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ABSTRACT

Most previous methods for generic object recognition explicitly or implicitly assume that an

image contains objects from a single category, although objects from multiple categories often

appear together in an image. In this paper, we present a novel method for object recognition

that explicitly deals with objects of multiple categories coexisting in an image. Furthermore,

our proposed method aims to recognize objects by taking advantage of a scene’s context

represented by the co-occurrence relationship between object categories. Specifically, our

method estimates the mixture ratios of multiple categories in an image via MAP regression,

where the likelihood is computed based on the linear combination model of frequency dis-

tributions of local features, and the prior probability is computed from the co-occurrence

relation. We conducted a number of experiments using the PASCAL dataset, and obtained

the results that lend support to the effectiveness of the proposed method.
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1 Introduction
With the proliferation of digital cameras, enormous

numbers of digital images have been accumulated on

the Internet. Since manually processing such a huge

amount of data is almost impossible, automatic image

classification and retrieval are research areas of increas-

ing importance. Thus, a research topic called generic

object recognition has recently been brought back into

the spotlight in the computer vision community. In this

study, we focus on the problem of object categorization

among various tasks of generic object recognition.

It is generally recognized that object categorization

is a very difficult task due to the following two reasons.

First, objects of the same category differ in both color

and shape, that is, intra-category variation. Second, the

appearance of an object varies drastically depending on

imaging conditions such as camera viewpoints, the ob-

ject’s pose, and illumination. To cope with these dif-
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ficulties, previous work mainly studies feature detec-

tion [1], [2], object and category representation [3]–[5],

or classifiers [2], [6] robust against changes in object

appearance due to intra-category variation and variable

imaging conditions.

The previous studies however share a common lim-

itation. That is, most previous methods explicitly or

implicitly assume that an image contains objects from

a single category, and evaluate whether objects of each

category are present or not, independent of the presence

or absence of objects of the other categories. Therefore,

they are not well suited for recognizing objects of var-

ious categories coexisting in an image and do not con-

sider the fact that certain combinations of categories are

more likely to appear together than others. For exam-

ple, given an image of a street, it is highly probable that

a “car” will coexist with a “motorbike”, while it is very

unlikely that a “car” and a “cow” will appear together.

Accordingly, we present a novel method for object

recognition that explicitly deals with objects of multi-

ple categories coexisting in an image. Furthermore, our

proposed method aims to recognize objects by taking
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advantage of a scene’s context represented by the co-

occurrence relationship between object categories. The

use of such contextual cues makes it possible to classify

objects of different categories but with similar appear-

ance.

In order to achieve our objective, we chose to use

the bag-of-features (BoF) paradigm [3], which is now

known as one of the most promising paradigms for

generic object recognition. In particular, our proposed

method estimates the mixture ratios of multiple cate-

gories in an image via maximum a posteriori (MAP)

regression, where the likelihood is computed based on

the linear combination model of frequency distributions

(i.e. histograms) of local features, and the prior proba-

bility is computed from the co-occurrence relation. We

conducted a number of experiments using the PASCAL

dataset, and obtained the results that give support to the

effectiveness of the proposed method.

The rest of this paper is organized as follows. We

briefly summarize related work in Section 2. We de-

scribe our proposed method in Section 3, and report the

experimental results in Section 4. Finally, in Section 5,

we present concluding remarks.

2 Related work
We briefly summarize previous studies relating to the

basic idea of our proposed method from two distinct

points of view; multiple categories and context.

2.1 Multiple categories
In order to recognize objects of various categories

coexisting in an image, a segmentation-based approach

and a regression-based approach have been developed.

The former approach segments an image into regions

so that each segmented region contains objects of a sin-

gle category, and then conducts object categorization

for each region [7]. However, segmenting images of

complex scenes is not necessarily an easy task, and the

accuracy of classification depends on that of image seg-

mentation.

The latter approach estimates the mixture ratios of

multiple categories in an image via regression, where

the mixture ratio is defined based on the number of

feature points arising from each category in the BoF

paradigm (see Section 3.1). For example, Sivic et al. [8]

estimate the mixture ratios of various categories in an

individual image by applying probabilistic Latent Se-

mantic Analysis (pLSA) to a set of unlabeled images.

Their regression-based method is similar to ours in the

sense that the frequency distribution of feature points in

an image is modeled by the linear combination of fre-

quency distributions of feature points arising from var-

ious categories. However, their method finds the mix-

ture ratios based on the framework of maximum likeli-

hood (ML) estimation, and the prior information other

than images that can be inferred from scene’s context is

not taken into account. Consequently, it is difficult to

classify objects of different categories but with similar

appearance.

