
Recognizing Partially Occluded Faces from a

Single Sample Per Class Using String-Based
Matching

Weiping Chen1 and Yongsheng Gao1,2

1 School of Engineering, Griffith University, Australia
2 National ICT Australia, Queensland Research Lab

{luke.chen,yongsheng.gao}@griffith.edu.au

Abstract. Automatically recognizing human faces with partial occlu-
sions is one of the most challenging problems in face analysis commu-
nity. This paper presents a novel string-based face recognition approach
to address the partial occlusion problem in face recognition. In this ap-
proach, a new face representation, Stringface, is constructed to integrate
the relational organization of intermediate-level features (line segments)
into a high-level global structure (string). The matching of two faces
is done by matching two Stringfaces through a string-to-string match-
ing scheme, which is able to efficiently find the most discriminative lo-
cal parts (substrings) for recognition without making any assumption
on the distributions of the deformed facial regions. The proposed ap-
proach is compared against the state-of-the-art algorithms using both
the AR database and FRGC (Face Recognition Grand Challenge) ver2.0
database. Very encouraging experimental results demonstrate, for the
first time, the feasibility and effectiveness of a high-level syntactic method
in face recognition, showing a new strategy for face representation and
recognition.
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1 Introduction

Face recognition has attracted much attention in both academic and industrial
communities during the past few decades. A great deal of progress has been
made to robustly identifying faces under controlled condition. However, recog-
nizing faces under uncontrolled conditions remains challenging open problems in
face recognition community. A face recognition system can be confront occluded
faces in real world applications very often due to use of accessories, such as scarf
and sunglasses. Hence, the face recognition system has to be robust to occlu-
sion in order to guarantee reliable real-world applications. Recognizing partially
occluded face has received considerable attention in recent years [1][11] [14][18].

Penev and Atick [14] proposed a Local Feature Analysis (LFA) technique by
modifying PCA to solve the partial occlusion problem. LFA is a derivative of
the eigenface method and utilizes specific facial features such as eyes, mouth
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and nose for identification instead of the entire representation of the face. These
features are used as the basis for representation and comparison. Its performance
is dependent on a relatively constant environment and the quality of the image.
Bartlett et al. [1] presented an Independent Component Analysis (ICA) archi-
tecture to find a spatially local face representation. Conceptually, LFA also finds
local basis images for face using the second-order statistics but its kernels are not
sensitive to the higher than second-order dependencies in a face image. On the
contrast, Independent Component Analysis (ICA) architecture I is sensitive to
these high-order statistics. It treats the images as random variables and the pix-
els as outcomes to find a set of statistically independent basis images. Martinez
[11] proposed a probabilistic face recognition approach that could compensate
for the imprecise localization, partial occlusion, and extreme expressions with a
single training sample. In his method, face images are analyzed locally in order to
handle partial face occlusion. The face image is first divided into k local regions
and for each region an eigenspace is constructed. If a region is occluded, it is au-
tomatically detected. Moreover, weighting of the local regions were also proposed
in order to provide robustness against expression variations. Recently, Wright et
al. [18] presented a partition Sparse Representation Classification (SRC) method
which is inspired by the ideal of compressed sensing. In their method, a face is
first partitioned into blocks and compute an independent sparse representation
for each block. Then a general classification algorithm and a voting method are
used to recognize face images.

In this paper, we propose a novel Stringface representation and matching con-
cept for face recognition with one single model image per person under partial
occlusions. Cognitive psychological studies [2][3] indicated that human beings
recognize line drawings as quickly and almost as accurately as gray-level im-
ages since the line drawings preserve most important feature information. In
addition, line segments are less sensitive to illumination changes and local vari-
ations as they integrate the inherent local structural characteristics with spatial
information of a face image [5]. Based on these findings, we represent a face
by an attributed string (Stringface), which groups the relational organization
of intermediate-level features (line segments) into a high-level global structure
representation. Because the Stringface represents not only the local structural
information but also the global structure of a face, it improves upon the lo-
cal characteristics of feature-based methods [5][7]. Furthermore, the Stringface
can be constructed using only a single face image and without training stage
involved in this approach. The matching of two frontal faces is done by match-
ing two Stringfaces through a string-to-string matching scheme. The proposed
attributed string matching concept is able to effectively find the most discrimina-
tive local parts (substrings) for recognition without making any assumption on
the distributions of the deformed facial regions. This substring matching ability
is used to address the occlusion problem. This is believed to be the first piece of
work on frontal face analysis using a high-level syntactic matching method. The
studies and experimental results in this paper are confined to human frontal face
recognition. We deal with partial occlusion, but we do not explicitly account for
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other conditions, such as illumination, expressions and pose. We also assume the
detection, cropping and normalization of the face have been performed prior to
applying our algorithm.

