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Recognizing Rotated Faces From Frontal and Side
Views: An Approach Toward Effective Use of

Mugshot Databases
Xiaozheng Zhang, Student Member, IEEE, Yongsheng Gao, Senior Member, IEEE, and

Maylor K. H. Leung, Member, IEEE

Abstract—Mug shot photography has been used to identify
criminals by the police for more than a century. However, the
common scenario of face recognition using frontal and side-view
mug shots as gallery remains largely uninvestigated in comput-
erized face recognition across pose. This paper presents a novel
appearance-based approach using frontal and sideface images
to handle pose variations in face recognition, which has great
potential in forensic and security applications involving police
mugshot databases. Virtual views in different poses are generated
in two steps: 1) shape modelling and 2) texture synthesis. In
the shape modelling step, a multilevel variation minimization
approach is applied to generate personalized 3-D face shapes. In
the texture synthesis step, face surface properties are analyzed
and virtual views in arbitrary viewing conditions are rendered,
taking diffuse and specular reflections into account. Appear-
ance-based face recognition is performed with the augmentation
of synthesized virtual views covering possible viewing angles to
recognize probe views in arbitrary conditions. The encouraging
experimental results demonstrated that the proposed approach
by using frontal and side-view images is a feasible and effective
solution to recognizing rotated faces, which can lead to a better
and practical use of existing forensic databases in computerized
human face-recognition applications.

Index Terms—Appearance-based recognition, face recognition,
mug shot, police database, pose variation, virtual view synthesis,
3-D modelling.

I. INTRODUCTION

F
ACE recognition under pose variations is one of the key

remaining problems in the research field of pattern recog-

nition and computer vision [42], [62]. It is of great interest in

many applications, most notably those dealing with indifferent

or uncooperative subjects, for instance, in surveillance systems.

Given the current state of technologies, however, computerized

face recognition requires cooperative subjects who stay still in
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a required pose (often frontal) to be checked [9]. The diffi-

culty lies in the fact that the intraclass differences brought by

pose variations are often larger than interclass differences for

distinguishing different people. One of the most successful ap-

proaches for face recognition is the appearance-based approach

[27]. In a pose-invariant face-recognition scenario, it compares

an input (or probe) face in an arbitrary pose with a number of

enrolled (or gallery) images per person in the database cov-

ering all possible viewing directions. The performance of ap-

pearance-based face recognition is largely dependent on the se-

lection and availability of the gallery images.

Police mugshot databases1 usually consist of a frontal view

and a side view per person (Fig. 1), which are a primary source

of gallery images for face recognition [55]. The police have used

mug shots to identify criminals for more than a century [49]

and there are many legacy mugshot databases which were rou-

tinely taken during the police booking process [31]. For com-

puterized face recognition, however, frontal and side-view mug

shots are not able to provide effective coverage of all possible

conditions, when a probe image is in an arbitrary pose between

the frontal and side-viewing angles. Although several pose-in-

variant face-recognition techniques [7], [24], [27] have been

proposed recently, the common scenario of using frontal and

side-view mug shots as a gallery remains largely uninvestigated.

This research proposes a novel face-recognition approach which

uses frontal and side-view face images as gallery and recog-

nizes probe views in arbitrary poses, which has great poten-

tial in mugshot-related applications. The combination of frontal

view and side-view balances the tractability and applicability

of the proposed approach for face recognition across pose well.

Compared to algorithms of face recognition from single images,

multiple gallery views provide more information about the in-

dividual face so that the system can be more accurate and rely

less on prior knowledge of an average human face. The pro-

posed approach aims to make effective use of the frontal and

side views of face pictures widely available in existing police

mugshot databases and does not require additional acquisitions

of gallery databases. It can easily fit into many face-recognition

applications using frontal and side-view mug shots as a gallery

for law enforcement and security surveillance, for example, in

video-monitoring systems.

The proposed approach is appearance based, which synthe-

sizes personalized virtual views in different poses from mugshot

1Mugshot databases in this paper refer to common police databases con-
taining frontal and side views.