2.2 Context
Obviously the context of the scene is one of the most

important clues for understanding images and has in

fact been utilized in the field of generic object recog-

nition [9], [10]. However, the co-occurrence relation of

object categories has received little attention compared

with other contextual information such as size and po-

sition [7].

Recently, Rabinovich et al. [7] proposed a method for

object categorization based on the co-occurrence rela-

tion of object categories, and Galleguillos et al. [11] ex-

tended their method by incorporating the spatial context

with respect to the relative location of objects. First,

they segment an image into regions, and then tenta-

tively estimate a category label and its confidence for

each segmented region based on the BoF paradigm.

Finally, they revise the label based on the confidence

of the tentative label and the co-occurrence relation.

As we described before, however, image segmentation

itself is a potential limitation for images with com-

plex scenes. In addition, our method differs from their

segmentation-based method with respect to the manner

in which we describe the co-occurrence relationship be-

tween object categories. They model the co-occurrence

relation based on the presence of objects in terms of fre-

quencies, that is, the number of times that certain com-

binations of categories appear together. In contrast, we

model the co-occurrence relation in terms of mixture

ratios based on the number of feature points arising

from each category (see Sections 3.3 and 4.1 for de-

tails). The mixture ratios can capture contextual infor-

mation beyond the presence or absence of categories.

The ratios can be an indicator of the number of objects

when using a sparse keypoint detector (e.g. DoG) or

can represent the size of an object when using a dense

set of keypoints.

From the viewpoint of co-occurrence, the method for

image categorization proposed by Qi et al. [12] is re-

lated to our study. They also segment an image into

regions, and represent each region by a set of low-level

features such as color and size, and then classify the

image based on the co-occurrence of the low-level fea-

tures. Their co-occurrence describes the relationship

among features arising from a single category, and is

effective for classifying an image into one of given cat-

egories. On the other hand, our co-occurrence that de-

scribes the relationship between multiple categories is

essential for estimating mixture ratios of multiple cate-
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Fig. 1 (a) The mixture ratio of a “motorbike” is defined by the ratio between the number of feature points detected within
the bounding box and the total number of feature points. (b) The histogram of an entire image is described by the linear
combination of a motorbike’s histogram, a person’s histogram, etc.

gories in an image.

As described above, our proposed method is differ-

entiated from related work by the following: (i) our

method is a regression-based approach and avoids trou-

blesome segmentation for images with complex scenes,

and (ii) our method takes account of the co-occurrence

relation of object categories in terms of mixture ratios,

which captures more contextual information than that

in terms of frequencies.

3 Proposed method

3.1 Overview

We represent an image as a set of local features such

as SIFT [1] based on the BoF paradigm. Let us denote

the label of a category by c (c = 1, 2, 3, ...,C), and de-

fine the mixture ratio rc of the category in an image

as the ratio between the number of feature points aris-

ing from the category c and the total number of feature

points as shown in Fig. 1 (a). Here, C is the total num-

ber of categories and
∑C

c=1 rc = 1 by definition. We con-

catenate rc into a vector and denote the mixture ratios

of all categories in the image by r = (r1, r2, r3, · · ·, rC)T .

We compress the local features via vector quantiza-

tion (see Section 4.1), and call the quantized features

visual words. Let us denote the label of a visual word

by w (w = 1, 2, 3, ...,W), and the relative frequency of

the visual word w arising from an image by hw. Here, W

is the total number of visual words and
∑W

w=1 hw = 1 by

definition. We concatenate hw into a vector and denote

the relative frequency distribution of the visual words

arising from the image by h = (h1, h2, h3, ..., hW )T .

Hereafter, we often call the relative frequency distribu-

tion of visual words the histogram in short.

Our proposed method finds the mixture ratios r from

the histogram h of a given image based on the frame-

work of MAP estimation. The posterior probability

p(r|h) is given by the Bayes’ rule as

p(r|h) ∝ p(h|r)p(r). (1)

Here, as described in Sections 3.2 and 3.3, the likeli-

hood p(h|r) is derived from the relative frequency dis-

tribution of visual words, and the prior probability p(r)

is derived from the co-occurrence relation of object cat-

egories.

3.2 Likelihood
As shown in Fig. 1 (b), the histogram of an image

which includes a motorbike and a person is represented

by the linear combination of a motorbike’s histogram,

a person’s histogram, etc. Therefore, it is clear that the

relative frequency distribution h arising from the entire

image is described by the linear combination of rela-

tive frequency distributions hc arising from various cat-

egories in the image:

h =

C
∑

c=1

rchc, (2)

where the mixture ratios are the coefficients of the lin-

ear combination.

