuration hypothesis list in one such equivalence class is

j, the expected additional number of observations is Tavg(j),
where 1 ≤ j < n. Let us assume that j can take on any of

the values 1 to n−1 with equal probability, We have Tavg(n)

= 1 +

∑

n−1

j=1
Tavg(j)

n−1 , and Tavg(1) = 1. By induction, we can

show that Tavg(n) = O(logen).

V. EXPERIMENTAL RESULTS & DISCUSSION

Our experimental setup has a camera system has 4 degrees

of freedom - translations along the X-, Y- and Z- axes, and

rotation about the Y- axis (as in Fig. 2). We have experimented

with two model bases - architectural models (Fig. 1), and 8

buildings in the I.I.T. Bombay academic area. We have chosen

as (2-D) parts the doors and windows of different shapes

and sizes in the models. The first step in processing a given

view of the object involves a segmentation of the image using

sequential labeling [42]. Then we detect corners as intersection

of lines on the boundaries of ‘dark’ regions. We use 2-D

projective invariants using the canonical frame construction

method [43] for recognizing all part-classes (except the 4-

cornered ones – DW4 and OPEN for which, we use the

grey level information at a region near its centroid). We em-

phasize however, the our recognition strategy is independent

of the types of the parts and part-classes, or the method to

detect them. Model LH (Fig. 1(a)) has 167 parts, model DS

(Fig. 1(b)) has 170, while model GH (Fig. 1(c)) has 122. Thus,

even though there are three models in our model base, we have

chosen the models and the associated features such that there
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Fig. 6. The 7 part-classes which the 459 parts belong to, for our model base of
architectural models: DW4, DW6L, DW6R, OPEN , DW8HANDLE,
DW8T , and DW12, respectively in row-major order.

is a very high degree of interpretation ambiguity associated

with a particular view of a few parts of the given object. Fig. 6

shows the 7 different part-classes these 459 parts (of different

sizes) correspond to. The 7 part-classes, with the number

of parts corresponding to each, are DW4(374), DW6L(24),

DW6R(24), OPEN (21), DW8HANDLE(6), DW8T (6),

and DW12(4), respectively. For our experiments with the I.I.T.

Bombay buildings, we have chosen all windows of the type

DW4 above. In this case, the uncertainty associated with a

part-class is even larger - there are 1979 such parts in the 8

buildings considered.

We now briefly describe some representative experiments

with the architectural models model base (Fig.s 7 – 11),

and the I.I.T. Bombay buildings (Fig.s 12 – 14). For our

experiments, adopt a strict criterion for program termination –

we stop when there is exactly one hypothesis possible for the

observed node. These experiments illustrate different features

of our proposed recognition system namely, robustness to

certain feature detection errors, the fact that parts could corre-

spond to any 3-D configuration, invariance to zoom operations

(invariance to internal camera parameter changes), and correct

recognition even in the presence of clutter. We also discuss

limitations of our proposed approach.

Experiments 1 and 2: Experiments 1 and 2 have a small

degree of ambiguity corresponding to the first view. The initial

view in Experiment 1 (Fig. 7), shows the two detected parts

with part-classes DW8T and DW4. The first view itself

results the probabilities of the three models LH, DS and GH

to be 1.000, 0.000 and 0.000, respectively. This is because

the view could have come from only the first model. We do

not stop here, however. Our algorithm will stop only when

the probability of a particular part configuration hypothesis

equals or exceeds a pre-determined threshold. For our exper-

imentation, we have kept this at 1.000. This is the strictest

possible limit, since the algorithm will stop only when there

is exactly one part configuration hypothesis corresponding to

the given view. Of the 6 possible hypotheses, our part pose

estimation procedure (Section IV-A) prunes out 4 of them. The

system plans a disambiguating move: the second view contains

the expected part (bottom row, centre). This move results in

correct recognition and pose estimation, in spite of the failure

to detect a neighbouring part (top row, centre).

Experiment 2 (Fig. 8) shows another such example: the two

windows on the left (corresponding to part-classes DW8T and

DW4, respectively) are not detected in the second planned

view. In this case also, the first view uniquely determines

the model present to be LH, with probability 1.000. The

Fig. 7. Experiment 1: The sequence of moves required to identify the object
and its pose. The failure to detect a part does not affect the system (details
in text).

