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Abstract

We describe a trainable recognizer for multi-stroke
symbols. The learned definitions are described in terms
of the constituent geometric primitives (lines and arcs),
the properties of individual primitives, and the geomet-
ric relationships between them. A definition is learned
by examining a few examples of a symbol and identify-
ing which properties and relationships occur frequently.
During both training and recognition, multiple primi-
tives can be drawn in the same pen stroke. Pen speed
and curvature are used to segment a stroke into its con-
stituent primitives. During recognition, an unknown
symbol is identified by determining which definition
matches it with the least error. There are two recogni-
tion methods. One assumes that the primitives of a sym-
bol are always drawn in the same order. This method is
fast, but requires some care from the drawer. The other
method uses a form of best-first search, with a specu-
lative quality metric and pruning, to recognize symbols
when the drawing order is varied.

Introduction
In our research, we are developing sketch understanding
techniques that will enable sketched-based user interfaces.
Our goal is for people to be able to operate software by draw-
ing the kinds of sketches they ordinarily draw. For example,
we would like an engineer to be able to create a dynamic
simulation of a mechanism by sketching a simple schematic
of it, using familiar symbols and drawing conventions. Sim-
ilarly, we would like to be able to create viewgraphs by
sketching the desired graphics, such as arrows, boxes, quote
bubbles, etc.

There are a number of processes underlying a sketch-
based user interface. These include the low-level process-
ing of pen strokes, recognition of symbols, reasoning about
shapes, and high-level interpretation. The focus of the work
described here is the first two of these processes. We have
developed techniques for segmenting pen strokes into their
constituent lines and arcs. We have also developed a train-
able symbol recognizer that learns to recognize a symbol
by examining a few examples of it. In (Kurtoglu & Sta-
hovich 2002), we combine this work with high-level rea-
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soning techniques to produce a system that can interpret
schematic sketches of physical systems.

Our recognizer operates on the output of the stroke seg-
menter. This provides for a more natural drawing environ-
ment by allowing the user to vary the number of pen strokes
used to create a symbol. For example, a square can be drawn
as a single pen stroke, or as four separate strokes, or even
as two or three strokes. Much of the previous work has
relied either on single stroke methods in which an entire
symbol must be drawn as single stroke (e.g., (Rubine 1991),
(Kimura, Apte, & Sengupta 1994), (Cohen, Huang, & Yang
1995) or single primitive methods in which each stroke must
be a single line, arc, or curve (e.g., (Zhao 1993), (Igarashi et
al. 1997), (Weisman 1999)).

The key challenge in segmenting is determining which
bumps and bends in a pen stroke are intended and which
are accidents. Our approach to segmenting considers both
the shape of the stroke and the motion of the pen tip as the
stroke is created. We have found that it is natural to slow
the pen when making intentional discontinuities in the pen
stroke, thus we can identify discontinuities by examining the
speed profile of the pen stroke. This speed-based approach
finds many segment points, but not all. We use a smoothed
curvature metric to identify other segment points.

Our symbol recognizer employs an approach similar to
near miss learning. To train the recognizer, the user pro-
vides several examples of a symbol. The strokes are seg-
mented and each example is characterized by a semantic
network description. The semantic networks are compared,
and any sketch properties (network links and node attributes)
that occur frequently are assembled to form a definition of
the symbol. We have found that three or four examples are
often adequate for learning engineering symbols such as piv-
ots, beams, springs, and pulleys (Figure 1). To recognize an
unknown symbol, the strokes are segmented and a seman-
tic network is constructed. The network is matched against
each known definition, and an error is calculated describing
the difference between the symbol and that definition. The
symbol is identified by the definition that fits with the least
error.