The paper is organized as follows: Section 2 defines the Stringface representa-
tion and matching concept in detail. A feasibility investigation and performance
evaluation of the proposed approach is given in Section 3. Finally, the paper
concludes in Section 4.

2 Proposed Stringface Recognition Approach

String matching is a syntactic and structural method for similarity measure-
ment between strings or vectors, which has been widely used for pattern search
in molecular biology, speech recognition, and file comparison. Strings can be
classified into two categories: symbolic strings and attributed strings. The sym-
bolic string matching is widely used for shape recognition, in which shapes are
described by string representation and primitives are described by symbols. How-
ever, symbols are discrete in nature while most problems of pattern recognition
deal with attributes that are basically continuous in nature. It was found inad-
equate to use symbols as primitives for complex pattern recognition [6]. Hence,
the attributed string matching [4][6] were proposed and the attributed string
representation makes it easier to handle noise and distortion. One advantage of
using variant attributes (location, length and orientation) is that segment merg-
ing becomes possible. However, string matching was believed a technique not
suitable for frontal face recognition due to its highly ordered global represen-
tation and complex nature of a human face. The only most related work [6] is
attempted on human face profile. Their method is based on Needleman-Wunsch
algorithm [13], which performs a global alignment on two sequences of profile
line segments, which fails to work when a face profile has large local shape defor-
mations or occlusions. Obviously, this face representation is not able to describe
frontal faces as it only can represent the continuous silhouette of a profile face,
ignoring other important but unconnected distinctive features, such as the eyes,
eyebrows, mouth and ears. In this study, we propose a novel string representa-
tion and matching concept to recognize frontal faces, an unattempted area, to
address the challenging problem of face recognition with partial occlusions.

2.1 Stringface Representation

A novel syntactic face representation is proposed here to integrate the structure
connectivity information of line segments in a face image. The basic primitives of
our syntactic representation are line segments, which are generated by a polyg-
onal line fitting process [9] from a face edge map. Each line segment, L, is rep-
resented as L(l, θ, x, y), where attributes l, θ, x and y are the length, direction
and midpoint location of the line, respectively. The line direction θ is defined as
the the minimum angle formed between the line segment and the reference line.
The line between two eyes is used as the reference line in this study.
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Definition 1. A Stringface (SF) is defined as a syntactic representation of hu-
man face, which is viewed as being composed of a set of substrings Si (Si ∈ SF ).
Substrings are connected by null primitives φ linking the ith substring Si and the
(i + 1)th substring Si+1 in SF .

SF = SSF
1 φSSF

2 φ · · ·φSSF
n−1φSSF

n , (1)

where n is the number of substrings. The ith substring SSF
i is given by

SSF
i = LSF

j LSF
j+1 · · ·LSF

j+mi
, (2)

where LSF
j is the jth primitive in SF as well as the first primitive in substring

SSF
i and (mi + 1) is the number of primitives in SSF

i , i = 1, . . . , n.

Fig. 1. An example Stringface representation

Fig. 1 illustrates a Stringface representation SF = SSF
1 φSSF

2 · · ·φSSF
8 φSSF

9

generated from line segments, where φ is a null primitive connecting two sub-
strings and each substring SSF

i is a consecutive run of connected line segments
LSi

j (called primitives), i = 1, . . . , 9. In Fig. 1, SSF
2 is composed of three line

segments as
SSF

2 = LSF
4 LSF

5 LSF
6 (3)

2.2 Cost Functions

The goal of string matching algorithms is to find a sequence of elementary edit
operations which transform one sting into another at a minimal cost. The ele-
mentary operations for string matching are deletion, insertion, and substitution.

1. Substitution (or Change): to replace a symbol or primitive (e.g. a in S1)
with the other (e.g. b in S2), denoted as a → b.