1556-6013/$25.00 © 2008 IEEE
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Fig. 1. Example of mugshot-style face pictures used as the gallery in the pro-
posed approach.

gallery views and recognizes rotated probe views using face-

recognition algorithms augmented with the synthesized virtual

views. First, a hierarchical multilevel variation minimization ap-

proach reconstructs the personalized 3-D face shapes from two

gallery views. Then, the facial textures are estimated consid-

ering the diffuse and specular reflections using the Phong reflec-

tion model. Virtual views are synthesized by rotating the recon-

structed face shapes and performing pixel-wise texture synthesis

to cover possible viewing angles. Appearance-based recognition

of face views in arbitrary poses is finally performed using the

synthesized virtual views as galley images. The initial idea and

early work of this research have been published in part as con-

ference papers in [57], [58]. In this paper, we report the complete

and improved formulation, thorough investigation and extended

experimental evaluation of our system.

A. Related Works

Previous works show that it is realistic yet challenging to per-

form appearance-based face recognition across pose using syn-

thesized virtual views [5], [22]. Two-dimensional techniques

[5], [10], [14], [34], [48], [60] and 3-D approaches [7], [11],

[22], [30] were used to predict the appearance of a human face

in different poses. Beymer and Poggio [5] mapped a 2-D fa-

cial transformation obtained from a sample face rotation onto a

gallery face view to generate virtual views under novel viewing

conditions. Cootes et al. [14] proposed a 2-D statistical method

to approximate facial appearances under novel viewing condi-

tions from three gallery face images. González–Jiménez and

Alba–Castro [24] extracted pose parameters from interpersonal

variations of 2-D facial transformation in parallel deformation

[5] using the point distribution model [36]. Despite these inno-

vative attempts to synthesise virtual views using 2-D techniques,

researchers argue that the pose variation is a 3-D transformation

rather than a 2-D warping. In addition to the complex nonconvex

face shape, virtual views from different viewpoints cannot be

correctly synthesized by 2-D manipulations. This probably ex-

plains why only small rotation angles (15 in [5], 22.5 in [14],

and 31 in [24]) can be properly handled in 2-D techniques for

virtual view synthesis.

3-D approaches [7], [22], [23], [30] have advantages over

2-D techniques in synthesizing rotated virtual views under

large-angle rotations. In [30], a generic model was used as

prior knowledge of the human face shape and facial features

are detected as the constraints to deform the generic model

to form an individualized human face shape. One of the most

attractive approaches in this category is the 3-D morphable

model proposed by Blanz and Vetter [7]. It successfully pro-

jected face shapes and textures onto eigenspaces to represent

the identity using prior knowledge of human faces. The use of

single gallery views makes their algorithm rely heavily on the

pixel intensities, and consequently, the face modelling process

is highly nonlinear and unstable [44], [45]. Georghiades et

al. [22] introduced a generative 3-D illumination cone model

trained from seven gallery images to synthesize virtual views

under various illuminations and poses. Gross [27] proposed

learning an eigenlight field from 2-D face images to perform

face recognition. These two studies were based on assumptions

that human face surfaces are Lambertian surfaces without

considering specular reflections. In [23], the 3-D illumination

cone model in [22] was patched with the consideration of a

simplified Torrance–Sparrow model to resolve the issues asso-

ciated with Lambertian assumption (e.g., bas-relief ambiguity

[4]). It is assumed that the specular reflection component was

homogeneous across the whole face surface, which is a better,

but not as realistic modelling of real face surfaces.

