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Abstract. We introduce a new algorithm for identifying objects in clut-
tered images, based on approximate subgraph matching. This algorithm
is robust under moderate variations in the camera viewpoints. In other
words, it is expected to recognize an object (whose model is derived
from a template image) in a search image, even when the cameras of the
template and search images are substantially different. The algorithm
represents the objects in the template and search images by weighted
adjacency graphs. Then the problem of recognizing the template object
in the search image is reduced to the problem of approximately match-
ing the template graph as a subgraph of the search image graph. The
matching procedure is somewhat insensitive to minor graph variations,
thus leading to a recognition algorithm which is robust with respect to
camera variations.

1 Outline

The present paper describes a method for finding objects in images. The typical
situation is that one has an image of the object sought – the template image.
The task is to find the object in a new image, taken from a somewhat different
viewpoint, possibly under different lighting. The method used is based on ap-
proximate attributed graph matching. As a first step, the image is segmented
into regions of approximately constant color. The geometrical relationship of
the segmented colored regions is represented by an attributed graph, in which
each segment corresponds to a vertex in the graph, and proximate regions are
joined by an edge. Vertices are annotated with the size, shape and color of the
corresponding segment. Finding an object in a new image then comes down to
an approximate graph-matching problem in which a match is sought in the new
image for a subgraph approximating the one corresponding to the sought object.
The graph matching can only be approximate, because of the inexactness of the
segmentation process, and the changed aspect of the object, due to change of
lighting, viewpoint, and possible partial occlusion.

There has been much previous work in the area of recognition from color. An
important body of work is concerned with what has been broadly called color
constancy [27, 12, 9, 11, 17, 18, 10, 4]. The concern of such papers is to recognize
an object based on its color alone. Typically eigenspace or histogram techniques



or similar approaches are used to characterize an object. These methods rely on
the distribution of colors in a usually vaguely defined region of an image. Under
different conditions of lighting, the histogram, or eigenspace region or surface will
vary. Variously sophisticated models have been proposed for this changeability,
ranging from very simple models such as simple intensity variability ([27]) to
affine color transformations ([18]) and physical atmospheric illumination models
([19]). Generally such papers are not specifically concerned with locating an
object to be recognized in an image, or in finding an object that occupies only a
small part of an image. An exception is [19] in which recognition is at the level
of individual pixels. In addition, any geometrical information about the relative
locations of different colored parts of the image is usually lost (for instance in
histogramming techniques).

Similar in concept, a recent popular approach to recognition has been the
appearance-based learning method of Nayar and Murase, also Lin and Lee ([22,
25, 26, 21]). This approach relies uses surfaces in an eigenspace to represent the
views of an object under different poses. The method becomes increasingly com-
plex as the number of degrees of freedom of pose and lighting increase. Once
more, such methods are best suited for recognition of an object that constitutes
a complete image. Searching for a candidate object in a complex scene is treated
as a separate issue.

An alternative line of attack on object recognition has been to use the geom-
etry of the object. Typically, this involves edge detection and grouping, followed
by some sort of indexing or template matching based on geometry. Among many
possible references we cite one ([32]). The present work seeks to amalgamate the
color constancy and geometric approaches to object recognition. Previous work
in amalgamating geometry and color includes [23, 5, 24, 7, 30, 6]. Earlier work of
Hanson and Riseman ( [15, 16]) lays a foundation for this approach. Among this
cited work the approach of [5] is related to ours by dealing with blobs, which
are ellipsoidal areas of consistent color. Similarly, in our approach, regions of an
image segmented obtained from segmentation are represented by their principal
moments, effectively treating them as ellipses.

2 Extracting Object Faces from Images

The first step in the algorithm is the division of the image into faces (or regions)
of approximately constant color. The face extraction process proceeds in the
three basic steps, which will be outlined in subsequent sections.

2.1 Detecting Approximate Region Boundaries

First the boundaries (that is edges) hypothesized to enclose the region are de-
tected. As a first step in this process, the edges in the image are detected using
a Canny-style edge detector, and line segments are fitted to the resulting edgels.
It is reasonable to assume that the region boundaries pass through the result-
ing line segments, since under our assumptions, a face boundary will produce



Fig. 1. Left : The result of edge detection in a template image containing a cup. Right

: The result of adjusting lines fitted to the cup edge segmentation.

a discontinuity in the intensity and color variation of the enclosed region, and
thus show up during edge detection. However, typically, these boundaries are
detected in the form of numerous small broken line segments (see figure 1(left)).
It is difficult to identify the exact geometry of the enclosed faces directly from
these line segments. To improve the boundary geometries, we use some heuristics
to further process the line segments. Some of these heuristics are:

– Merge lines that are nearly collinear and within some proximity threshold of
each other. This is useful in creating a single edge which may have broken
up into various smaller (but nearly parallel) segments during edge detection.