Pen Stroke Segmenting
The first step in interpreting a sketch is processing the in-
dividual pen strokes to determine what shapes they repre-
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BASIC SHAPES

MECHANICAL OBJECTS

Figure 1: Typical symbols. Basic shapes include a line, arc,
triangle, square, and pie slice. Mechanical objects include a
pulley and ropes, pivot, spring, and beam. Reliable defini-
tions can be learned from 3 or 4 training examples.
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Figure 2: (a) A raw pen stroke. (b) Interpretation as a single
line. (c) Interpretation as three lines.

sent. Much of the previous work in this area assumes that
each pen stroke represents a single shape, such as a single
line segment or arc segment, which ever fits the stroke best.
While this kind of approach facilitates shape recognition, it
results in a less than natural user interface. For example,
one would be forced to draw a square as four individual pen
strokes, rather than a single pen stroke with three 90◦ bends.

Our objective is to facilitate a natural sketch interface
by allowing pen strokes to represent any number of shape
primitives connected together. This requires examining each
stroke to identify the segment points, the points that divide
the stroke into different primitives. The key challenge is de-
termining which bumps and bends are intended and which
are accidents. Consider, the pen stroke in Figure 2a, for ex-
ample. Was this intended to be a single straight line as in
Figure 2b, or three straight lines as in Figure 2c? Similarly,
was the pen stroke in Figure 3a intended to be two straight
lines forming a corner as in Figure 3b, or was it intended
to be a segment of an arc as in Figure 3c? We have found
it difficult to answer these sorts of question by considering
shape alone. The size of the deviation from an ideal line or
arc is not a reliable indicator of what was intended: some-
times small deviations are intended while other times large
ones are accidents.

Our approach to this problem relies on examining the mo-
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Figure 3: (a) A raw pen stroke. (b) Interpretation as two
lines. (c) Interpretation as an arc.
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Figure 4: A square and its speed profile. The corners are
identifiable by the low speed. A mouse was used for draw-
ing.

tion of the pen tip as the strokes are created. We have dis-
covered that it is natural to slow the pen when making many
kinds of intentional discontinuities in the shape. For exam-
ple, if the stroke in Figure 3a was intended to be two lines
forming a corner, the drawer would likely have slowed down
when making that corner. Similarly, when drawing a rectan-
gle as a single pen stroke, it is natural to slow down at the
corners, which are the segment points. Figure 4 shows the
speed profile for a typical square. The corners can be easily
identified by the low pen speed.

We calculate pen speed in the obvious way, as the distance
traveled between consecutive pen samples divided by the
time elapsed between the samples. Distance is measured in
the hardware coordinates of the input device. Because most
pen input devices emulate a mouse, we have written our soft-
ware to use a standard mouse programming interface. This
has allowed us to use our software with an electronic white-
board, a stylus and digitizing pad, and a conventional mouse.
We initially used an event-driven software model, but found
that the temporal resolution was inadequate on some plat-
forms. Our current approach is to use the event-driven model
to handle pen up and pen down events, and to poll for the



Figure 5: Segment points for thresholds of (a) 20% (b) 25%
and (c) 35% of the average pen speed.

mouse position in between. This has allowed us to increase
the resolution, but it does result in redundant samples when
the mouse is stationary. When the mouse is stationary, there
is a sequence of samples that all have zero velocity. We dis-
card all but the first sample in these sequences.

Once the pen speed has been calculated at each point
along the stroke, segment points can be found by threshold-
ing the speed. Any point with a speed below the threshold is
a segment point. We specify the threshold as fraction of the
average speed along the particular pen stroke. If necessary,
the user can adjust the threshold to match his or her partic-
ular drawing style. In our informal testing, we have found
that with a small amount of tuning, one can achieve good re-
sults. Figure 5 shows the segment points that are detected for
a typical pen stroke for various values of the threshold. To
enhance the performance of this approach, one can slightly
exaggerate the slowdown at intended segments points. The
drawing experience is still natural because no pen up and
pen down events are necessary, and there is no need to stop
completely.

