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Abstract—We present a system to recognize underwater
plankton images from the shadow image particle profiling evalu-
ation recorder (SIPPER). The challenge of the SIPPER image set
is that many images do not have clear contours. To address that,
shape features that do not heavily depend on contour information
were developed. A soft margin support vector machine (SVM) was
used as the classifier. We developed a way to assign probability
after multiclass SVM classification. Our approach achieved
approximately 90% accuracy on a collection of plankton images.
On another larger image set containing manually unidentifiable
particles, it also provided 75.6% overall accuracy. The proposed
approach was statistically significantly more accurate on the two
data sets than a C4.5 decision tree and a cascade correlation neural
network. The single SVM significantly outperformed ensembles
of decision trees created by bagging and random forests on the
smaller data set and was slightly better on the other data set. The
15-feature subset produced by our feature selection approach
provided slightly better accuracy than using all 29 features. Our
probability model gave us a reasonable rejection curve on the
larger data set.

Index Terms—Feature selection, learning, plankton recognition,
probabilistic output, support vector machine (SVM).

I. INTRODUCTION

RECENTLY, the shadow image particle profiling evalua-
tion recorder (SIPPER) was developed to continuously

sample plankton and suspended particles in the ocean [23]. The
SIPPER uses high-speed digital line-scan cameras to record im-
ages of plankton and other particles, thus, avoiding the exten-
sive post-processing necessary with analog video particle im-
ages. The large sampling aperture of the sensor combined with
its high imaging resolution (50 ), means that it is
capable of collecting tens of thousands of plankton images an
hour. This soon overwhelms a scientist attempting to manually
classify the images into recognizable plankton groups. There-
fore, an automated plankton recognition system is necessary to
solve the problem or at the very least to help with the classifi-
cation.
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Tang [25] developed a plankton recognition system to classify
plankton images from video cameras. The moment invariants
and Fourier descriptor features from contour images were ex-
tracted. Also, granulometric features from the gray-level images
were computed. Finally, a learning vector quantization neural
network was used to classify examples. Tang [25] achieved 92%
classification accuracy on a medium-size data set.

The project Automatic Diatom Identification and Classifi-
cation (ADIAC) has been ongoing in Europe since 1998. Dif-
ferent feature sets and classifiers have been experimented with
to recognize separate species of diatoms taken from photo-mi-
croscopes. Loke [16] and Ciobanu [5] studied some new contour
features. Santos [24] extended the contour features to multiscale
Gabor features together with texture features. Wilkinson [29]
applied morphological operators to help extract both contour
and texture information. Fischer [11] summarized these features
and used ensembles of decision trees to classify the combined
feature set. Greater than 90% overall accuracy was achieved on
the diatom images.

However, images from previous work are of relatively good
quality or at least with clear contours. Therefore, complicated
contour features and texture information can be extracted easily.
The SIPPER images, on the other hand, present several of the
following difficulties:

1) Many SIPPER images do not have clear contours. Some
are partially occluded. Therefore, we cannot primarily de-
pend on contour information to recognize the plankton.

2) The SIPPER image gallery includes many unidentifiable
particles as well as many different types of plankton.

3) The SIPPER images in our experiments are binary, thus
lacking texture information.

Tang [26] proposed several new features for SIPPER images
and applied multilevel dominant eigenvector methods to select
a best feature subset. A Gaussian classifier was employed to
recognize the image features and validate the feature selection
methods on selected identifiable plankton.

Not depending heavily on contour information, Luo [17] de-
veloped several special features, and applied a support vector
machine (SVM) [27] to classify the feature vectors. This paper
is an expansion of the work reported in [17]. We will describe
our feature selection strategy-the wrapper approach [15] with
backward elimination and a new way to compute probabilistic
outputs in a multiclass SVM on the reduced feature subset.

This paper is organized as follows. Section II introduces the
binary SIPPER images used in the experiments. In Section III,
we discuss the preprocessing of the images and the extraction
of the features. Section IV describes the SVM and the proba-
bility assignment in a multiclass SVM. We applied wrappers

1083-4419/04$20.00 © 2004 IEEE



1754 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 4, AUGUST 2004

Fig. 1. Copepod.

Fig. 2. Diatom.

Fig. 3. Doliolid.

with backward elimination to select the best feature subset in
Section V and experimental results for the system are detailed in
Section VI. Finally we summarize our work and propose some
ideas for future work in Section VII.