– Create T-Junctions from pairs of lines, one of which ends close to the inside
of, and away from the endpoints of, the other. This is useful in recreating
intersections of edges on occluding objects. This will help in obtaining well-
defined faces on both objects.

– Intersect lines whose end-points are close to each other, and the lines are at
obtuse angles. This recreates the corners of an object which may not have
been detected during segmentation.

Figure 1(right) shows the result of applying these heuristics on the segmentation
of the image in figure 1(left). In our experience, these heuristics aid significantly
in correcting most of the degenerate boundary segments.

2.2 Estimating Initial Uniform Regions: Constrained Triangulation

Using the boundary line segments from the previous step, we now generate an
initial partition of the image into triangles of uniform intensity and color. This is
accomplished by a constrained triangulation of the boundary lines. A constrained
triangulation produces a set of triangles which join nearest points (end-points of
the lines), but respect the constraining boundary lines. That is, each boundary
line segment will be an edge of some triangle.



Fig. 2. Constrained triangulation on the adjusted cup lines. On the left, the triangles
only; on the right the triangles superimposed on the image.

Since all triangles are formed from the end-points and lines on the boundaries
of the faces, each triangle lies completely inside a face. Moreover, since these
triangles cover the whole image, each face can be represented by a union of a
finite number of these triangles. As an example, see the result of constrained
triangulation on an image segmentation in figure 2.

2.3 Extracting Object Faces: Region Merging

In the next step, a region-merging procedure is used to incrementally generate
the visible object faces in the image. Starting with the triangular regions from
the constrained triangulation, neighboring regions are successively merged if they
have at least one of the following properties:

1. Similar color intensities:Two adjacent regions are merged if the difference
between their average color intensity vectors is less than a threshold. This
is a reasonable merging property since neighboring faces in objects are at
angles to each other, and are likely to cast images of different intensities.
As a refinement of this method, one could merge two regions based on a
decision of which of two hypotheses (the two regions are separate; the two
regions should form a single region) is preferable based on the color statistics
of the regions. In addition, a linear or more complex color gradient over a
face could be modeled. These methods have been suggested in [15, 16] but
we have not tried them yet.

2. Unsupported bridge: Two adjacent regions are merged if the percentage of
edges common between them, which are unsupported, is larger than a thresh-
old. An edge is said to be supported if a specified percentage of its pixels
belong to an edgel detected by the edge detector. Merging based on this prop-
erty will ensure the inclusion of those boundary segments which were missing
from the set of line segments derived from edgels. This is demonstrated by



the fact that a number of non-constraining lines in the triangulation end up
being found supported.

After each merge, the properties (size and color) of the new, larger region
are recomputed from the properties of the two regions being merged.

Fig. 3. Faces of the cup (left) and urban scene (right) extracted by our algorithm.

The merging iterations continue until the color intensities of each pair of
neighboring regions are sufficiently different, and most of the edges common be-
tween them have support from the segmentation. Under our assumptions about
the nature of the objects and the illumination, it is reasonable to assume that
the resulting regions are likely to be images of the faces of objects pictured in
the image. As an illustration, see figure 3 which shows the faces extracted using
our algorithm.

The result of the segmentation and merging algorithm is a set of regions with
associated color (RGB) values. Typically, there remain small narrow regions lying
along region boundaries. These are removed from consideration, since they do
not represent meaningful faces in the image, but are caused by color transition
across a boundary. Similarly, any residual very small regions are removed. Thus,
small regions less that about 30 square pixels sometimes remain after the region
merging, since slight variations of color have prevented them from being merged
with adjacent large regions.

3 Deriving Graph Representations of Objects

Once all the object faces in the image have been generated, they are represented
as a graph. To capture the relative placements of the objects in the image,



and the topology of the scene, an adjacency graph of the faces in the scene is
constructed.