While many intentional discontinuities occur at low pen
speed, others do not. For example, when drawing an “S”
shape, there may be no slowdown at the transition from one
lobe to the other. Similarly, when drawing a “J” shape, there
may be no slowdown at the transition from the line to the
arc. We can locate these kinds of segment points by exam-

Figure 6: Calculating the curvature sign. The window in-
cludes 9 points.

ining the curvature of the pen stroke. Segment points occur
at locations where the curvature changes sign. We consider
three distinct signs: positive, negative, and zero. When com-
puting the sign, we examine a window of points on either
side of the point in question. We connect the first and last
points in the window with a line segment. We then calculate
the minimum distance from each point in the window to the
line. Distances to the left of the line are positive, while those
to the right are negative. Left and right are defined relative to
the drawing direction. The signed distances are summed to
determine the sign of the curvature. If the absolute value of
the sum is less than a threshold, the curvature is considered
to be zero. In the example in Figure 6, the curvature is posi-
tive because there are more positive distances than negative
ones. (In this example, the drawing direction is from left to
right.)

By using a window of points to compute the sign of the
curvature, we are able to smooth out noise in the pen sig-
nal. Some of the noise comes from minor fluctuations in the
drawing, other noise comes from the digitizing error of the
input device. The larger the window, the larger the smooth-
ing effect. The size of the window must be tuned to the
input device and the user. For mouse input, we have found a
window size of between 10 and 30 points to be suitable. Fig-
ure 7 shows how the number of segment points varies with
the window size.

Once the strokes have been segmented, the next task is to
determine which segments represent lines and which repre-
sent circular arcs. We compute the least squares best fit line
and arc for each segment. The segment is typically classi-
fied by the shape that matches with the least error. However,
nearly straight lines can always be fit with high accuracy
by an arc with a very large radius. In such cases, we use
a threshold to determine if a segment should be an arc or a
line. To be an arc, the arc length must be at least 15◦.

Symbol Recognition: Training
After segmenting the pen strokes, the next step is to rec-
ognize individual symbols. We have developed a trainable
symbol recognizer for this purpose. Our approach is similar
to near miss learning (Winston 1975), except that currently
we consider only positive training examples. To train the
system, the user provides several examples of a given sym-
bol. Each example is characterized by a semantic network
description. The networks for the various examples are com-
pared, and any sketch properties (network links) that occur
frequently are assembled to form a definition of the symbol.
This definition is a generalization of the examples, and is
useful for recognizing other examples of the symbol.

The objects in the semantic network are geometric prim-



Figure 7: Segment points for curvature window sizes of (a)
30 (b) 15 and (c) 10 points. Note that speed segment points
are not shown.

itives: line and arc segments. The links in the network are
geometric relationships between the primitives. These in-
clude:

• The existence of intersections between primitives.

• The relative location of intersections.

• The angle between intersecting lines.

• The existence of parallel lines.

In addition to the relationships, each primitive is charac-
terized by intrinsic properties, including:

• Type: line or arc.

• Length.

• Relative length.

• Slope (for lines only).

• Radius (for arcs only).

We describe distance by both an absolute and relative met-
ric. An absolute distance is measured in pixels. Relative
distances are measured as a proportion of the total of all
of the stroke lengths in the symbol. For example, the rel-
ative length of one side of a perfect square is 25%. Using an
absolute distance metric allows the program to learn defini-
tions in which size matters, while relative distances ignore
uniform scaling. For example, if the training examples are
squares of different sizes, the definition will be based on rel-
ative length and will recognize squares of all sizes. If, on the
other hand, all of the training examples are the same size,
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Figure 8: The semantic network definition of squares of
varying sizes. The links represent parallel and perpendic-
ular relationships and intersections.

the definition will also include absolute distance, and only
squares of that size will be recognized.

The locations of intersections between primitives are
measured relative to the lengths of the primitives. For ex-
ample, if the beginning of one line segment intersects the
middle of another, the intersection is described as the point
(0%, 50%). When extracting intersections from the sketch,
a tolerance is used to allow for cases in which an intersection
was intended, but one of the primitives was a little too short.
The tolerance zone at each end of the primitive is 25% of the
length of that primitive. If an intersection occurs in the toler-
ance zone, it is recorded as being at the end of the primitive:
The relative location is described as 0% if the intersection is
near the beginning of the segment, or 100% if it is near the
end.

If a pair of lines do not intersect, the program checks if
they are parallel. Here again, a tolerance is used because of
the imprecise nature of a sketch. Two lines are considered to
be parallel if their slopes differ by no more than 5 degrees.