2. Insert: to insert a symbol or primitive (e.g. b) into a string (e.g. S1), denoted
as φ → b, where φ is a symbol used to denote nothing (called null symbol).

3. Delete: to delete a symbol or primitive (e.g. a) from a string (e.g. S1),
denoted as a → φ.
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A new edit operation, merge, is introduced in attributed string matching, which
can address the noise and distortion issues. The merge operation is used to
combine any number of consecutive primitives in one string and match with
those in the other string. An example of merge operation is illustrated in Fig. 2,
where primitives LSF

i−k+1, . . . and LSF
i are combined into a new primitive LSF

i→k.
We define new cost functions for edit operations of change, insert, delete and

merge. Let SF1 and SF2 be the input and model Stringfaces, respectively. LSF1
i

and LSF2
j are the ith and the jth primitives in SF1 and SF2 with attributes

(li, θi, xi, yi) and (lj , θj , xj , yj). Let SF 〈i → j〉 specify the substring in SF from
the ith to the jth primitives, that is SF 〈i → j〉 = LSF

i LSF
i+1 · · ·LSF

j . The cost
functions of the proposed Stringface matching method are described as follows.

The cost function for change operation from LSF1
i to LSF2

j is defined as

Cost[Change(LSF1
i , LSF2

j )] = |li − lj | + f(�(θi, θj)) +
√

(xi − xj)2 + (yi − yj)2,
(4)

where �(θi, θj) is the angle difference between two primitives (see Eq.(5)), and
f() is a non-linear penalty function to map the angle to a scalar using f(x) =
x2/W , and W = 50 is the weight to balance the angle and length.

�(θi, θj) =

⎧
⎪⎪⎨
⎪⎪⎩

|θi − θj | : |θi − θj | ≤ 90o,
180o − |θi − θj | : 90o < |θi − θj | ≤ 180o,
|θi − θj | − 180o : 180o < |θi − θj | ≤ 270o,
360o − |θi − θj | : 270o < |θi − θj | ≤ 360o.

(5)

The costs of delete and insert operations can be derived from the above change
cost function by introducing a null primitive φ with zero length and indefinite
angle and location. The cost functions of these two operations are defined as

Cost[delete(LSF1
i )] = f(Kθ) + li + Kloc, (6)

Cost[insert(LSF2
j )] = f(Kθ) + lj + Kloc, (7)

where Kθ and Kloc are constants to represent the indefinite orientation and
location of the line segment. For the purpose of penalization, 90o and the diagonal
distance of the input image, which are the maximum angle difference and the
maximum location difference, are used for Kθ and Kloc.

Next, we consider the merge operation. The merge operation is used to com-
bine and match any number of consecutive primitives in one face with those in

Fig. 2. An example of the merge operation
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the other. Let SF 〈i − k + 1 → i〉 = LSF
i−k+1L

SF
i−k+2 · · ·LSF

i be a substring with
k primitives in Stringface SF to be merged, and LSF

i→k be the merged primitive
of these k primitives. An example of merge operation is illustrated in Fig. 2.
The merge operation is denoted as merge(SF 〈i − k + 1 → i〉, LSF

i→k). If k = 1,
LSF

i→k = LSF
i . This is the case without any merge operation. The merge cost is

defined as

Cost[merge(SF 〈i − k + 1 → i〉, LSF
i→k)] = f(

k − 1
lk

i∑
p=i−k+1

�(θk, θp) × lp), (8)

where k is the number of merged primitives. lk and θk are the length and the
line direction of the merged primitive LSF1

i→k, lp and θp are the length and the
line direction of primitive LSF

p in SF 〈i − k + 1 → i〉 before merging. Now, by
considering LSF

i→k as a single primitive, the cost function for a change operation
after merge can be rewritten as:

Cost[Change(LSF1
i→k, LSF2

j→l)] = |lk − ll| + f(�(θk, θl)) +
√

(xk − xl)2 + (yk − yl)2, (9)

which is performed after the k primitives in SF1〈i − k + 1 → i〉 are merged as
LSF1

i→k and the l primitives in SF2〈j − l + 1 → j〉 are merged as LSF2
j→l. If k = 1

and l = 1, no merge is performed and the above change operation reduces to the
conventional one-to-one change operation Change(LSF1

i , LSF2
j ) (see Eq.4)