In the virtual view synthesis of the proposed approach, the

personalised 3-D face shape is constructed using the interre-

lations of facial features on the two gallery views, enabling a

3-D face modelling procedure without using a generic shape

model. Since the shape modelling process does not directly use

the pixel intensities to estimate face shapes, it does not require

the large number of gallery views to resolve intractability as

used in [22] and [23]. The estimation of the face surface prop-

erties is based on the Phong reflection model, which considers

diffuse and specular reflectivities. The proposed face-recogni-

tion system consists of three steps, that is: 1) a hierarchical 3-D

face modelling step which refines the shape reconstruction at

multiple resolution levels; 2) a surface reflectance analysis and

virtual texture synthesis step which estimates and refines fa-

cial textures from the pixel intensities of the two gallery images

and synthesizes virtual images under arbitrary viewing condi-

tions; and 3) an appearance-based face-recognition step aug-

mented with synthesized virtual views in different viewing an-

gles. The proposed approach is different from existing methods

in the following aspects. First, it combines frontal view and

side-view images for virtual face view synthesis and face recog-

nition, which targets the effective use of existing police mugshot

databases. Compared to other methods using a single gallery

image per person, such as [7] and [32], the proposed approach is

capable of estimating the shape and texture information more re-

liably and less dependent on prior knowledge of the 3-D human

faces. Second, compared to 2-D approaches [5], [14], [24], the

proposed 3-D modelling process is capable of handling large

viewpoint changes (even vertical rotations). Third, this approach

does not require any 3-D generic face model. In the process of

3-D shape modelling, the reconstructed face shape is personal-

ized, which is free from prior knowledge of human faces be-

longing to other identities. Through this process, the discrimi-

native shape information for face recognition can be well pre-
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served. Last but not least, the texture synthesis considers spa-

tially variable diffuse and specular reflectance using the Phong

model, other than direct mapping neglecting specular reflection

[5], [27], [32] or simple interpolation of pixel values [14], [30].

The main focus of this research is to handle pose variations

in face recognition and this paper made no attempt to handle the

variations of other conditions in face recognition, such as illu-

mination variations and expression variations. For face-recog-

nition techniques under illumination variations and expression

variations, readers can refer to [2], [12], [20], [21], [35], [38],

[45], [46], [63], as well as [8], [40], [41], [53], [56], and [59], re-

spectively. The rest of this paper is organized as follows. In Sec-

tion II, the proposed hierarchical 3-D shape modelling approach

is elaborated. Texture analysis and virtual view synthesis con-

sidering spatially variable diffuse and specular reflectivities are

described in Section III. In Section IV, virtual views in arbitrary

viewing conditions are synthesized using the generated personal

face models. Augmented face recognition using the synthesized

virtual views is conducted on the CMU-PIE database and com-

pared to benchmark algorithms. Finally, a conclusion is drawn

in Section V.

II. 3-D SHAPE MODELLING

The goal of 3-D face-shape modelling is to achieve an accu-

rate and smooth 3-D face model from the frontal and side-view

gallery images. The surface smoothness reduces the texture es-

timation errors by providing sound normal directions of the 3-D

shape for the texture analysis in Section III. The proposed ap-

proach hierarchically estimates the 3-D shape of the personal-

ized face from a set of constraining points on the gallery views.

In each level of 3-D shape estimation, it simultaneously models

and smoothes the face surfaces by minimizing the surface vari-

ations between constraining points and nonconstraining points.

Table I lists the notions and symbols used in the proposed ap-

proaches for 3-D face-shape modelling and reflectance analysis

and synthesis.

A. Single-Level 3-D Shape Reconstruction

Suppose a 3-D face shape is formulated as a depth graph

, where represents a pixel position on the frontal

image plane ( - plane). The side view is on the - plane.

Given a set of constraining points specified on frontal and side-

view face images, the coordinates of the th constraining points

on the frontal image and side image are denoted as

and , respectively. The location of the th constraining

point in the 3-D space is then . Denote the con-

straining point set as , and the

depth information of the th constraining point is expressed as

. The 3-D shape reconstruction is performed

by minimizing the surface roughness

(1)

subject to , , [26], [57]. If the

initial surface is

if

otherwise
(2)

TABLE I
NOTIONS AND SYMBOLS USED IN THE PROPOSED ALGORITHMS

the disconnection around results in a large . The discrete

form of (1) is expressed as

(3)

where is the width (and height) of the frontal image. To per-

form 3-D shape reconstruction based on the constraining points,

(3) is minimized under the constraint of .

The optimization is a quadratic nonlinear programming problem

and the optimal set of can be approximated using an iterative

gradient projection method [39].

The process of improving the approximation from an initial

vector is as follows.