To construct the definition of a symbol, the semantic net-
works for each of the symbols are compared to identify com-
mon attributes. If a binary attribute, such as the existence of
an intersection, occurs with a frequency greater than a par-
ticular threshold, that attribute is included in the definition.
Similarly, if an attribute has a continuous numerical value,
such as relative length, it will be included in the definition if
its standard deviation is less than some threshold. Figure 8
shows a typical example of a definition.

The thresholds are empirically determined, and the values
are as follows. The occurrence frequency threshold for in-
tersections is 70%. That is, if at least 70% of the training
examples have an intersection between a particular pair of
primitives, that intersection is included in the learned def-
inition. An arc can intersect a line, or another arc, in two
locations. The occurrence frequency threshold for two in-
tersections is also 70%. The threshold for the existence of
parallelism between lines is 50%.

The standard deviation threshold for continuous-valued
quantities is 5. The maximum value for a relative length is
100, thus the standard deviation threshold is 5% of the maxi-
mum value. Absolute length is measured in pixels and prim-



itives can be a few hundred pixels long. Thus, the threshold
for absolute length can be a little more restrictive than for
relative length if large symbols are drawn. The maximum
value for an intersection angle is 180 degrees. The standard
deviation threshold, therefore, is 2.8% of the largest possible
intersection angle.

During training, it is assumed that the all of the examples
have the same number and types of primitives. Furthermore,
it is assumed that the primitives are drawn in the same or-
der and in the same relative orientation. Relative orientation
describes which end of a primitive is the start and which is
the end. For example, if the four sides of a square are drawn
in a clockwise loop with the end of one side connecting to
the start of the next, then all examples should be drawn that
way. Drawing the square by first drawing one set of paral-
lel sides and then drawing the other set, would constitute a
different drawing order. Having the end of one side connect
to the end of another (rather than the start) would constitute
a different relative orientation. These assumptions make it
trivial to determine which primitives in one example match
those of another. The advantage is that training costs are
negligible.

Symbol Recognition: Matching
After drawing a symbol, the drawer indicates that the sym-
bol is finished by using the stylus to press a button displayed
on the drawing surface (CRT or whiteboard). This begins the
process of recognizing the symbol, i.e., finding the learned
definition that best matches the unknown symbol. We have
two methods for performing this task. The first employs the
same assumptions used during training. The symbol must
have the correct number of primitives, drawn in the correct
order, and with the correct relative orientation. This method
is computationally inexpensive, and is therefore quite fast.
The second method uses a heuristic search technique to re-
lax many of these assumptions. This allows for much more
variation in the way a symbol is drawn, but is correspond-
ingly more expensive. We will begin by considering the non-
search method, as the other method is an extension of it.

For the non-search method, the order in which one draws
the primitives directly indicates correspondence with the
primitives in a definition. The error in the match can be
directly computed by comparing the semantic networks of
the unknown and the definition. This is accomplished by
comparing each of the attributes and relationships included
in the definition to those of the unknown. The definition that
matches with the least error classifies the example. How-
ever, a maximum error can be set, such that if the best fit
exceeds that maximum, the symbol is not classified.

Error Calculation
Matching errors occur when the number and types of primi-
tives in the unknown symbol, their properties, and their rela-
tionships differ from those of the definition. When evaluat-
ing the total error, different weights are assigned to different
kinds of errors. These weights reflect our experience with
which characteristics of a symbol are most important for ac-
curately identifying a symbol.

Quantity Weight
Primitive count 0.15
Primitive type 1.0
Intersection 1.0
Parallelism 1.0

Table 1: Weights assigned to quantized errors.

Property Range, R Tolerance, ε
Absolute length Ave. from training 1.0
Relative length 100.0 1.0
Intersection location 100.0 0.33
Intersection Angle 180.0 0.17

Table 2: Constants used for calculating the error for
continuous-valued properties.

Some of the errors are quantized, that is an error is as-
signed based on the number of differences, as described in
Table 1. An error is assigned if the unknown symbol and
definition have different numbers of primitives. The weight
for this is 0.15, that is the error is 0.15 times the absolute
value of the difference.1 For example, if the unknown has
5 primitives, and the definition has 7, the error is 0.3. Sim-
ilarly, an error is assigned if the type of a primitive in the
unknown is different than that of the definition. The weight
for this error is 1.0. Likewise an error of 1.0 is assigned for
each missing intersection or parallelism between primitives.