Fig. 8. Experiment 2: The sequence of moves required to identify the object
and its pose. The failure to detect a part does not affect the system (details
in text).

system stops only after the second view, which corresponds

to exactly one part configuration hypothesis. The pose of

the camera with respect to the identified part LH L 14 is

〈 −4.6◦,−2.54mm, 15.02mm, 139.98mm 〉.
Experiment 3: For Experiment 3 and other succeeding

experiments, the initial view has a high degree of ambiguity

associated with it. The parts visible in a view need not come

from the same plane. The initial view for Experiment 3 (Fig. 9)

contains two parts lying on two faces at right angles to each

other. There could be 374 hypotheses corresponding to a

window corresponding to a part-class DW4. From the initial

condition when each of the three objects could be present

with equal probability, this state gets the probabilities of the

three models LH, DS and GH as 0.162, 0.299 and 0.539,

respectively. Part pose estimation results in a pruning of the

hypothesis list corresponding to these two parts, to a hypoth-

esis list of size 87. The system plans a move to disambiguate

between the different hypotheses. This corresponding move

takes us to a view (the second image in Fig. 9), whose view

interpretation is unique. The probability of the three objects

LH, DS and GH are 0.000, 0.000 and 1.000, respectively.

This experiment illustrates that the visible parts could have

come from any 3-D configuration – this does not affect the

Fig. 9. Experiment 3: The sequence of moves required to identify the object
and its pose. The parts in the initial view do not lie in the same plane.
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↓

ւ ↓ ց

(a) −→ (b) −→ (c)

The camera progressively zooms out

Fig. 10. Experiment 4: For the same first two views, we progressively zoom-
out the camera in three stages. (a), (b) and (c) depict the three views which
the camera sees, for the third view. This does not affect the recognition system
in any way (details in text).

recognition system in any way.

Experiment 4: The use of Inner Camera Invariants for pose

estimation allows us to consider situations where the internal

parameters of the camera may be varied on purpose, or

unintentionally. The first view in Fig. 10 could have come from

257 configurations of two adjacent parts with part-class DW4.

Two moves from this position were sufficient to recognize the

object, the third view containing the expected part (the large

4-cornered window, GH W 15). For the same first two views,

we performed two zoom-out operations at the the third camera

position. The recognition results are the same in each of the

cases — Fig. 10 (a), (b) and (c). Further, the camera pose with

respect to part GH W 15 in these three cases are

〈 9.425◦, −22.000mm, −9.999mm, 150.000mm 〉,
〈 9.888◦, −22.000mm, −9.999mm, 150.000mm 〉, and

〈 9.896◦, −22.000mm, −9.999mm, 150.000mm 〉, re-

spectively. Thus, accidental or purposive changes in internal

camera parameters does not affect our system in any way.

It is interesting to compare this with Lowe’s work on object

recognition from local scale-invariant features [44]. Even

though we have not considered any specific scale-invariant

features, the same feature detector gives accurate results over

a reasonably wide range of zoom-out operations.

We emphasize that the zoom-out operation were not per-

formed in a graduated or pre-calculated manner – they were

arbitrary. It is important to additionally note that the system

did not plan these zoom-out operations – these were arbitrarily

effected to test the system’s resilience to variations (intentional

/ unintentional) in camera internal parameters. An interesting

extension of this work would be to incorporate purposive

changes in camera internal parameters as well – since any

feature extraction routine has practical limits within which

it works optimally. These purposive changes would be an

Fig. 11. Experiment 5: The sequence of moves (in row major order) required
to identify the object and its pose. The first, third and fourth views are cluttered
by the presence of a tree. The image at the bottom shows an overall view. The
trees are in the foreground. The corresponding window is highlighted with a
black square.

Fig. 12. Experiment 6 (I.I.T. Bombay Buildings): Backtracking on reaching
a view without any part (details in text), and successful final recognition.

important tool in the planning algorithm.