II. IMAGE GALLERY

The image gallery includes 7285 binary SIPPER images:
1285 images from five types of plankton were initially selected
by marine scientists as our starting point. The other 6000
images were samples from a deployment of SIPPER from the
Gulf of Mexico. The 6000 image were from the five most abun-
dant types of plankton and manually unrecognizable particles.
All the images were manually classified by marine scientists.
Figs. 1–7 are typical examples of plankton and unidentifiable
particles from the SIPPER image set.

III. FEATURE COMPUTATION

In the field of shape recognition, some general features like
invariant moments, Fourier descriptors, and granulometric
features etc. are widely used [7]. However, those general
features are insufficient to capture the information contained in
SIPPER images sampled from the Gulf of Mexico. Moreover,
the SIPPER images have a lot of noise around or on the
plankton and many images do not have clear contours, thus
making contour features (Fourier descriptor [30], etc.) unstable

Fig. 4. Larvacean.

Fig. 5. Protoctista.

Fig. 6. Trichodesmium.

Fig. 7. Unidentifiable particles.

and inaccurate. To solve this problem, we first preprocessed the
images to suppress noise. We only extracted invariant moments
and granulometric features, which are relatively stable with
respect to noise and do not depend heavily on the contour
image. To capture the specific information from our SIPPER
image set, domain knowledge was used to extract some specific
features such as size, convex ratio, transparency ratio, etc.
There are 29 features in total as shown in Table I.

A. Object Detection and Noise Suppression

Marine scientists used a specialized software to detect ob-
jects. A series of morphological dilations were performed to
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TABLE I
DESCRIPTION OF 29 FEATURES

connect nearest image pixels. If the bounding box of the con-
nected image pixels after dilation was bigger than 15 15, the
original image was stored as an object. Otherwise, the image
pixels were considered irrelevant and deleted.

After detecting objects, we applied connected component
analysis to eliminate the noise pixels far from the object
bodies. Under the eight-connectivity condition (that is, all
eight neighbor pixels of a pixel are considered connected to
it), if a pixel’s connected path to the image body is more than
four, it will be regarded as noise and eliminated. In addition, a
morphological closing operation with a 3 3 square window as
the structure element was used to get a roughly smooth image
shape and separate the holes inside the plankton body from the
background [20]. This operation also helps to compute several
domain specific features described in Section III-D and to get
a rough contour of the image.

B. Moment Invariants

Moment features are widely used as general features in shape
recognition. The standard central moments are computed as fol-
lows.

is the center of the foreground pixels in the image. The
-order central moments are computed with every fore-

ground pixel at

(1)

Then central moments are normalized by size as shown in (2)

(2)

Hu [14] introduced a way to compute the seven lower order mo-
ment invariants based on several nonlinear combinations of the
central moments. Using the normalized central moments, we got
scale, rotation, and translation invariant features. We computed
the same seven moment invariants on the whole object and the
contour image after a morphological closing operation, respec-
tively. See [14] for the detail description of the seven moments.

C. Granulometric Features

Since the Hu moments only contain low order information
from the image, we also extracted granulometric features [18],
which are robust measurements of the high order information.
Granulometric features were computed by doing a series of mor-
phological openings with different sizes of structure elements.
Then we recorded the differences in size between the plankton
before and after openings. Granulometric features are relatively
robust to noise and contain the inherent information of shape
distribution. Tang [25] found that granulometric features were
the most important features in his experiments.

We applied 3 3, 5 5, 7 7, and 9 9 square windows
as structure elements and did a series of morphological open-
ings. Then differences in size were normalized by the original
plankton size to obtain the granulometric features. Also, we ap-
plied 3 3, 5 5, and 7 7 square windows as structure el-
ements, and did a series of morphological closings. The differ-
ences in size were normalized in the same way. We did not apply
9 9 square window to the closing because the SIPPER images
are so small that most of them are diminished after the closing
with a 7 7 square window as the structure element. The gran-
ulometric features are computed in (3)

pixels changed after morphological operations
pixels in the original image

(3)

D. Domain Specific Features

Moment invariants and granulometries only capture some
global information, which is insufficient to classify SIPPER
images. Given advice from domain experts, we developed some
domain specific features to help classification. The domain
specific features include size, convex ratio, transparency ratio,
eigenvalue ratio, and ratio between the plankton’s head and tail.