Assuming that the relative frequency of each visual

word is independent of those of the other visual words,
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the likelihood p(h|r) is represented by the product of

individual likelihoods p(hw|r) as

p(h|r) =

W
∏

w=1

p(hw|r). (3)

In addition, let us assume that each component

hcw of hc obeys a normal distribution N(µcw, σ
2
cw)

with the mean µcw and the variance σ2
cw. Then,

the linear combination of relative frequency, that is,

hw =
∑C

c=1 rchcw also obeys the normal distribu-

tion N(
∑C

c=1 rcµcw,
∑C

c=1 r2
cσ

2
cw) due to the reproductive

property of the normal distribution. Hence, the likeli-

hood is given by

p(h|r) =

W
∏

w=1

1
√

2π
∑C

c=1 r2
cσ

2
cw

× exp

⎡

⎢
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For the sake of simplicity in the following discussion,

we define Elike as

Elike = − ln p(h|r)

≃

W
∑

w=1

⎡
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Here, we omit constants for estimation.

3.3 Prior probability
We address the co-occurrence relationship between

two object categories. Specifically, we assume that the

mixture ratios obey a C-dimensional normal distribu-

tionNC(ν,Σ) with the mean vector ν and the covariance

matrix Σ. In the similar way to the above, we define Epri

as

Epri = − ln p(r) ≃ (r − ν)T
Σ
−1(r − ν). (6)

3.4 Cost function
Substituting (5) and (6) into the negative logarithm

of (1) and introducing a parameter λ, we define the em-

pirical cost function Epos as

Epos = Elike + λEpri. (7)

Our proposed method estimates the mixture ratios of

multiple categories in an image by minimizing this em-

pirical cost function. Because the mixture ratios are

non-negative and their summation is equal to 1, our

method results in a nonlinear minimization problem

with the following constraints:

minimize Epos

subject to rc ≥ 0 (c = 1, 2, 3, ...,C) (8)

C
∑

c=1

rc = 1.

The parameter λ is a relative weight between Elike,

which represents the degree by which the linear com-

bination of histograms fits the data, and Epri, which

represents the statistical constraints enforced by the co-

occurrence relationship between object categories. The

ML estimation (i.e. without the prior probability) cor-

responds to the case when λ = 0.

We note here that the solution of the optimization

problem is influenced by the initializing value. Our

current implementation finds the initial value by min-

imizing
∑W

w=1(hw −
∑C

c=1 rcµcw)2 under the constraints

rc ≥ 0 (c = 1, 2, 3, ...,C) and
∑C

c=1 rc = 1. Then, we op-

timize the exact cost function by using fmincon in the

MATLAB toolbox. The initial value is the solution of

(2) when the histogram of the c-th category hc is re-

placed by its mean µc.

4 Experiments
4.1 Procedures
4.1.1 Dataset

We used the PASCAL2006 dataset [13] for evaluat-

ing the performance of our proposed method. This

dataset contains objects of ten categories; “bicycle”,

“bus”, “car”, “cat”, “cow”, “dog”, “horse”, “motor-

bike”, “person”, and “sheep”. The dataset consists of a

set of data for training and another set for test. In addi-

tion, the annotations describing the labels and bounding

boxes of those objects are given for all images.

4.1.2 Bag of features
We used DoG1) and SIFT [1] for detecting and de-

scribing local features in images, and k-means cluster-

ing algorithm for vector quantization. Although other

feature detectors, descriptors [2], and quantization al-

gorithms [14] could be used as well, we implemented

the above standard BoF since the main purpose of our

experiments is to confirm the advantage of incorpo-

rating the co-occurrence relation into generic object

recognition.

First, we prepared 50 images for each category from

the training data by cropping regions inside the bound-

ing boxes. Then, local features were detected and

vector-quantized via k-means algorithm. The number

1) A dense set of keypoints would be better suited for recognizing uniform areas

such as sky.
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Fig. 2 Example images from (a) BG1, (b) BG2, and (c) the
histograms of these categories when W = 32.

of visual words W are 32, 64, 128, 256, 512, and 1024.

We computed the histograms of those 500 images and

finally obtained the means µcw and variances σ2
cw of rel-

ative frequencies for describing the likelihood in (5).