2.3 Dynamic Merge Limit Determination

The Stringface is composed of substrings and null primitives. The merge limit
merge limitSF

i is used to ensure that the merge operation is restricted in the
same substring, which means that primitives in substring SSF

i cannot be merged
with primitives in its neighboring substrings SSF

i−1 and SSF
i+1. Let SF denote a

Stringface:
SF = SSF

1 φSSF
2 φ · · ·φSSF

n = LSF
1 LSF

2 · · ·LSF
N (10)

where LSF
i is the ith line primitive (including φ) in SF and SSF

j is the jth
substring (curve primitive) in SF , j = 1, . . . , n, i = 1, . . . , N , N and n are the
number of line primitives plus the number of null primitives (φ) and the number
of curve primitives in SF , respectively. Let |SSF

j | be the length of jth substring.
For a primitive LSF

i , if LSF
i ∈ SSF

j , then its merge limit is defined as

merge limitSF
i = i −

j−1∑
t=1

|SSF
t | − j + 1 (11)

2.4 Similarity Measure via Dynamic Programming

The similarity between the two faces can be characterized by the edit opera-
tion cost using Dynamic Programming (DP) between the two Stringfaces. Let
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SF1 = LSF1
1 · · ·LSF1

N1
and SF2 = LSF2

1 · · ·LSF2
N2

be string representations of input
face and model face, respectively, where N1 and N2 are numbers of primitives
in SF1 and SF2. To find pairs of strings with high degrees of similarity, we set
up a similarity matrix S. Let the input Stringface (i.e. SF1) has N1 primitives
represented by the rows of the similarity matrix S, and let the model Stringface
(i.e. SF2) has N2 primitives represented by the columns of the similarity matrix
S. First we initialize

S(i, 0) = S(0, j) = 0 (0 ≤ i ≤ N1 , 0 ≤ j ≤ N2). (12)

S(i, j) is the similarity of two strings ending at LSF1
i and LSF2

j . If LSF1
i = φ or

LSF2
j = φ, S(i, j) = 0. If LSF1

i �= φ and LSF2
j �= φ, S(i, j) is defined as:

S(i, j) = max

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0
S(i, j − 1) − Cost[φ→LSF2

j ]
S(i − 1, j) − Cost[LSF1

i →φ]
maxk,l{S(i − k, j − l)

+c(SF1〈i − k + 1 → i〉,
SF2〈j − l + 1 → j〉)}

(13)

where Cost[φ→LSF2
j ] and Cost[LSF1

i →φ] are costs of insert and delete edit
operations, respectively (see Eq.6). φ is a null primitive. c(SF1〈i − k + 1 →
i〉, SF2〈j − l + 1 → j〉) is defined as follows:

c(SF1〈i − k + 1 → i〉, SF2〈j − l + 1 → j〉)} = λ

−Cost[SF1〈i − k + 1 → i〉, SF2〈j − l + 1 → j〉], (14)

where Cost[SF1〈i−k+1 → i〉, SF2〈j−l+1 → j〉] is the cost of merge and change
edit operations between substring SF1〈i − k + 1 → i〉 and SF2〈j − l + 1 → j〉
(see Eq. 8 and Eq.9). k and l are numbers of the merged primitives. In Eq.14,
λ is used to decide the similarity between primitives SF1〈i − k + 1 → i〉 and
SF2〈j− l+1 → j〉. If the cost value Cost[SF1〈i−k+1 → i〉, SF2〈j− l+1 → j〉]
is less than λ, these primitives are considered as similar elements.

For two Stringfaces, SF1 and SF2, with primitives LSF1
i (i = 1, 2, . . . , N1)

and LSF2
j (j = 1, 2, . . . , N2), we compute all the similarity costs between their

primitives and obtain the similarity matrix S and edit operations matrix M :

S =

⎛
⎜⎝

S(0, 0) S(0, 1) . . . S(0, N2)
...

...
...

...
S(N1, 0) S(N1, 1) . . . S(N1, N2)

⎞
⎟⎠ (15)

M =

⎛
⎜⎝

M(0, 0) M(0, 1) . . . M(0, N2)
...

...
...