• Size: It is the area of the plankton body, that is, the number
of foreground pixels in the plankton image. The size fea-
tures were extracted for both the original image and the
contour images.

• Convex ratio: We implemented a fast algorithm [1] to get
the convex hull of the plankton image. The convex ratio is
the ratio between the plankton image size and the area of
the convex hull. This feature contains information about
the plankton boundary irregularity. We computed convex
ratios with (4) for the original image and the image after a
morphological opening. The morphological opening was
to eliminate the noise around the plankton, which may
cause an incorrect convex hull

pixels in the original image
pixels in the convex hull

(4)

• Transparency ratio: This is the ratio between the area of the
plankton image and the area of the plankton after filling all
inside holes. The transparency ratio helps in recognizing
the transparent plankton. We computed the transparency
ratios with (5) for both the original image and the image
after a morphological opening. The morphological closing
was used to remove the noise inside the plankton body

pixels in the original image
pixels within the contour

(5)

• Eigenvalue ratio: We first computed covariance matrix be-
tween the and coordinates of all pixels on the plankton
bodies. Then the ratio between the two eigenvalues from
the covariance matrix was calculated in (6). This ratio
helps classify elongated plankton

(6)

where , are eigenvalues of .
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• Ratio between the head and the tail: Some plankton such
as larvaceans have a large head relative to their tail. We
computed the ratio between the head and tail to differen-
tiate them. To do this we first rotated the image to make
the axis with the bigger eigenvalue parallel to the -axis.
Assuming the smallest and largest values are 0 and ,
respectively, we accumulated the number of foreground
pixels along the -axis from 0 to and from
to respectively. Then we computed the ratio between
them as the ratio between the head and the tail.

IV. SUPPORT VECTOR MACHINES AND PROBABILITY MODEL

SVMs [27] are receiving increasing attention these days and
have achieved very good accuracy in pattern recognition, text
classification, etc. [6]. In this section we describe SVMs and
introduce a way to assign a probability value after multiclass
SVM classification.

A. Support Vector Machines

SVMs, based on statistical learning theory, try to maximize
the generalization accuracy using structure risk minimization
[27]. The goal of classification is to minimize the generaliza-
tion loss (normally the true misclassification rate). While most
learning algorithms (decision trees, neural networks, etc.) try to
minimize the empirical loss (normally the misclassification rate
on the training set) with some criterion to keep reasonable gen-
eralization accuracy, SVMs minimize the empirical loss with a
guaranteed upper bound of generalization loss.

Vapnik [27] introduced the Vapnik–Chervonenkis (VC) di-
mension to measure the classification capacity of a hypothesis
space. Assuming that is the VC dimension of the hypothesis
space, is the sample size, is the true loss and is
the empirical loss, the generalization bound holds with proba-
bility in (7)

(7)

In order to keep the generalization bound low, we have to min-
imize the empirical loss in a hypothesis space with a small VC
dimension.

In binary classification, SVMs try to find a hyperplane to sep-
arate the data into two classes. In the case in which all the data
are well separated, the margin is defined as two times the dis-
tance between the hyperplane and the closest example. SVMs
search for the hyperplane with the largest margin, which has the
lowest VC dimension. Therefore, SVMs ensure a low general-
ization loss bound. To increase the classification ability, SVMs
first map the data into a higher dimension feature space with

, then search for a hyperplane with the largest margin in
that feature space to separate the data. In the feature mapping
stage, the kernel is used to avoid explicit
inner product calculation in the high-dimension feature space.

-SVM, a typical example of soft SVMs is described as fol-
lows.

Training Set: there are examples: with
class label .

-SVM:

minimize (8)

subject to (9)

(10)

where is normal to the hyperplane, is a scalar value that
controls the trade off between the empirical risk and the margin
length, is the slack variable to handle nonseparable examples.

The decision function is , where
and are computed from (8)–(10).

The Karush–Kuhn–Tucker condition of the optimal solution
to (8) – (10)

(11)

The variable is nonzero only when (12) is satisfied. In
this case contributes to the decision function and is called
a support vector (SV)

(12)

Therefore, we get a sparse solution of the decision function,
where only SVs contribute.

There are two main approaches to extending SVMs to multi-
class classification: one-versus-all and one-versus-one.