So far, we implicitly assume that images contain ob-

jects of only given categories. However, objects of

other categories generally appear in images. Accord-

ingly, we consider those objects as backgrounds, and

investigate the effects of adding background categories

to the ten object categories. We manually classified

backgrounds into two categories: one contains artificial

materials such as buildings (BG1) and the other con-

tains natural objects such as grass (BG2). Then, we

selected 50 images containing each background cate-

gory and detected local features from the outside of the

bounding boxes. After that, we calculated the statis-

tics of the background histograms. In Fig.2, we show

example images from (a) BG1, (b) BG2, and (c) the

histograms of these categories when W = 32. We can

find that the background histograms significantly differ

from each other.

4.1.3 Co-occurrence of categories
We acquired the following two co-occurrence rela-

tions of object categories from 2618 images in the train-

ing data. The first type of co-occurrence relation is de-

scribed in Section 3.3. Because the labels and bounding

boxes are given, calculating the mixture ratio of each

category is straightforward. We denote the mean vector

and the covariance matrix of the mixture ratios by νr

and Σr .

The second type of co-occurrence relation is used

for (partially) comparing our proposed method with the

method proposed by Rabinovich [7]. Specifically, we

confirm the advantage of the co-occurrence relation in

terms of mixture ratios over that in terms of frequen-

cies. We calculate the mean vector ν f and covariance

matrix Σ f based on the presence of objects: rc = 1 if

objects of the category c are present and rc = 0 other-

wise.

Fig. 3 shows the two covariance matrices Σr and Σ f

(we show only the lower left values due to symmetry).

The combinations of categories with positive covari-

ance tend to appear together, whereas those with neg-

ative covariance have a tendency not to appear at the

same time. For example, a “person” often appears with

a “motorbike” and a “horse”, but a “cat” rarely appears

with a “dog”. Interestingly, we observe that the sign of

covariance differ between Σr and Σ f for a few combi-

nations of categories.

4.1.4 Measure for quantitative evaluation
We used all of 2686 images from the test data. For

quantitative evaluation, we use a measure known as the

Area Under Curve (AUC), i.e. the area under the Re-

ceiver Operating Characteristic (ROC) curve, which is

commonly used in the field of generic object recogni-

tion. Specifically, we consider the estimated mixture

ratio of a given category as the probability that objects

of that category are present in an image. Namely, we

consider objects of the category c to be present if rc

is greater than a certain threshold, and draw the ROC

curve by varying the threshold.

In general, performance is considered to be better as

the AUC grows closer to one. However, the way of

evaluation that regards the ratio as the probability has

some limitations. For example, an object with a small

mixture ratio will be considered to be a false negative

even though its mixture ratio is accurately estimated by

our method, and as a result would degrade the AUC. We

note that because our method characterizes the mixture

ratios of multiple categories (i.e. not the presence and

absence of objects), the AUC may not provide a holistic

measure.
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Fig. 3 The covariance matrices in terms of mixture ratios (top) and frequencies (bottom). The numerical values are multi-
plied by 100 for display purpose.
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Fig. 4 AUC: incorporating the co-occurrence relation in
terms of mixture ratios.

4.2 Results

4.2.1 Effects of the co-occurrence relation in terms of
mixture ratios

First, we examined the effects of incorporating the

co-occurrence relationship in terms of mixture ratios

Fig. 5 RMSE: incorporating the co-occurrence relation in
terms of mixture ratios.

(νr,Σr) into generic object recognition. Fig. 4 shows

the average of AUCs with respect to the ten object cat-

egories for various combinations of the weight λ and

the number of visual words W. We can find that the re-

sults using the prior probability are better than those of
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Fig. 6 Mixture ratios found via ML estimation (ML), via MAP estimation using the co-occurrence relation in terms of fre-
quencies (MAP: freq)/mixture ratios (MAP: ratio), and ground truth.

ML estimation (λ = 0). Our proposed method and ML

estimation achieve maximum AUCs of 0.73 and 0.66

respectively. Thus, we can say that the co-occurrence

relation in terms of mixture ratios works well for rec-

ognizing multiple objects.

In Fig. 6, we show the estimated mixture ratios and

the ground truth for some images. For example, the

ML estimation (ML) yields the result of “motorbike”

for the left image. On the other hand, our method based

on MAP estimation (MAP: ratio) yields the result of

“motorbike” and “person”, which is consistent with the

ground truth. Fig. 5 shows the root-mean-square er-

rors (RMSEs) of the estimated mixture ratios. One can

see that the use of the co-occurrence relation decreases

RMSEs. These results also support the effectiveness

of the proposed method. The nonlinear optimization

takes about 0.3 seconds per image on a typical Core2

PC when W = 256 and λ = 256.