...
M(N1, 0) M(N1, 1) . . . M(N1, N2)

⎞
⎟⎠ (16)

The pair of substrings with maximum similarity is found by first locating the
maximal element in S. The other matrix elements leading to this maximal value
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are then sequentially determined with a traceback procedure ending with an
element of S(i, j) equaling to zero. For example, S(i1, j1) = v1 is the maximal
element with maximal value v1 in S. M(i1, j1) = (r1, c1) is corresponding edit
operations with value r1 and c1 in M . Then, the next element leading to S(i1, j1)
is then sequentially determined by r1 and c1. If S(i1 − r1, j1 − c1) �= 0, then
S(i2, j2) is one of the element in the matched pair of substrings, where i2 = i1−r1

and j2 = j1 − c1. The corresponding edit operations of S(i2, j2) is M(i2, j2) =
(r2, c2) All elements of can be found using this procedure, until the element
S(ik − rk, jl − cl) = 0, where k ≥ 1 and l ≥ 1. The pair of segments with the
next best similarity is found by applying the traceback procedure to the second
largest element in S not associated with the first traceback.

S(0, 0) := 0

f o r i := 1 to N1 do S(i, 0) := 0 ;

f o r j := 1 to N2 do S(0, j) := 0 ;

f o r i := 1 to N1

f o r j := 1 to N2

i f L
SF1
i = φ or L

SF2
j = φ

S(i, j) = 0 ;

e l s e

m1 := S(i, j − 1) − Cost[insert(L
SF2
j )] ;

m2 := S(i − 1, j) − Cost[delete(L
SF1
i )] ;

f o r k := 1 to merge limit
SF1
i

f o r l := 1 to merge limit
SF2
j

T [k, l] := S(i − k, j − l) + λ

−{Cost[merge(SF1(i − k + 1 → i), L
SF1
i→k)]

+ Cost[merge(SF2(j − l + 1 → i), L
SF2
j→l)]

+ Cost[change(L
SF1
i→k, L

SF2
j→l)]}

m3 := max(T [k, l]) ;

S(i, j) := max(0, m1, m2, m3) ;

i f S(i, j) = m3 , M(i, j) = argmaxk,l(T (k, l));

i f S(i, j) = m1 , M(i, j) = (1, 0);

i f S(i, j) = m2 , M(i, j) = (0, 1);

i f S(i, j) = 0 , M(i, j) = (0, 0);

end

Algorithm 1. Proposed Stringface matching.

String matching is conducted according to Algorithm 1, where merg limitSF1
i

and merg limitSF2
j are controlling upper limits on the number of primitives to

be merged into a new one in Stringfaces SF1 and SF2, respectively (as discussed
in Section 2.3). The similarity of associating a group of segments from Stringface
SF1 with a group of segments from Stringface SF2 is computed as

s(SF1, SF2) = ξ ×
f∑

i=1

Si, (17)

The term Si is the similarity ( the ith maximal element in S matrix table) of
the ith best similar substrings between two Stringfaces and f is the number
of best similar substrings. ξ is a weight term which emphasizes the importance
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of matching large parts from both Stringfaces in accordance to the way that
humans pay more attention to large shape parts when judging the quality of
matching [15]. The proportion of the matched substrings lengths with respect
to their total length is used to define ξ:

ξ =
length of matched SF1 + length of matched SF1

length of SF1 + length of SF2
(18)

3 Experimental Verification

In this section, we present a system performance investigation on publicly avail-
able databases, which covers human face recognition with real and synthetic
occlusions.

3.1 Databases and Experimental Settings

In this study, two well-know face databases (AR [12] and FRGC ver2.0 [16])
were tested. The AR database contains faces with different conditions, including
partially occluded condition, which can not be found in other latest databases.
Hence, AR database is particularly suitable for our evaluation. The FRGC ver2.0
dataset is much larger than the AR database, and is used to test the performance
of our proposed method with occlusion variations.

The AR database consists of over 4,000 frontal view images for 126 individuals
(70 males and 56 females). Each person has 26 images captured in two different
sessions (separated by two-week time interval). Each session contains 13 face
images under different light conditions (right light, left light and both lights),
different facial expressions (smiling, anger and screaming) and partial occlusions
(sunglasses and scarf). Some images were found missing or corrupted for a few
subjects. We chose a subset of the data set consisting of 50 male subjects and
50 female subjects for our experiments.