1) One-versus-all: A set of binary SVMs are trained to sep-
arate one class from the rest. The drawback is that we are
handling unbalanced data when building binary SVMs.
Moreover, each binary SVM is built on a totally different
training set. There might be cases in which some binary
SVMs conflict with each other for some examples. It is
difficult to assign the class by just the real-valued outputs
from every binary SVM.

2) One-versus-one: All possible groups of two classes are
used to build binary SVMs. In the class case, we will
build binary SVMs. When a new example
is tested, all the binary SVMs vote to classify it.

The one-versus-one approch needs to build more binary
SVMs than the one-versus-all approach, however, each of
its binary SVMs only learns on a fraction of the data, thus
can be time efficient in a large data set. Hsu [13] com-
pared the one-versus-all and one-versus-one approach to
handle multiple class problems in SVMs. They found the
one-versus-one approach was much faster and more accurate
than the one-versus-all approach on most data sets. We also
compared the two approaches on our data sets in Sections VI-A
and VI-B and the one-versus-one was superior to the other in
our experiments.

B. Assigning Probability Values in Support Vector Machines

A probability associated with a classifier is often very useful
and it gives some confidence about the classification result. For
instance, the classifier could reject the example and leave it to a
human to classify it when the confidence is very low. Platt [22]
introduced the sigmoid function as the probability model to fit

directly. The parametric model is shown in (13)

(13)
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where and are scalar values. is the decision function of a
binary SVM.

and are fit with maximum likelihood estimation from the
training set. Platt tested the model with three data sets including
the UCI Adult data set and two other web classification data sets.
The sigmoid-model SVM had good classification accuracy and
probability quality in his experiments.

We followed the sigmoid model and extended it to the mul-
ticlass case. For practical reasons, the probability approxima-
tion needs to be fast since retraining for the probability model
is frequently needed as more plankton images are acquired on a
cruise. In the one-versus-one multiclass SVM model, since it is
time consuming to do the parameter fitting for all
binary SVMs, we developed a practical approximation method
to compute the probability value while avoiding parameter fit-
ting.

1) We assume
. This means that a point right on the decision

boundary will have 0.5 probability of belonging to each
class. We eliminate parameter in this way.

2) Since each binary SVM has a different margin, a crucial
criterion in assigning the probability, it is not fair to assign
a probability without considering the margin. Therefore,
the decision function is normalized by its margin
in each binary SVM. The probability model of SVMs is
shown in (14). represents the probability output for
the binary SVM on class versus class , where class is

and .

(14)

(15)

3) After we get the probability value for each binary SVM,
the final probability for class is computed as follows:

(16)

Normalize to make
4) output as the prediction.

Both Platt’s approach for two-class problems (search
for and ) and our approach for multiple class prob-
lems (search for ) try to minimize log-likelihood loss
function as in (17).

(17)

Since the loss function is not convex, we used line search for
a single parameter to avoid local minima. We also compared
it with gradient descent search for and as Platt proposed.
The comparison will be detailed in Section VI-D.

After learning a SVM model and setting a rejection threshold
, we reject an example and leave it to be classified by a person

if .

V. FEATURE SELECTION

Feature selection helps reduce the feature computation time
and increase the accuracy. There are two basic ways to do feature

selection [8]. The filtering approach attempts to select a subset
of features without applying learning algorithms. It is fast, but
seems unlikely to result in the best accuracy. The wrapper ap-
proach [15] selects a feature subset by applying the learning
algorithm. It has the potential to result in very good accuracy
but is computationally expensive. A feature selection method
specifically for SVMs was proposed recently. Weston [28] tried
to minimize the generalization bound by minimizing the radius
of the sphere including all the training examples. The drawback
of this approach is that the generalization bound is loose, and
minimizing the loose bound may not provide a feature subset
with good accuracy.

In our system, we applied the wrapper approach with back-
ward elimination. Backward elimination means one starts with
all the features and systematically eliminates features. The av-
erage accuracy from a fivefold cross validation was used as an
evaluation function. In our case, we start with 29 features and
remove one feature from the feature set and get 29 different fea-
ture subsets with 28 features. We evaluate the 29 feature sub-
sets by running fivefold cross validation and choose the feature
subset with best average accuracy to explore. For instance, if the
feature subset with best average accuracy is , we remove one
more feature from and get 28 feature subsets with 27 fea-
tures to add to the remaining candidate feature subsets. In this
way, we can use certain search strategies to explore those fea-
ture subsets and keep removing features.