The remaining errors are assigned based on the size of the
differences, rather than on the number of differences. These
proportional errors are used for real valued properties such
as relative length or intersection angle. Our error function is
a saturating linear function:

e(x) = min




|x−x
εR |

1.0


 (1)

where x is the observed value of a property, x is the mean
value of the property observed in the training examples, ε
is a tolerance, and R is the maximum expected value for
the property. The error saturates at 1.0. ε determines how
quickly the error saturates as shown in Figure 9. The smaller
the value of ε, the faster the function saturates. ε can be
thought of as an error tolerance, because its value determines
how much deviation in the property is allowed before the
maximum error is assigned. Table 2 shows the error con-
stants used for the various continuous-valued properties.

The more primitives and properties contained in a def-
inition, the more opportunities there are to accumulate er-
ror. It may be possible for a definition with many primitives
and properties to produce a larger error than a less compre-
hensive definition, even if the symbol in question is a better

1This error constant is smaller than the others, however, when
computing the final error, all of the other error terms are normalized
while this one is not.
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Figure 9: Saturating error function for continuous-valued
properties.

match for the former. To avoid this, we normalize the error
with the following formula:

E
′
= min




E
nprim+nprop+nrel

+ C

1.0


 (2)

where E
′

is the normalized error, E is the sum of all errors
except the primitive count error, C is the primitive count er-
ror, nprim is the number of primitives in the definition, nprop

is the number of properties such as relative length, and n rel

is the number of relationships such as intersections. With
this formula, the primitive count error is weighted much
more heavily than the other kinds of errors. This expresses
the notion that if the number of primitives in a symbol is
significantly different from that of the definition, a match is
unlikely.

We often find it useful to consider the accuracy of the
match rather than the error. The accuracy is the complement
of the error:

A = 100.0%(1.0− E
′
) (3)

An accuracy of 100 is a perfect match, while an accuracy
of 0 is an extremely poor match. The unknown symbol is
classified by the definition that matches with the highest ac-
curacy. However, if that accuracy is less than about 65% or
70%, the match is questionable.

Using Search
Thus far, the discussion has concerned matching under the
assumptions that the primitives are always drawn in the same
order and in the same relative orientation. (Recall that rela-
tive orientation describes which end of a primitive is the start
and which is the end.) Now we consider a method for relax-
ing these assumptions in order to allow more variation in
the way a symbol can be drawn. With our previous assump-
tions, the drawing order directly indicated correspondence
between the primitives in the symbol and those in the defini-
tion, and the direction of the pen stroke directly indicated the
relative orientation of a primitive. Now, we will use search
to establish correspondence and identify the relative orienta-
tions.

Our search technique can be described as best-first search
with a speculative quality metric and pruning. A search
node contains a partial assignment of the primitives in the
unknown symbol to those of the definition. A search node is
expanded by assigning an unassigned primitive in the sym-
bol to one in the definition. A search node is terminal if an
assignment has been made for each of the primitives in the
definition or if there are no remaining unassigned primitives
in the unknown symbol.

The search process considers all known definitions at the
same time. The process is initialized by generating all pos-
sible assignments for the first primitive in each definition.
When making the assignments, both choices of orientation
are considered. As a consequence, if there are n definitions
and m primitives, the search queue will initially contain
2 ∗ n ∗ m nodes. It is possible to reduce the search space by
postponing consideration of the relative orientation, but our
implementation handles drawing order and relative orienta-
tion in a uniform way, by using a single search procedure.

Our quality metric is the converse of the matching error.
The search queue is sorted in decreasing order of the nor-
malized matching error. The error is computed with Equa-
tion 2 except that the primitive count error is excluded. It
is excluded because it would most penalize those nodes that
are at the shallowest depth in the search tree. If the term
were included, the search would become more like depth
first search, because the nodes that had the largest number
of assignments would have the lowest error, and thus would
be expanded first.