The FRGC ver2.0 dataset consists of 50,000 recordings divided into training
and validation partitions. The training partition is designed for training algo-
rithms. The training set consists of 12,776 images from 222 subjects, with 6,388
controlled still images and 6,388 uncontrolled still images and contains from 9
to 16 subject sessions per subject. The validation partition is for assessing per-
formance of an approach in a laboratory setting. The validation set contains
images from 466 subjects collected in 4,007 subject sessions. Each subject ses-
sion consists of four controlled still images, two uncontrolled still images, and one
three-dimensional image. The validation partition contains from 1 to 22 subject
sessions per subject. In our experiment (Section 3.4), 410 subjects from the vali-
dation set with more than 2 subject sessions are used. Hence, The data set used
in our experiments consists of 820 FRGC controlled frontal face images with
neutral expressions corresponding to 410 subjects, with two images per subject
(two sessions).

In all the experiments, the original images were first normalized (in scale and
orientation). Then, the facial regions are cropped to the size of 160 x 160. In all
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experiments, there is only one single image per person used as the model of the
person. We quantitatively compare our method to several popular techniques for
face recognition in the vision literature. Partitioned SRC [18] (with tuned block
size 4 x 2) is one of the latest partially occluded face recognition algorithms
and achieved higher recognition rate. LocPb (local probabilistic approach) [11]
is a well-known method to recognize partially occluded faces and widely used
as a benchmark algorithm in many partial matching methods. ICA I [1], LNMF
[10] and PCA [17] are three popular methods used as benchmarks in recent face
recognition approaches under occlusions [18]. LEM (Line Edge Maps) method
[5] which is one of the best illumination insensitive methods based on facial
edges with only one training face image per individual. AWPPZMA (Adaptively
Weighted Patch Pseudo Zernike Moment Array) [8] is one of the best moment-
based face recognition techniques to address occlusion and illumination when
only one exemplar image per person is available.

3.2 Determination of λ

In this section, we examine the parameter (λ) involved in the propose method
(see Eq.14). To determine λ, an experimental investigation on recognition ac-
curacy was conducted under controlled condition with different values of λ on
AR face database. The neutral faces under controlled/ideal condition taken in
the first session were selected as the gallery set and the neutral faces under con-
trolled/ ideal condition taken in the second session were used as the probe set.
Fig. 3 shows the curve of recognition rate against the values of λ. The horizontal
axis indicates the value of λ used and the vertical axis represents the rate of
correct face recognition, which is the rate that the best returned face is from
the correct class. The recognition rate increases greatly from λ = 2 to λ = 8.
Between λ = 8 and λ = 14, the rate remains stable. Then it decreases with
further increase of λ. In the rest of the experiments, λ is set as 10.

Fig. 3. The effect of λ on the recognition rate under controlled/idea condition

3.3 Face Recognition with Partial Occlusions

In this section, we test the performance of the proposed approach to cope with
real partial occlusions using AR face database, which is the only database avail-
able that contains real images with disguise accessories. In the experiment, we
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Fig. 4. Images of one subject in the AR database with different partial occlusions.
(a) is a neutral facial image taken from the first session; (b-e) are images with partial
occlusions taken from the first session and the second session, respectively.

Table 1. Performance comparison for sunglasses and scarf occluded faces

Methods
Session-1 Session-2

sunglasses scarf sunglasses scarf

Stringface 88.0% 96.0% 76.0% 88.0%

SRC 86.0% 92.0% 64.0% 86.0%

LocPb 80.0% 82.0% 54.0% 48.0%

AWPPZMA 70.0% 72.0% 58.0% 60.0%

ICA I 54.0% 56.0% 38.0% 50.0%

LNMF 33.5% 24.0% 18.5% 9.6%

chose a subset of the data set consisting of 50 male subjects and 50 female sub-
jects from AR face database. The neutral face images of the first session (see
Fig. 4) were used as the galley set. Sunglasses and scarf occluded face images
of the first and the second sessions (see Fig. 4 (b-e)) were used as the probes.
The performance comparisons of the proposed approach with these benchmark
methods are tabulated in Table 1, showing that the proposed approach archived
the highest accuracies in both experiments.