The algorithm halts if there is no improvement in accuracy for
successive feature subsets explored. Best first search (BFS),

which is embedded in the wrapper approach, is used to explore
the feature subset space, although it tends to stop with many
features. In order to explore feature subsets with small numbers
of features, greedy beam search (GBS) [12] was employed on
the final feature subsets selected by BFS. GBS operates by only
expanding the best (beam width) leaf-nodes without any back-
tracking. It can quickly reduce the number of features to one.

To reduce the effect of overfitting, we took 20 percent of the
data as a held-out data set, and did the feature selection on the
remaining data while testing the selected feature subsets on the
held-out data. The feature selection procedure is described in
Algorithm 1.

Algorithm 1 Feature Selection Algorithm
1: , , ,

, where is the th
feature, is a sorted list, is the
maximum accuracy, and is the beam width.
2: Compute the average accuracy
from a fivefold cross validation on
the training data using all features.

.
3:

,
however randomly choose a feature subset
candidate from every five node
expansions.
4: if then
5: .
6: else if has not been changed in
expansions then
7: Go to 15.
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8: end if
9: for all do
10: .
11: Run a fivefold cross validation using
the subset of features and record the
average accuracy .
12: Add onto , which is sorted in as-
cending order by .
13: end for
14: Go to 3.
15: Remove all the elements from except
for the five most accurate feature sub-
sets.
16: if then
17: Stop.
18: end if
19: for all elements in do
20: .
21: for all do
22: .
23: Run a fivefold cross validation using
the subset of features and record the
average accuracy .
24: Add onto , which is a queue.
25: end for
26: end for
27: Pick the most accurate from
and add them to .
28: Go to 16.

After the selection algorithm, we acquired every
( ), the best average accuracy in five-

fold cross validation with features combination. Then we
tested the (the best combination of features) on the
held-out data set and selected the feature subset with least
number of features and good accuracy.

VI. EXPERIMENTS

Several experiments have been done to test our system.
The Libsvm [4] SVM software was modified and used in our
experiments. Libsvm applies sequential minimal optimiza-
tion [21]-like decomposition algorithm in its optimization
and a one-versus-one approach to do multiclass classifica-
tion. We modified libsvm to produce a probabilistic output.
For comparison, we also implemented a one-versus-all ap-
proach. In all experiments the gaussian radial basis function
( ) was used as the kernel. The
parameters and were chosen by fivefold cross validation
on each data set.

To evaluate the accuracy of SVMs, we compared with a cas-
cade correlation neural network [10], a C4.5 decision tree with
the default pruning settings [19], and two ensembles of decision
trees: bagging unpruned decision trees [2] and random forests
[3]. There were 100 trees built for each ensemble of decision
trees.

A. Initial Experiments

The first training set has a total of 1285 SIPPER images (50
resolution), which were selected by marine scientists. It

TABLE II
TENFOLD CROSS VALIDATION ACCURACY ON THE INITAL 1285 IMAGE SET

TABLE III
CONFUSION MATRIX OF SVM (ONE-VS-ONE) FROM A TENFOLD CROSS

VALIDATION ON 1285 SIPPER IMAGES WITH ALL 29 FEATURES. P, DI, DO, L,
AND T REPRESENT PROTOCTISTA, DIATOM, DOLIOLID, LARVACEAN AND

TRICHODESMIUM, RESPECTIVELY

contains images of 64 diatoms, 100 protoctista, 321 doliolids,
366 larvaceans, and 434 trichodesmium. We used -SVM with
parameters and for one-versus-one and

and for one-versus-all. Table II shows the av-
erage accuracy of different learning algorithms from a tenfold
cross validation. A paired- test was used to compare the re-
sults at the 95% confidence interval. The SVM one-versus-one
approach is significantly more accurate than the other learning
algorithms at the 95% confidence level. Also, the running time
for one-versus-all and one-versus-one are 2 s and 9 s, respec-
tively on a Pentium 4 PC at 2.6 GHZ. Therefore, the SVM one-
versus-one approach outperforms the one-versus-all approach
both in accuracy and running time on this data set.