Each vertex in the graph represents a region, and is annotated with the shape,
position and color attributes of the region. Shape is represented by the moment
matrix of the region, from which one may derive the area of the region, along
with the orientation and ratio of the principal axes of the region. In effect, the
region is being represented as an ellipse. This shape representation is of course
an extremely rough representation of the shape of the region. However, it is also
quite forgiving of variations of shape along the boundaries, or even a certain
degree of fragmentation of the region. Since matching will not be done simply on
the basis of a region-to-region match, but rather on matching of region clusters,
this level of shape representation has proven to be adequate. More precise shape
estimates have been considered, however. Their use must be dictated by the
degree of accuracy and repeatability of the segmentation process, however. The
color of the region is represented by an RGB color vector. Other representations
are of course possible, and have been tried by other authors ([15, 16]).

Because of the possibility of regions being fragmented or regions being im-
properly merged, it turns out to be inappropriate to use edges in the graph to
represent physically adjacent regions. The adjacency graph generated by such a
rule is too sensitive to minor variations in the image segmentation. Instead the
choice was made of joining each vertex to the vertices representing the N closest
regions in the segmented image. A value of N = 8 was chosen. Thus, each vertex
in the graph has 8 neighbors.

4 The three-tier matching method.

The reduction of the image to an attributed graph represents a significant sim-
plification. The graph corresponding to a typical complicated image (the search
image) may contain up to 500 or so vertices, whereas the graph corresponding
to an object to be found (the template) may contain 50 vertices or so. Thus a
complete one-on-one comparison may be carried out in quite a short time.

The search is carried out in three phases, as follows:

1. Local comparison. A one-to-one comparison of each pair of vertices is
carried out. Each pair of vertices, one from the template graph and one from
the search graph is assigned a score based on similarity of shape, size and
color, within rather liberal bounds.

2. Neighborhood comparison. The local neighborhood consisting of a ver-
tex and its neighbors in the template graph is compared with a local neigh-
borhood in the search graph. A score is assigned to each such neighborhood
pairing based on compatibility, and the individual vertex-pair scores.

3. Global matching. A complete graph-matching algorithm is carried out,
in which promising matches identified in the stage-2 matching are pieced
together to identify a partial (or optimally a complete) graph match.

Each of these steps will be described in more detail in later sections. The
idea behind this multi-stage matching approach is to avoid ruling out possible



matches at an early stage, making the matching process robust to differences in
the segmentation and viewpoint. This approach is motivated from the scoring
method used in tennis matches in which a three-tier scoring system is used –
game, set match. At each stage, slight advantages are amplified. A player who
wins 55% of points will win 62% of games, 82% of sets and 95.7% of matches.
Thus, the better player will (almost) always win despite temporary setbacks. In
the same way the three-tier graph matching method provides a robust way of
converging to the correct match, despite local fluctuations of region-to-region
scoring.

4.1 Local matching.

In local matching, individual vertex pairs are evaluated. Each pair is assigned
a score based on shape and color. Recall, that each region is idealized as an
ellipse. Shapes are compared on the basis of their size and eccentricity. Up to a
factor of 2 difference in size is allowed without significant penalty. This allows
for different scales in the two images, within reasonable bounds.

Because of different lighting conditions, colors may differ between two images.
The most significant change in color, however is due to a brightness difference.
To allow for this, colors are normalized before being compared. The color of a
region is represented by a vector, and vectors that differ by a constant multiple
are held to represent the same color.

The cost of a local match between two vertices is denoted by Clocal.

4.2 Neighborhood matching.

Each vertex (here called core) in the graph has eight neighbors representing the
eight closest regions. In comparing the local neighborhood of one core vertex
v0 with the local neighborhood of a potential match v′0, an attempt is made to
pair the neighbor nodes of v0 with those of v′0. In this matching the order of the
neighbor vertices must be preserved. Thus, let v1, v2, . . . , vn be the neighbors of
one core vertex, given in cyclic angular order around the core, and let v′1, . . . , v

′
m

be the neighbors of a potential match core, similarly ordered. One seeks subsets
S of the indices {1, . . . , n} and S′ of the indices {1, . . . , m} and a one-to-one
mapping σ : S → S′ so that the matching vi ↔ v′

σ(i) preserves cyclic order. The
total cost of a neighborhood match is equal to

Cnbhd = w0Clocal(v0, v
′
0) +

∑

i∈S

wiClocal(vi, v
′

σ(i))

where wi is a weight between 0 and 1 that depends on the ratio of distances
between the core vertices and the neighbors vi and v′

σ(i). For each pair of core

vertices v0, v
′
0, the neighborhood matching that maximizes this cost function is

speedily and efficiently found by dynamic programming.