1) At the th iteration, initial is the result of the th

iteration.

2) Construct the constraint matrix , where is a

matrix with rows consisting of a 1 in the position corre-

sponding to the location in the frontal image for

.

3) Calculate the projection matrix as ,

which consists of all 1s except for diagonal elements in

those rows corresponding to a constraining point, with such

elements being 0s.

4) Calculate the steepest gradient direction as

, along which a better estimate is found

and fastest minimization of the is achieved.
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5) Find the optimal solution along by calculating and

as follows, respectively

is feasible (4)

(5)

6) Update the estimate by .

The initial can be any shape which satisfies the constraint.

Without loss of generality, (2) is used to provide an initial state

of the surface , in which all surface points are at 0 heights ex-

cept for the constraining points with their heights being ,

where . The iteration continues to improve the recon-

structed surface, until the change is smaller than the threshold

as

(6)

B. Multilevel 3-D Shape Reconstruction

In the single-level 3-D shape reconstruction process, the

neighboring points of a constraining point will move gradually

toward the constraining point along the -axis by minimizing

surface roughness . This minimization requires a dense set

of constraining points which is infeasible for 3-D face-shape

reconstruction, because the facial features (facial components)

used as constraining points are, at best, sparse points on the

relatively large images of human faces.

Under this circumstance, a coarse-to-fine hierarchy is intro-

duced to resolve the problem with sparse features in the single-

level 3-D surface reconstruction. Its hierarchically refines the

estimations of the 3-D shape by inheriting more accurate initial

data from the previous levels of reconstruction. Suppose the res-

olution of the frontal gallery image ( - plane) is , where

is of the powers of 2. A coarse-to-fine hierarchy of control lat-

tices is applied onto the frontal image to gen-

erate a sequence of surface reconstructions at different resolu-

tion levels, where is the coarsest control lattice and is the

finest control lattice (i.e., the actual image resolution). As shown

in Fig. 2, the th lattice has a resolution of

grids, and each grid consists of pixels in the frontal

image, where .

For the coarsest lattice , the resolution is 2 2 and

, while for the finest lattice , the resolution is and

. can be determined from the size of the frontal image

as . At control lattice , where , pixel

on the frontal image is mapped to grid , where

and . ( denotes the floor function

that returns the largest integer less than or equal to .) The con-

straining pointset defined on becomes

(7)

and the heights are converted into the new coordinate

as , if , where

.

Based on the converted constraining points, a single-level 3-D

shape reconstruction can be performed from an initial estimate

Fig. 2. Control lattices in the proposed multilevel variation minimization for
3-D shape reconstruction. (a) The coarsest lattice � , (b) � , and (c) the finest
lattice � , where the lattice is the actual frontal image.

by minimizing a quadratic variation of the surface as

(8)

subject to . The initial is inherited

from the estimated result on the previous control lattice

as

(9)

The initial for the coarsest control lattice

is expressed as

if

otherwise.
(10)

Fig. 3 shows a sequence of shape reconstruction results from the

frontal and side views of Fig. 1 with different control lattices.
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Fig. 3. The 3-D face shape reconstructed with a coarse-to-fine hierarchy. Re-
constructed face shapes with a 16� 16 control lattice in 30 rotation (a) and
90 rotation (d), with a 64� 64 control lattice in 30 rotation (b) and 90 rota-
tion (e), and with a 512� 512 control lattice (the finest) in 30 rotation (c), and
90 rotation (f).

The proposed 3-D shape modelling approach requires a set of

facial features specified on frontal and side views to be used as

constraining points. A number of automatic algorithms for fea-

tures location or detection have been proposed recently, such as

the face vectorizing algorithm [6]; active shape model (ASM)

[13], [36], [52]; Bayesian shape model (BSM) [54]; active con-

tours [25], [29]; morphable models [33], [51]; and 2-D shape

clustering [17], which could be incorporated into the proposed

framework to automatically provide the facial features on face

images. On the other hand, manual facial feature specifications

are also widely used in various face modelling and recognition

research [15], [24], [37]. In this research, facial features are

specified interactively on the gallery views (Fig. 4). They are

eyes, eyebrows, nose profiles, lips, and ears, which are ASM

control points (red in Fig. 4) and interpolated points (yellow in

Fig. 4) which are points between control points [61]. Since only

half of the face is visible in the side view, facial features can

only be located on one side of the face. Based on the assumption

that a human face is bilateral symmetric as in [5] and [19], the

feature locations can be mirrored to the other half. In our experi-

ments, 80 corresponding facial features were manually labelled

in frontal and side views for each person as constraining points

in the proposed 3-D face modelling step.