Table III shows the confusion matrix of the SVM
one-versus-one approach from a tenfold cross validation
experiment. The overall average accuracy is 90.0%. While we
have greater than 84% accuracy on most plankton, we only
achieve 79% accuracy on the diatom class. The reason is that
we only have 64 diatom samples in our training set and the
SVM favors classes with more samples. For instance, assume
there is an overlap in the feature space between two classes: one
with many examples and one with few examples. It is likely
that most examples within that overlap come from the class
with more examples. To minimize (8), the decision boundary is
pushed away from the class with more examples and thus will
favor that class.

B. Experiments With Unidentifiable Particles

The second image set was collected from a deployment of
SIPPER in the Gulf of Mexico. A set of 6000 images was se-
lected from the five most abundant types of plankton, which ac-
count for 95% of the plankton samples in that run, and manually
unrecognizable particles. The five types of plankton are cope-
pods, doliolids, larvaceans, protoctista and trichodesmium. The
image quality in this training set is not as good as in the initial
experiment. Apart from the shape of image objects, some prior
knowledge was used by marine scientists to label the images.
Also, we have to classify unidentifiable particles in this experi-
ment.
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TABLE IV
TENFOLD CROSS VALIDATION ACCURACY ON THE 6000 IMAGE SET

TABLE V
CONFUSION MATRIX OF SVM (ONE-VS-ONE) FROM A TENFOLD CROSS

VALIDATION ON 6000 SIPPER IMAGES WITH ALL 29 FEATURES. C, D, L, P, T,
AND U REPRESENT COPOPED, DOLIOLID, LARVACEAN, PROTOCTISTA,

TRICHODESMIUM AND UNIDENTIFIABLE PARTICLES, RESPECTIVELY

There are a total of 6000 images: 1000 images of each
plankton class and 1000 unidentifiable particles. We used

-SVM with and for one-vs-one and
and for one-vs-all. Table IV shows the

average accuracy of different classifiers from tenfold cross
validation. A paired- test was used to compare the results
at the 95% confidence interval. The SVM one-versus-one
approach is significantly more accurate than all other learning
algorithms except the two ensembles of decision trees at the
95% confidence level. Also, the running time for one-vs-all and
one-versus-one are 160 s and 610 s, respectively on a Pentium 4
PC at 2.6 GHZ. Therefore, the SVM one-versus-one approach
outperforms the one-vsersus-all approach both in accuracy and
running time on this data set.

Table V shows the confusion matrix of the SVM
one-versus-one approach from a tenfold cross validation.
The overall average accuracy is 75.12%. The average accuracy
from the five types of plankton is 78.56%.

There are a significant number of larvaceans confused
with trichodesmium. This observation disagrees with the first
experiment where we had high classification accuracy for
both types of plankton. The reason is that some larvacean and
trichodesmium are linear objects. Domain experts have prior
knowledge of the abundance of larvacean and trichodesmium in
some ocean areas. They labeled the linear objects as larvacean
or trichodesmium when they know the other plankton were
less commonly found in the particular ocean areas examined.
Therefore, there are many linear particles without significant
features to differentiate between the two types of plankton in
this training set, which result in lower classification accuracy
on larvaceans and trichodesmium.

It is clear that the one-versus-one approach is superior to the
one-versus-all on the two data sets. Therefore, we choose to
use one-versus-one approach in our system. We use SVMs to
represent SVMs created with the one-versus-one approach by
default in the rest of this section.

C. Feature Selection

Feature selection was tested on the larger training set as de-
scribed in Section VI-B. Although the single SVM seems su-
perior to the other two single classifiers, there is no guarantee
that it is still true after feature reduction. Therefore, we experi-
mented with feature selection (wrapper approach) on the SVM
and its direct competitor: the cascade correlation neural net. We
did not use the decision tree in the comparison because it is far
less accurate than the SVM on this data set, thus unlikely to be
the best. The data set was randomly divided into two parts: 80%
as training and 20% as validation. In this way, we have 1200
data as validation which makes the test result relatively stable
and 80% data in training, which is likely to provide a similar
feature subset to using all the data. We set the stopping criterion

to be 150 and the beam width to five in our experiment.
Figs. 8 and 9 show the experimental results of the average ac-

curacy from the fivefold cross validation on the training data and
the test accuracy on the validation data respectively. The SVM
provided better accuracy than the neural net on both the training
set and the validation set when the number of feature is greater
than four. To choose the least number of features for the SVM,
McNemar’s test [9] was applied on the validation set to compute
the 95% confidence interval. When the number of features was
less than 15, the accuracy would be outside the confidence in-
terval. Therefore, we chose the 15-feature subset as the optimal
feature subset and it provided slightly better accuracy than using
all the features on the validation data set.