4.3 Graph matching

In previous sections, the template image and the search image were reduced to
a graph, and candidate matches between vertices in the two images were found.
The goal of this section is to generate a mutually consistent set of vertex matches
between the template and the search image. An association graph G [2, 8] pro-
vides a convenient framework for this process. In considering the association
graph, it is important not to confuse it with the region adjacency graph that
has been considered so far. In the association graph, vertices represent pairs of
regions, one from each image. Such a vertex represents a hypothesized match-
ing of a region from the template image with a region from the search image.
Weighted edges in the association graph represent compatibilities between the
region matchings denoted by the two vertices connected by the edge.

Thus, a vertex in the association graph is given a double index, and denoted
vij , meaning that it represents a match between region Ri in the template image
and region R′

j in the search image. This match may be denoted by Ri ↔ R′
j . As

an example, if j1 �= j2 then vij1 is not compatible with vij2 . This is because vertex
vij represents a match Ri ↔ Rj1 and vij2 represents the match Ri ↔ Rj2 , and it
is impossible that region Ri should match both R′

j1
and R′

j2
. Thus, vertices vij1

and vij2 are incompatible and there is no edge joining these two vertices in the
association graph. There are other cases in which matches are incompatible. For
instance, consider a vertex vij representing a match Ri ↔ R′

j and a vertex vkl

representing a match Rk ↔ R′
l. If regions Ri and Rk are close together in the

template image, whereas R′
j and R′

l are far apart in the search image, then the
matches Ri ↔ R′

j and Rk ↔ R′
l are incompatible, and so there is no edge joining

the vertices vkl and vij . Matches may also be incompatible on the grounds of
orientation or color.

Formally, the association graph G = {V,E} is composed of a set of vertices
V and a set of weighted edges E ⊆ V ×V. Each vertex v represents a possible
match between a template region and a search region. If there are N template
regions and M search regions then V would have NM vertices (see figure 4). In
order to reduce the complexity of the problem, the graph G is pruned so that
only the top 5 assignments for each template region are included in V. These
nodes are labeled vij which is interpreted at the jth possible assignment for the
ith template region. A slack node for each template region is inserted into the
graph. The slack node vi0 represents the possibility of the NULL assignment for
the ith template region, that is, no matching region exists in the other image.
If an edge e = (vij , vkl) exists then the assignments between nodes vij and
vkl are considered compatible. The weights for the edges are derived from the
compatibility matrix C which is defined as:

C(ij)(kl) =























0 if j = 0 or l = 0
0 if i = k and j �= l

0 to 1 if (i, j) = (k, l)
0 to 1 if vij and vkl are compatible
−N if vertices vij and vkl are not compatible



Where N is the number of template regions. The value of C(ij)(ij) represents
the score given to the individual assignment defined by node vij . A subgraph
of G represents a solution to the matching problem. The choice of weight N

for an incompatible match is to discriminate against incompatible matches and
make certain that a set of edges with maximum weight represents a clique of
compatible matches.

Template 
Objects

a1

a2

a3 a4

c4

c3

c2
c1

b4

b3

b2

b1

Reference 
Objects

Association 
Graph

b

c

1

2
3

4

a

Fig. 4. The template and search images are reduced to a set of regions. Each possible
pair of assignments are assigned to a node in the association graph. Edges in the graph
connect compatible assignments.

The method of determining compatibility and assigning compatibility scores
C(ij)(kl) for compatible matches is as follows. Consider a candidate region pair
Ri ↔ R′

j . The local neighborhood of region Ri has been matched with neigh-
borhood R′

j during the neighborhood matching stage. In doing this, a set of
neighbors of the region Ri have been matched with the neighbors of the region
R′

j . This matching may be considered as a correspondence of several regions
(a subset of the neighbors of Ri) with an equal number of regions in the other
graph. From these correspondences a projective transformation is computed that
maps the centroid of Ri to the centroid of R

′
j while at the same time as nearly as

possible mapping the neighboring regions of Ri to their paired neighbors of R′
j .

Thus, the neighborhood correspondence is modeled as closely as possible by a
projective transformation of the image. Let H be the projective transformation
so computed.

Now let Rk ↔ R′
l be another candidate region match. To see how well this is

compatible with the match Ri ↔ R′
i, the projective transformation H is applied

to the regionRk to see how wellH(Rk) corresponds with R′
l. As a measure of this

correspondence, the vector from R′
jR

′
l is compared with the vector R′

jH(Rk).
This is illustrated in figure 5. A compatibility score is assigned based on the
angle and length difference between these two vectors. The two assignments are
deemed incompatible if the angle between the two vectors exceeds 45 degrees,
or their length ratio exceeds 2.