III. REFLECTANCE ANALYSIS AND RECONSTRUCTION

OF FACE SURFACES

The textural information of human faces is critical to the per-

formance of face-recognition systems. A realistic and accurate

Fig. 4. Facial feature specification on the frontal and side gallery views.

texture mapping of virtual face views in arbitrary viewing con-

ditions can greatly improve the recognition accuracy. From the

two gallery images of the frontal and side views, the surface tex-

tural properties need to be estimated and are then used to synthe-

size virtual textures of human faces in the virtual face views. In

this section, a stable reflectance reconstruction approach based

on Phong reflection model is proposed to estimate the human

face textural properties and to synthesize virtual views in ar-

bitrary conditions. First, a uniform set of textural properties for

Phong reflection model is estimated from the textures of the two

gallery views. Then, corresponding to specific viewing condi-

tions, spatially varying textural property coefficients are refined

and estimated from the actual pixel intensities of the gallery

images to represent the texture details of the human faces for

recognition.

A. Phong Reflection Model for Human Skins

In the proposed reflectance analysis step, facial textures are

analyzed from the image intensities of gallery views based on

the Phong reflection model [43], since human faces exhibit

diffuse and specular reflections [16]. In the Phong model, the

image intensity (reflected intensity) is expressed as

(11)

where , , and are the ambient, diffuse, and specular re-

flectance, respectively; and are the ambient and direc-

tional incident light intensities; is the direction of ; is

the direction of the surface normal; is the viewing direction;

is the specular exponent; and is the reflecting direction cor-

responding to which is calculated as

.
(12)

In this paper, the light source is limited to be a single point

light from infinity. This assumption is often used (e.g., [7], [22],

[23]) and considered as a reasonable approximation, because in

taking mug shots, the major light source is the camera flash. If

the camera is far enough from the face compared to the size of

the face, it can be approximated as a light source from infinity.
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Thus, the lighting intensities and and the lighting direc-

tion in (11) are constant for all of the surface points. is fixed

[7], [14], [28] as 2 [30]. The normal of a given point on the

face surface is calculated from the results of the previous step in

3-D shape reconstruction using B-spline surface approximation

on 16 neighboring points on the face as [18, Ch. 11]

(13)

Though the lighting intensities and are unknown, they

are constant values at every point on the face surface. By de-

noting as , as and as , (11) becomes

(14)

B. Reflection Component Estimation from the Two Gallery

Views

Given a set of frontal and side views under a parallel flashlight

, we have for the frontal view and for the side

view. To estimate the three reflection components, the frontal

face view and the sideface view are both used. For the th point,

(11) becomes

(15)

for the corresponding pixel on the frontal view, and

(16)

for the corresponding pixel on the side view. The reflecting di-

rection and are calculated as

(17)

and

(18)

respectively.

All surface points are initialized homogeneously and the set

of reflection components are denoted as , , and . For

the whole images of the frontal and side gallery views, we have

...

...

(19)

where is the number of points. Equation (19) is solved in a

least square sense and the objective function to be minimized is

expressed as

(20)

To ensure that all of the reflection components , , and

are semipositive, (20) is minimized subject to

(21)

The optimization is again a quadratic nonlinear programming

problem and the optimal set of can be estimated

by using the same iterative gradient projection method as used in

the step of 3-D shape reconstruction. Compared to the nonlinear

programming problem in the previous 3-D shape reconstruction

step, the dimension of the variables is reduced to 3 and the con-

straints are no longer constantly active (e.g., when , the

constraint is inactive). Accordingly, the process of the

reflection component estimation is as follows.