3.4 Face Recognition with Random Block Occlusions

To further verify the performance of our method against various level of con-
tiguous occlusions, we conducted a simulation experiment on the FRGC ver2.0
database . The data set used in our experiments consists of 820 FRGC controlled
frontal face images with neutral expressions corresponding to 410 subjects, with
two images per subject (two sessions). The data set is divided into gallery and
probe sets. The gallery set consists of 410 images from 410 subjects. The rest of
images are used as the probe set.

Occlusions are added to the probe images by using a black square of s × s
with s ∈ {10, 20, . . . , 100} at a random location, as shown in Fig. 5. Note that

Fig. 5. Examples of FRGC ver2.0 face images with simulated occlusions. (a) images
in the database; (b-k) the generated test images with random occluding blocks of sizes
(10x10,20x20, ..., 100x100).
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the s × s occlusion masks are randomly added to the images in probe sets. The
graph in Fig. 6 shows the recognition rates of all four algorithms under varying
degrees of occlusion. As can be seen, the Stringface method again outperformed
the three benchmark methods for all levels of occlusion. Although there is only
one sample image per person used as a template, SRC [18] still performed ex-
cellent as the proposed approach when the occlusion block size is small. The
better performance of the Stringface approach against SRC becomes clear as the
occlusion block size increases. Because of insufficient training samples, LNMF,
ICA and PCA performed poorly in this single sample per class condition.

Fig. 6. Recognition under varying level of random occlusion (10x10, 20x20, ..., 100x100
of occluding blocks)

3.5 Preliminary Experiment under Varying Lighting and Expression
Conditions

To evaluate the effects of different lighting conditions and facial expressions
on the proposed approach, the preliminary experiment was designed using face
images taken under different lighting conditions and facial expression from the
AR database. In this experiment, we chose a subset of the data set consisting
of 50 male subjects and 50 female subjects from AR database. The neutral face
images taken in the first session were used as single models of the subjects. The
face images under three different light conditions and facial expressions taken in
the first session were used as probe images. The proposed approach is compared
with the eigenface and LEM methods.

The experimental results on probe images with three lighting conditions and
different facial expressions (smiling, angry and screaming) are illustrated in Ta-
ble 2. In the three experiments under varying lighting conditions, the proposed
Stringface method significantly outperformed the eigenface approach and also
consistently performed better than the illumination-insensitive LEM approach[5].
The experimental results on faces with smile, anger and scream expressions show
that the Stringface method achieved varying results compared to the LEM and
eigenface methods.
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Table 2. Preliminary results under varying lighting conditions and facial expressing
changes

Conditions
Recognition rate(%)
Eigenface

LEM AWPPZMA Stringface
k = 20 k = 60 k = 100 k = 100(w/o 1st 3 )

Left Light on 6.25% 9.82% 9.82% 26.79% 92.86% 74.36% 96.43%

Right Light on 4.46% 7.14% 7.14% 49.11% 91.07% 64.96% 95.53%

Both Light on 1.79% 2.68% 2.68% 64.29% 74.11% 42.74% 75.89%

Smiling 87.87% 94.64% 93.97% 82.04% 78.57% 96.58% 87.50%

Angry 78.57% 84.82% 87.50% 73.21% 92.86% 87.18% 87.50%

Screaming 34.82% 41.96% 45.54% 32.14% 31.25% 38.46% 25.89%

4 Conclusions

This paper proposes a novel Stringface approach for recognizing faces with par-
tial occlusions from a single image per person. Stringface is a syntactic face repre-
sentation, which integrates the local structural information with spatial informa-
tion of a face image by grouping the relational organization of intermediate-level
features (line segments) to a high-level global structure (a string). The proposed
approach represents a face image as a string and enables it to define complex dis-
continuous features in a human frontal face. The matching of two frontal faces
is achieved by matching two Stringfaces through a string-to-string matching,
which was believed a technique not suitable for frontal face recognition due to
its highly ordered global representation and complex nature of a human face.
The performance of the proposed approach has been evaluated and compared
with several state-of-the-art approaches. Experimental results demonstrated the
feasibility and effectiveness of a high-level syntactic method in face recognition,
showing a new way for face representation and recognition.
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