A color compatibility score is also defined. The correspondence of a core
vertex and its neighbors with the matched configuration in the other image can
be used to define an affine transformation of color space from the one image to
the other. An affine color transformation is a suitable model for color variability
under different lighting conditions ([18]). The affine transformation defined for
one matched node pair is used to determine whether another matched node pair
is compatible.

The final compatibility score is computed as

C(ij)(kl) = Cnbhd(i, j)× Cnbhd(k, l)×Angle compatibility score×

length ratio compatibility score× color compatibility score

H

H

Ri
R'j

Rk HRk R'l

Fig. 5. Compatibility of two matches is determined by applying the transformation H

defined by the neighbors of the first pair (Ri, R
′

j) to the region Rk belonging to the
second pair. The positions of HRk and R′

l relative to R′

j are compared.

4.4 Solution Criteria

The Hough transform or matched filtering approach assumes that a global trans-
formation defined by a relatively small set of parameters can be used to map
the template regions onto the search regions. The largest set of nodes in V

which is consistent with a particular transformation would then constitute a
final solution. However just because two nodes are consistent with a particu-
lar transformation does not necessarily imply that the two nodes are consistent
with each other. For instance, in the association graph of 4, a match (c, 4) is
compatible with (b, 1) and (b, 1) is compatible with (c, 3). However (c, 3) is not
compatible with (c, 4), since c can not be simultaneously matched with both 3
and 4.

A popular graphical approach which can take advantage of some of the in-
formation contained in the edge structure is a node clustering technique where a
simple depth first search is used to determine the largest connected subgraph of



G. A connected graph is one in which a path of edges exist between every pair
of nodes in the graph. This solution represents a certain amount of consistency.
However as before, the statement that node a is consistent with node b and node
b is consistent with node c does not necessarily imply that node a is consistent
with node c. This leads to the conclusion that in order to take full advantage
of the mutual constraints embedded in the association graph, the final solution
should represent a clique on G.

A subset R ⊆ V is a clique on G if vij , vkl ∈ R implies that (vij , vkl) ∈ E.
The search for a maximum clique is known to be an NP complete problem
[14]. Even after pruning, the computational costs associated with exhaustive
techniques such as [1] would be prohibitive. It has been reported [3] that de-
termining a maximum clique is analogous to finding the global maximum of
a binary quadratic function. Authors such as [20, 28] have taken advantage of
this idea by using relaxation and neural network methods to approximate the
global maximum of a quadratic function, where this maximum corresponds to
the largest clique in the association graph. Although the largest clique, which
is based on the information contained in E, ensures a high level of mutual con-
sistency, the nuances of the compatibility measures in C are lost. In order to
take advantage of the continuous nature of these edge strengths, a quadratic
formula is specified where the global maximum corresponds to the clique that
has the maximum sum of internal edge strengths. An approach based on Gold
and Rangarjans’s gradual assignment algorithm (GAA) is used to estimate the
optimal solution. The GAA is an iterative optimization algorithm which treats
the problem as a continuous process but converges to a discrete solution. Even
though the solution might be generated based on a local maximum this solution
will be guaranteed to be a maximal clique. A maximal clique is one that is not
a proper subset of any other clique.

4.5 Binary Quadratic Formulation

A binary solution column vectorm is defined such that ifmij = 1 then vij is part
of the final solution and if mij = 0 then vij is excluded from the final solution.
If the slack node vi0 is part of the final solution then the template region i has
no assignment. The columns and rows corresponding to the slack nodes in the
compatibility matrix are filled with 0 entries. From a graph theory point of view,
the slack nodes are connected to all other nodes by edges with zero weight.

The binary quadratic formula F (m) is defined as:

F (m) =m⊤Cm (1)

where C is the compatibility matrix defined in section 4.3. In order to ensure
that each template region can be mapped to at most one search region, the final
solution is constrained such that

6
∑

j=1

mij = 1 for all i . (2)



A solution corresponding to a global maximum of F (m) represents a set of
assignments with the largest amount of mutual compatibility. Any maximum of
F (m) (global or local) represents a maximal clique on G. To show this consider a
particular solution m̂ where there exists i, j, k, l such that m̂ij = 1 and m̂kl = 1
but that the nodes vij and vkl are incompatible assignments. Clearly this is the
only condition necessary for the solution m̂ not to qualify as a clique. A second
solution m̄ is introduced, the same as m̂ except that m̄ij = 0 and m̄i0 = 1, which
means that region i has no assignment. Using the definition of C (see section
4.3) and equations 1 and 2 it can be shown that the difference between F (m̄)
and F (m̂) is

F (m̄)− F (m̂) = 0− 2
N

∑

q=1

6
∑

r=1

m̂qrC(ij)(qr) ≥ 2(N − (N − 1)) = 2 (3)

Therefore F (m̂) does not represent a maximum which means that only a clique
on G can generate a maximum on F (m). The next step is to find a solution
which is a maximum of F (m).