For non-terminal nodes, the error in some of the proper-
ties cannot be evaluated because the associated primitives
have not yet been assigned. For example, if one (or both)
of a pair of intersecting lines has not been assigned, it is
not possible to determine if the intersection actually exists
or what the error in the location of the intersection would be
if it did. In such cases, we use a speculative error estimate.
If an error cannot be measured because some of the primi-
tives have not been assigned, we assign a small default error.
Currently, we assign a value of 0.05 for each such uncom-
putable error. Doing this makes sense because sketches, due
to their imprecise nature, always differ to some extent from
the learned definitions.

Our speculative error calculation helps to prevent poor
partial assignments from being expanded further. If the ini-
tial few assignments produce a large error, and there are
many properties that cannot yet be evaluated, the search
node will be assigned a relatively large error value. When
the queue is sorted, such nodes will effectively be eliminated
from consideration. In this sense, the speculative error cal-
culation helps the search to be efficient.

To limit the search, we set a maximum error threshold. If
the error of any (non-terminal) node exceeds the threshold,
it is pruned from the search. This, again, helps to make the
search efficient. We typically use an error threshold of 0.2 to
0.3. Adjusting the threshold and the speculative error con-
stant allow one to tune the search method. For example, by
increasing the speculative error constant and decreasing the
threshold, the search can be accelerated but there is an in-
creased chance that the correct definition will not be found.



Conversely, if the speculative error constant is set to zero
and the threshold is made large, the search will become ex-
haustive, ensuring that the correct definition will always be
found.

Discussion and Future work
The current implementation of our trainable recognizer uses
an earlier approach that we developed for segmenting pen
strokes. The segmenting approach described here is im-
plemented, but is not yet integrated with the recognizer.
Thus, we cannot yet quantitatively evaluate the overall per-
formance of our system.

In informal tests, we have found that if the segmentation
is accurate, the recognition rate is high. Our current system,
which employs the old segmenter, provides the user with
the option to redraw incorrectly segmented strokes. When
segmenting errors are corrected in this fashion, we achieve
recognition rates that could be estimated at 95% or better for
symbols like those in Figure 1.

We have found that often three or four training examples
are adequate. Furthermore, our definitions have the abil-
ity to discriminate between similar shapes. For example,
the system can distinguish between squares and non-square
rectangles. Similarly it can distinguish between three lines
forming a triangle and three lines forming a “U” shape.

Our search-based matching method has demonstrated that
it is possible to accurately match symbols when the drawing
order is varied. However, the method is expensive if there
is a large number of definitions or a large number of prim-
itives in the unknown symbol. There are simple things that
can be done to make the approach more efficient. For exam-
ple, the relative orientation property can be handled as post-
processing step. A default orientation can be assumed, and
if this results in appreciable errors in intersection locations,
the orientation can be flipped.

We are also working to develop more fundamental im-
provements in our matching technique. We are exploring
methods for reducing the size of the search space and for
exploring that reduced space more efficiently. In addition,
we currently handle segmenting separately from matching.
However, during matching, it may be desirable to revisit the
segmenting process to correct errors in the segmentation.
We are exploring methods to accomplish this.

Related Work
The problem of polygon fitting and corner point (segment
point) detection from digital curves has attracted numer-
ous researchers ((Witkin 1984), (Rattarangsi & Chin 1992),
(Bentsson & Eklundh 1992), and (Dudek & Tsotsos 1997)).
For corner identification, most algorithms search for abrupt
changes in direction by maximizing the curvature function.
To suppress noise and false corners, the input data is usually
smoothed with a filter. The main challenge here is to de-
termine a reliable “observation scale” or amount of smooth-
ing. Single-scale representations often lead to non-optimal
results. Too little smoothing leads to superfluous corners
whereas excessive smoothing causes the disappearance of
true corners.

(Witkin 1984) and (Rattarangsi & Chin 1992) describe
methods based on a multiple-scale representation in which
different levels of smoothing can be used for different re-
gions along a curve. Corners are detected by monitoring
points that maintain high values of curvature as the amount
of smoothing is successively increased. These approaches
are computationally intensive and thus may not be suitable
for interactive sketching systems. Furthermore, these meth-
ods consider only the shape of a curve. Our approach con-
siders pen speed to help determine which discontinuities
were intended.