4.2.2 Effects of the co-occurrence relation in terms of
frequencies

Second, we examined the effects of incorporating

the co-occurrence relationship in terms of frequencies

(ν f ,Σ f ). In the similar manner to the above, we show

the average of AUCs in Fig. 7. Also in this case, the
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Fig. 7 AUC: incorporating the co-occurrence relation in
terms of frequencies.

results that make use of the prior probability are bet-

ter than those of ML estimation in most combinations.

However, the performance of the method using the co-

occurrence relation in terms of frequencies is worse

than that using the relation in terms of ratios. There-

fore, one can conclude that the co-occurrence relation

in terms of frequencies (i.e. based only on the presence

of categories) is also effective for object recognition,
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Fig. 8 RMSE: incorporating the co-occurrence relation in
terms of frequencies.

Table 1 AUC for each category: ML estimation (ML), MAP
estimation using the co-occurrence relation in terms of fre-
quencies (MAP: freq)/mixture ratios (MAP: ratio), and the
winner of PASCAL2006.

Category ML MAP: MAP: PASCAL

freq ratio 2006

bicycle 0.778 0.823 0.784 0.948

bus 0.834 0.859 0.851 0.981

car 0.648 0.704 0.828 0.975

cat 0.577 0.670 0.679 0.937

cow 0.551 0.787 0.778 0.938

dog 0.584 0.630 0.607 0.876

horse 0.624 0.589 0.604 0.926

motorbike 0.715 0.724 0.765 0.969

person 0.542 0.476 0.619 0.855

sheep 0.804 0.808 0.757 0.956

but the relation considering mixture ratios works better.

We show the estimated mixture ratios (MAP: freq) in

Fig. 6 and their RMSEs in Fig. 8.

In Table 1, we show the AUC for each category: ML

estimation (ML) with W = 512, MAP estimation using

the co-occurrence in terms of frequencies (MAP: freq)

with W = 256 and λ = 256, and that in terms of ratios

(MAP: ratio) with W = 256 and λ = 256. Similar to the

average AUCs show in Fig. 4 and Fig. 7, one can find

the effectiveness of incorporating the co-occurrence re-

lation into object recognition. Especially, by using the

co-occurrence in terms of ratios, the AUCs for “car”

and “person” are significantly improved. We also show

the AUCs of the PASCAL2006 winner in Table 1. As

described in Section 4.1, it is not appropriate to directly

compare these AUCs with our AUCs computed by in-

terpreting mixture ratios as probabilities. Nevertheless,

Fig. 9 AUC: adding background categories.

Fig. 10 RMSE: adding background categories.

some common tendencies are observed: the AUCs for

“dog”, “horse”, and “person” are relatively smaller than

others.

4.2.3 Effects of background categories
Finally, we examined the effects of adding back-

ground categories to the ten object categories. Fig. 9

shows the results obtained by using the co-occurrence

relation (νr,Σr). Although the results are similar to

the previous experiments in the sense that the co-

occurrence relation works well, the performance be-

comes slightly worse than the case without the back-

ground categories. As described in Section 4.1, this is

because the background categories lower the mixture

ratios of the object categories, and therefore increase

the number of false negatives.

We show the estimated mixture ratios and the ground

truth in Fig.11. Here, “bg” stands for the summation of

the mixture ratios of two background categories. When

we ignore the background categories (C=10), the esti-

mated ratios are significantly different from the ground
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Fig. 11 Mixture ratios found via MAP estimation without (C=10)/with (C=12) background categories, and ground truth.

truth, because the histogram of visual words arising

from backgrounds is forced to be described by those

arising from the object categories. On the other hand,

when the background categories are combined (C=12),

the mixture ratios of the backgrounds have larger val-

ues, and those of the object categories come closer to

the ground truth. These results imply the effectiveness

of the background categories for recognizing images

with large background area.

Fig. 10 shows the RMSEs of the estimated mixture

ratios. One can see that the co-occurrence relation

works well in this case. However, similar to the AUCs,

the performance becomes worse than the case without

the background categories. The performance could be

improved by incorporating the co-occurrence relation-

ship between object categories and background cate-

gories.

5 Conclusions and future work
In this paper, we proposed a novel method for rec-

ognizing objects of multiple categories coexisting in

an image. In particular, our proposed method esti-

mates the mixture ratios of multiple categories in a

single image via regression by incorporating the co-

occurrence relationship between object categories. We

conducted a number of experiments by using the PAS-

CAL dataset and confirmed the effectiveness of the pro-

posed method.

Future directions of this study include incorporating

the co-occurrence relationship among more than three

categories and modeling background categories via un-

supervised learning. In addition, individual elements of

BoF such as feature detection, description, and vector

quantization could be improved.
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