Experiment 5: In Experiment 5, the presence of a tree

(an unmodeled object) accounts for clutter in the first, third

and fourth view of Fig. 11. For Experiment 5, initially the

three objects had a probability of 0.333 each. Following the

first observation, the probabilities of LH, DS and GH were

0.172, 0.291 and 0.537, respectively. It is only with the final

view that the probabilities change to 0.000, 0.000 and 1.000,

respectively. The system plans the next move on the basis of a

part: it does not predict an entire view. In these experiments,

recognition performance is not affected by the presence of

unmodeled objects (clutter) or the non-detection of parts in

the vicinity of the expected part. 5 views are needed for

unambiguous recognition and pose estimation. The size of the

hypothesis list corresponding to the first view is 304.

Experiments 6 – 9: Buildings in I.I.T. Bombay: For Exper-

iments 6 – 9, we have chosen an extremely difficult operating

environment – there are numerous trees and other unmodeled

objects. In addition to these, occlusions and lighting conditions

also affect the performance of the system, as shown in the

following experiments. In Experiment 6 (Fig. 12), the tree

occludes the rightmost window, and the second and third

windows from the left receive a wrong X− pose estimate due

to occlusion from the pipe and the jutting wall, respectively.

The planning on the basis of the available information from

two windows leads to a region with no identifiable part (the
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Fig. 13. Experiment 7 (I.I.T. Bombay buildings): Catastrophic failure - the
effect of an occlusion (left), and reflection on the window panes and tree
(centre) (details in text.)

Fig. 14. Experiment 9: The sequence of moves (in row major order) required
to identify the object and its pose (details in text.)

middle image). The system backtracks (Step 9 in the algo-

rithm: Fig. 5), and takes the next move. This experiment shows

the opportunistic nature of our system. The planning was

with respect to the second most probable hypothesis, which

does not correspond to the observed third view. However,

the observed part-class configuration is unique for this set of

moves, leading to successful recognition and pose estimation.

Experiment 7 (Fig. 13) shows a case of catastrophic failure

on two counts. We have chosen a difficult angle of imaging

to start with – the jutting wall occludes part of the window,

leading to a wrong X− pose estimate. The uncertainty list

corresponding to the first view has all 1979 entries (since one

part is observed). While the wrong pose estimate does not

have an adverse effect on the second view owing to the camera

being kept in a large field of view mode, the system fails to

recognise any part (owing to reflections on the window panes,

and the presence of the tree). The next planned view leads to

the image on the right. For this model base, this sequence of

moves cannot lead to this part configuration, and the system

fails. For Experiment 9 (Fig. 14), the system needed 6 moves

to recognise the part configuration and pose correctly. Starting

from an uncertainty list of 1979 corresponding to the first view,

the next two moves narrow it down to 32. On getting to a

view without any part (the fourth figure), and a subsequent a

backtrack, the uncertainty list has 2 entires for the fifth view. In

this case, the system correctly identifies the object, but there

were two competing part configurations. The final move of

raising the camera up by 155cm resolves this ambiguity.

A. Limitations of the Proposed Approach

Our approach is not guaranteed to succeed for objects which

have a similar layout of parts, with the corresponding parts in

the objects corresponding to the same part-class. A primary

limitation of our approach is the computation time involved:

computation of Inner Camera Invariants (Section II) involves

iterative nonlinear optimisation. A planning step (including the

above computation time) takes up to about 13 minutes on a

700MHz PIII machine running Linux. While the system is

quite robust to small movement errors, experiments with real

buildings indicate that the system may also fail in the presence

of a very large number of unmodeled objects, and failure to

detect features. (The latter can cause any approach to fail).

VI. CONCLUSIONS

We present a new on-line scheme to identify large 3-D

objects which do not fit into a camera’s field of view (which

allows the system to operate very close to the 3-D object),

and finds the pose of the (uncalibrated) camera with respect

to the object. The system does not assume any knowledge

of the internal parameters of the camera, or their constancy

(permitting a zoom-in/zoom-out operation, for example). The

part-based knowledge representation scheme is used both for

probabilistic hypothesis generation, as well as in planning the

next view. We show results of successful recognition and pose

estimation even in cases of a high degree of interpretation

ambiguity associated with the initial view. The significance

of using Inner Camera Invariants is the robustness of the

system to internal camera parameters changes – accidental,

or purposive. An interesting extension of this work is to use

purposive internal camera parameter changes for planning the

next view – one can zoom in to get further details, or zoom

out, to get a wider field of view. The automatic learning

of equivalent part classes in this context is another separate

interesting extension.
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