(Sezgin 2001) has combined our pen speed approach with
the scale-space method. A single scale is used for smooth-
ing both the speed and curvature data. The corner points
obtained from the smoothed speed data are selectively com-
bined with those of the smoothed curvature data to produce
the set of true corners.

(Igarashi et al. 1997) created an interactive beautification
system. Their task is to transform the user’s pen strokes into
cleaned-up line segments and infer any intended connected-
ness, perpendicularity, congruence, and symmetry. The re-
sulting image resembles a carefully drafted diagram despite
the imprecision associated with the user’s original sketch.
Our task differs from theirs in that we are trying to under-
stand the semantic content of the strokes while they focus
on improving the visual structure. Also, they consider only
lines (no arcs) and they require each line to be drawn with
a separate pen stroke. We consider both lines and arcs and
allow multiple primitives in a pen stroke.

(Rubine 1991) describes a trainable, single-stroke gesture
recognizer for click and drag interfaces. A stroke is charac-
terized by a set of 11 geometric and 2 dynamic attributes. A
class of gestures is defined by a linear function of these 13
attributes. Training is accomplished by learning appropriate
weights for each attributes in the linear function. The at-
tributes consider aggregate properties of a pen stroke, and it
is possible that two different gestures would have the same
aggregate properties. Our approach, by contrast considers
the attributes of the constituent parts of a symbol, thus pro-
viding a greater ability to discriminate between similar sym-
bols. Furthermore, during recognition, our method is able to
identify the individual primitives in a symbol. This is useful
for applications in which different parts of a symbol con-
vey different information. For example, for a beam symbol
(Figure 1), it is often useful to know where the supports are.

(Fonseca & Jorge 2000) describe a method, based on
fuzzy logic, for recognizing both multi-stroke and single-
stroke shapes. Each shape is characterized by a number of
geometric features calculated from three special polygons:
1) the smallest convex hull that can be circumscribed around
the shape, 2) the largest triangle that can be inscribed in the
hull, and 3) the largest quadrilateral that can be inscribed.
Using the areas and perimeters of these polygons, a num-
ber of features such as thinness, hollowness and openness
are computed. The system is manually trained by identify-
ing the right fuzzy feature sets to characterize a shape and
distinguish it from the other shapes. An unknown scribble
is recognized by computing its degree of membership in the
fuzzy set definitions of the various known shapes. Because



the method relies on aggregate features of the pen strokes,
it might be difficult to differentiate between similar shapes.
Also, the method is unable to identify the constituent parts
of a shape.

(Landay & Myers 2001) presents an interactive sketching
tool called SILK that allows designers to quickly sketch out
a user interface and transform it into a fully operational sys-
tem. As the designer sketches, SILK’s recognizer, which
is adapted from (Rubine 1991), matches the pen strokes
to symbols representing various user interface components,
and returns the most likely interpretation. Their recognizer
is limited to single-stroke shapes drawn in certain preferred
orientations. Our method handles multi-stroke shapes drawn
in any orientation.

(Cohen, Huang, & Yang 1995; Huang & Cohen 1996) de-
scribe a method for matching and classifying curves using
B-splines, invariant to affine transformations. This method
is particularly suitable for identifying single-stroke sketches
such as characters in handwritten text or gestural commands.
A reported application involves matching handwritten text to
a likely writer for criminal investigations. A benefit of this
approach is that there is no need to segment the pen stroke.
However, many of the symbols of interest to us cannot be
drawn as single strokes.

Gross’ Electronic Cocktail Napkin (Gross & Do 1996)
employs a trainable recognizer that works for multi-stroke
shapes. The recognition process is decomposed into glyph
(low-level) and configuration (high-level) recognition. A
glyph is described by a state transition model of the pen path,
the aspect ratio and size of the bounding box, and the num-
ber of corner points. The pen path is described as a sequence
of state transitions, where a state is one of the 9 regions ob-
tained by dividing the bounding box into a 3x3 grid. Corners
are identified when the change in drawing direction exceeds
45 degrees. Configuration recognition considers the spatial
relationships between the glyphs. This method is sensitive to
changes in orientation, and the 3x3 grid may be inadequate
for symbols containing small features. Our approach is in-
sensitive to changes in orientation and small features pose
no difficulties.