Table VI briefly describes the selected feature subset. A de-
tail description of selected features is contained in attachment
1. Only 1 moment invariant for contour images was selected. It
is reasonable because the contours of the plankton images were
not stable and was not very helpful in classification. Among the
domain specific features, the convex ratio and transparency ratio
for images after momphological opening were eliminated. They
seem to be redundant to the same features computed on the orig-
inal images. Therefore, our feature selection approach seems to
eliminate irrelevant and redundant features on this image set.

To test the overall effect of feature selection, we applied ten-
fold cross validation on the whole 6000 image set. The confu-
sion matrix is shown as Table VII. The overall average accuracy
is 75.57%. The average accuracy from the five types of plankton
is 79.04%. Both indicate that the best 15-feature subset performs
slightly better than all 29 features. It is certainly faster to com-
pute the 15 features.

D. Probability Assignment Experiments

In this experiment, we compared our approach (line search
for ) and Platt’s approach extended to multiple class (gradient
descent search for and ). We used the same training set as
in the last experiment with the 15-feature subset. To reduce the
overfitting effect from parameter fitting, a threefold cross vali-
dation was used to search for the best parameters for both ap-
proaches. Since the gradient descent search for and is easily
stuck in local minima, we varied the initialization several times
to get the minimal loss. Table VIII describes the optimal param-
eters for both approaches. The gradient descent search provided
parameters with smaller loss. The line search for a single pa-
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Fig. 8. Feature selection on the training set: The solid line represents accuracy of the SVM and the dashed line represents the accuracy of the neural net.

Fig. 9. Selected feature subsets on the validation set: The solid line represents accuracy of the SVM and the dashed line represents the accuracy of the neural net.

TABLE VI
DESCRIPTION OF 15 SELECTED FEATURE SUBSET

rameter is definitely faster than gradient descent search for
and with different initializations.

To compare the different parameter sets, we drew a rejection
curve from tenfold cross validation using the best parameters for
both approaches. The points on the rejection curve were sam-
pled by varying the rejection threshold , whose range is be-
tween 0 and 1. Fig. 10 shows our approach is at least as good
as the MLE of and . It indicates that is a reasonable
assumption, at least for our data set.
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TABLE VII
CONFUSION MATRIX OF SVM (ONE-VS-ONE) FROM A TENFOLD CROSS

VALIDATION ON 6000 SIPPER IMAGES WITH THE BEST 15-FEATURE

SUBSET. C, D, L, P, T, AND U REPRESENT COPOPED, DOLIOLID,
LARVACEAN, PROTOCTISTA, TRICHODESMIUM AND UNIDENTIFIABLE

PARTICLES, RESPECTIVELY

TABLE VIII
BEST PARAMETERS FOR LOG-LIKELIHOOD LOSS FUNCTION

Fig. 10. Rejection curve for both approaches-Overall accuracy versus
rejection rate.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a plankton recognition system for binary
SIPPER images. General features, as well as domain specific
features, were extracted and a SVM was used to classify ex-
amples. We also developed a way to assign a probability value
after the multiclass SVM classification. We tested our system
on two different data sets. The recognition rate exceeded 90%
in one experiment and was over 75% on the more challenging
data set with unidentifiable particles. A SVM was more accu-
rate than a C4.5 decision tree and a cascade correlation neural
network at the 95% confidence level on the two data sets. The
single SVM was significantly more accurate than bagging ap-
plied to decision trees and random forests on the smaller data
set and was insignificantly more accurate on the larger data set.
The wrapper approach with backward elimination successfully
reduced the number of features from 29 to 15 and allowed a clas-

sifier to be built with slightly better accuracy than using all the
features. Our probability model for multiple class SVMs pro-
vided a reasonable rejection curve.

The system did not do well at recognizing unidentifiable
particles. It is hard to develop specific features to describe the
features of the unidentifiable particles because they vary so
much. More powerful descriptive and robust general features
seem needed in our future work. Recently, an advanced SIPPER
system has been developed to produce grayscale SIPPER im-
ages at 25 resolution. We are in the process of developing
methods and features for higher resolution (25 m resolution)
grayscale SIPPER images.
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