Step 1) At the th iteration, initial is ob-

tained from the th iteration.

Step 2) From , determine

the active constraint set as

, which is the

subset of the constraint set defined only by the

active constraints.

Step 3) Construct the constraint matrix , where is a

matrix with rows consisting of a 1 in the

position corresponding to the location of an active

constraint.

Step 4) Calculate the projection matrix as

, which consists of all 1s except for

diagonal elements in those rows corresponding to an

active constraint, with such elements being 0s.

Step 5) Calculate the steepest gradient direction as

, along which a better esti-

mate can be found and fastest minimization of the

can be achieved.

Step 6) If , go to Step 7). Otherwise, go to Step 9).

Step 7) Find the optimal solution along by calculating

and as follows, respectively

is feasible

(22)

(23)
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Step 8) Update the estimate as

, and return to Step 2).

Step 9) Calculate the constraint projection direction vector

as

(24)

which indicates the potential descent direction of the

active constraint.

a) If , the iterations reach their optimal

estimate and stop.

b) Otherwise, find the row corresponding to the

inequality with the most negative component of

as and delete the th

row from as

(25)

and return to Step 4) to search for a new descent

direction.

The initial parameter vector is chosen as

(26)

where all three constraints are inactive. The optimization is ter-

minated when the progress is smaller than the threshold as

or it reaches Step 9(a). The optimal esti-

mate is denoted as .

C. Reflection Component Refinement and Virtual Texture

Synthesis

Since face surfaces have spatially variable reflectance prop-

erties, each surface point has a unique set of reflection compo-

nents, i.e., pixel-wise reflection components are

expected from the uniform estimate . To estimate

the pixel-wise reflection components, the difference of the gen-

erated pixel intensity from and the real pixel in-

tensity from the gallery views is used. From and

the reconstructed 3-D face shape, the pixel intensities of the th

pixel on the frontal and side views are rendered as

(27)

and

(28)

respectively. The corresponding pixel intensities from the real

gallery frontal and side views are and , respectively. The

refinement coefficients and for the frontal view and the

side view are defined as and .

By multiplying the frontal-view refinement coefficient to

the optimized uniform reflection components ,

the refined reflection components can synthesize the exact pixel

intensity in the same condition of the frontal gallery view, which

are calculated as

(29)

Similarly, using the side-view refinement coefficient , a set

of pixel-wise reflection components can be refined as

, , , to achieve exact pixel

intensity on the side gallery view. Ideally, the two sets of param-

eters are equal, because they are the intrinsic parameters of the

face surface of the same point. In practice, however, a number

of imperfections may cause the two sets to be different. For ex-

ample, the inaccuracy of the 3-D shape reconstruction can re-

sult in inaccurate pixel correspondence where the corresponding

pixels on the frontal and side views are actually two different

points on the face surface. Given a viewing and lighting condi-

tion ( and ), the novel virtual textures are rendered from the

estimated reflection components. If , the

frontal-view-based refined reflection components are applied in

the Phong reflectance model as

(30)

where

.
(31)

If , the side-view-based refined reflec-

tion components are used as

(32)

The virtual textures are then mapped to the rotated 3-D face

shape and the virtual face views are synthesized. The entire

process for the virtual view synthesis from the frontal and side

view mugshot-style gallery images is illustrated in Fig. 5.

IV. EXPERIMENTS AND RESULTS

The proposed approach for recognizing rotated faces using

mug shots was tested on the subset of the CMU-PIE database

[47] consisting of 884 face images of 68 persons under 13 dif-

ferent poses (labelled as pose 02, 05, 07, 09, 11, 14, 22, 25,

27, 29, 31, 34, and 37, refer to Fig. 6). The viewing directions

of these poses are listed in Table II. The frontal view (pose 27)

and side view (pose 22) of each person were selected as the mug

shots to provide gallery views for the proposed system. The per-

sonalized face models were reconstructed and the virtual views

under different viewing conditions were synthesized. For per-

formance evaluation, the most widely used holistic matching

method, principle component analysis (PCA) [50], and the most

appealing local matching approach, local binary patterns (LBP)

[1], were selected as the classifiers to build face-recognition sys-

tems. It is interesting to further test the performance of the pro-

posed method on larger databases in the future when they are

available.