Stahovich et al. (Stahovich 1996; Stahovich, Davis, &
Shrobe 1998) have developed a program called SketchIT
that can transform a sketch of a mechanical device into
working designs. The program employs a novel behav-
ioral representation called qualitative configuration space
(qc-space), that captures the behavior suggested by a sketch
while abstracting away the particular geometry used to sug-
gest that behavior. Qc-space allows SketchIT to identify the
geometric constraints that must be satisfied for the device
to work as desired. The desired behavior is specified by
the user via a state transition diagram. Once the program
has identified the constraints, it uses them to synthesize new
working designs. Each new design is represented as a behav-
ior ensuring parametric model (“BEP-Model”): a paramet-
ric model augmented with constraints that ensure the overall
device geometry behaves as intended. The constraints of the
BEP-Model actually define a family of geometries that all
produce the same set of behaviors. SketchIT is concerned
only with the high-level processing of the sketch; It assumes

that the lines, arcs, and symbols contained in the sketch are
extracted by another program. The segmenting and recogni-
tion techniques described here could serve this purpose.

(Mankoff, Abowd, & Hudson 2000) have explored meth-
ods for modeling and resolving ambiguity in recognition-
based interfaces. Drawn from a survey on existing recog-
nizers, they present a set of ambiguity resolution strategies,
called mediation techniques, and demonstrate their ideas in
a program called Burlap. Their resolution strategies are con-
cerned with how ambiguity should be presented to the user
and how the user should indicate his or her intention to the
software. These techniques may be useful for improving the
robustness of our system.

Symbol recognition has much in common with the gen-
eral problem of graph-subgraph isomorphism detection.
(Ullmann 1976) is considered one of the fastest methods for
general problems. For applications that require testing an
unknown graph against a database of model graphs, a num-
ber of methods based on fast indexing have been proposed
((Horaud & Skordas 1988), (Ikeuchi 1987), (Spirkovska
1993), and (Messmer & Bunke 1995)). All of these methods
assume that the nodes and edges in the graphs have unique
labels, so that one can unambiguously determine if a par-
ticular node (or edge) in one graph is the same as that in
another graph. For our application, however, the entities in
the semantic networks do not have unique labels. To identify
primitives (nodes) it is necessary to consider the geometric
relationships (graph edges) with other primitives.

Given the success of Hidden Markov Models (HMM’s)
in speech recognition (Lawrence 1989), it is natural to con-
sider if these approaches are suitable for sketch recogni-
tion. For speech recognition, sounds are inherently orga-
nized in chronological order. One cannot go back in time
to change an already uttered sound. This enables a funda-
mental premise of the state transition dynamics of HMM’s,
namely recognition of the current sound depends on the pre-
vious sound, which is not subject to future alteration. For
our application, however, one can, and typically does, go
back to a particular spatial location and add new strokes. For
this, and other reasons, approaches based on HMM’s are not
likely to be useful for our task.

Conclusion
We have developed a method that uses both pen speed and
shape information to segment a pen stroke into constituent
lines and arcs. We have found that pen speed gives insight
into which discontinuities were intended by the drawer – it
is often natural to slow the pen at such points. In addition,
we use a smoothed curvature metric to detect other kinds of
segment points, such as transitions between arcs and lines.

We have developed a trainable symbol recognizer that can
recognize multi-stroke symbols. Typically only a few train-
ing examples are needed to learn an accurate recognizer. Our
approach can distinguish between similar shapes and is in-
sensitive to rotations. Depending on the training examples,
our approach can learn a definition for a particular size of
symbol, or a definition in which scale does not matter. If the
primitives in the symbol are always drawn in the same order,



recognition and training are inexpensive. We have demon-
strated that search can be used to enable recognition when
the drawing order is varied.
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