4.6 Approximating the Clique with the largest degree of mutual

compatibility

As previously stated the search for global maximum of 0-1 quadratic equations
is known to be an NP complete problem so that an approximate solution to
the optimum value of F (m) will have to be estimated. The GAA is a recursive
routine used to solve a general assignment problem under the constraints that
assignments must be one to one. Any binary quadratic cost function can be
used to drive the GAA optimization process. When generating the compatibility
matrix, two nodes vij and vkl are considered incompatible if they map template
regions i and k to the same search region. Inclusion of vij and vkl in the final
solution would contradict the statement that a final solution is guaranteed to
be a maximal clique. This means that the portion of the GAA that prevents a
many to one condition from occurring need not be implemented.

Initially m is treated as a continuous vector. Several constraints are placed
on the optimization process:

∀ij mij ≥ 0 (4)

∀i

6
∑

j=1

mij = 1. (5)

During each iteration t the update rule for the GAA is as follows:

mij(t+ 1) =
e

β
δF (t)

δmij(t)

∑6
k e

β
δF (t)

δmik(t)

(6)



where β is a positive number, and

δF (t)

δmij(t)
= 2

N
∑

p=1

6
∑

q=1

mpq(t)C(ij)(pq) . (7)

The update equation 6 ensures that conditions 4 and 5 are maintained. Initially
β is set to a low value so that multiple solutions can coexist. The value of β

is gradually increased. As can be seen from equation 6, as β becomes large the
values of m are forced to discrete values of 0 or 1.

Figure 6 shows an example of the optimization process. A sequence of snap-
shots graphically displays the evolution of the solution vector for a template
image of 15 regions. After the first initial iterations, the NULL assignments are
favored because of the inconsistencies between rival solutions. Between time 1
and time 3 a dominant solution begins to emerge. The solution is refined during
time 4 and time 5. At time 6 the algorithm has converged to a final solution and
by time 7 the coefficients have taken on binary values.

5 Results

The algorithm was tried on several sets of color images. The first example was
a computer manual, shown in figure 7. The manual was easily found in different
images of a cluttered table-top, even when the manual was partially occluded.
Note that a second manual shown in the images is not found, since it is actually
a different color, though this is not obvious from the grey-scale images shown in
the paper. Other examples are shown in figures 10 and 9.

6 Conclusion.

The amalgamation of region segmentation algorithms with modern color con-
stancy methods gives the possibility of improved object recognition in color and
multi-spectral imagery. The adoption of an inexact graph-matching approach
makes recognition independent of moderate lighting and view-point changes.
The graph matching approach was able to generate solutions with consistency
at multiple levels. The region adjacency graphs were able to highlight image to
template correspondences with strong local support. By insisting that the final
solution must represent a clique on the association graph, global consistency
was achieved. Although the maximum clique problem is NP complete, it was
demonstrated that strong maximal cliques can be generated using a variation of
the gradual assignment algorithm.



time 0 time 1 time 2 time 3

time 4 time 5 time 6 time 7

Evolution of Decision Vector

Fig. 6. Illustration of the GAA optimization process. The coefficients for the solution
vector m are shown at various points in time. Each row represents the coefficients
corresponding to a particular template region. The last column at each time represent
the coefficients for the NULL assignments. Initially the coefficients take on continuous
values between 0 and 1. By the end of the process only binary values exist.



Fig. 7. The computer manual used as a template

Fig. 8. Two examples of recognition. On the left the search image, and on the right the
outlines of the regions matched against the template.



Fig. 9. Recognition of cup image. On the left is the template, in the center the search
image and on the right the identified regions of the located cup. Note that the cup in
the search image is seen from a different angle from the template image. The letters
REC are visible in the template, but only RE is visible in the search image.

Fig. 10. Recognizing a building. On the left the template, and on the right the search
image showing the recognized building.
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