A. Virtual View Synthesis

Given a set of mug shots, the 3-D shape and texture informa-

tion of a person’s face can be estimated by using the proposed

approach from the mug shots. Personalized virtual views under

novel variations in pose can be synthesized from the estimated
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Fig. 5. Process of shape modelling, reflectance analysis, and view synthesis.

Fig. 6. Example of the 13 poses from the CMU-PIE database [47] used in the experiments.

parameters using Algorithm 2. Fig. 7 shows examples of vir-

tual face views synthesized in our experiments. A comparison

between the real probe view of the face and a virtual view gener-

ated by our algorithm is shown in Fig. 8. Note that these images

were synthesized from the frontal and side views in the mugshot

databases.

B. Face Recognition (Identification) Experiments

Using principal component analysis (PCA) [50] and local

binary patterns (LBP) [1] as classifiers representing two major

schemes of 2-D appearance-based face recognition (i.e., holistic

and local matching schemes), the following six strategies were

employed in our identification experiments. The first three

strategies were used as baselines for comparison purposes,

while the last three strategies used the proposed approach to

augment the face recognition under pose variations. For PCA,

the available gallery views were used for training to construct

the eigenfeature space and the dimensionality of the feature

space was chosen to be 60. The image resolution was 160 160

and the three most significant principal components in pro-

jected eigenvectors were discarded to yield better recognition

performance [3]. For LBP, the image resolution was 80 80

and the standard (8,1) neighborhood was chosen. The face

images were divided into 20 20 regions, the histograms were

quantized to 32 bins, and the classification was based on the

unweighted chi-square method. For PCA and LBP, the nearest

neighbor (NN) has been used as the classification scheme when

the gallery includes more than one view per person (e.g., B2,

A2, and AA).

1) B2: The two real views per person [Fig. 9(a)] were used as

gallery views and the other rotated real views [Fig. 9(c)},

labelled as 02, 05, 07, 09, 11, 14, 25, 29, 31, 34, and 37,

were used as probe views.

2) BF: The frontal real views [Fig. 9(a)-“27”] were used as

gallery views and the rotated real views [Fig. 9(c)] were

used as probe views.

3) BS: The side real views [Fig. 9(a)-“22”] were used as

gallery views and the rotated real views [Fig. 9(c)] were

used as probe views.



692 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 3, NO. 4, DECEMBER 2008

TABLE II
ROTATION ANGLES OF THE DIFFERENT POSES IN THE CMU–PIE DATABASE

Fig. 7. Examples of virtual views. (a) and (c) Virtual views generated from
gallery views by the proposed method. (b) and (d) frontal and side gallery views
in the CMU-PIE database [47].

Fig. 8. Comparison between (b) the virtual view synthesized using the pro-
posed approach and (a) its corresponding real view.

4) AC: The virtual views in a single pose [e.g., Fig. 9(b)-“02”]

synthesized from the mug shots [Fig. 9(a)] were used as

gallery views and the real views in the corresponding pose

[e.g., Fig. 9(c)-“02”] were used as probe views.

5) A2: The virtual views in a single pose [e.g., Fig. 8(b)-“02”]

plus the real frontal and side views [Fig. 8(a)] were used as

Fig. 9. Examples of the face images used in the experiments. (a) The mug shots
in frontal and side viewing directions. (b) The synthesized virtual views in ro-
tated poses. (c) The rotated real views.

gallery views and the real views in the corresponding pose

[e.g., Fig. 8(c)-“02”] were used as probe views.

6) AA: All of the synthesized virtual views plus the two mug

shots [i.e., Fig. 8(a) and (b)-“02”, 8b-“05”,..., 8b-“37”]

were used as gallery views and the real views [e.g., Fig.

8(c)-“02”] were used as probe views.

The algorithms were run in Microsoft Visual C++ on a Pen-

tium IV 2.8-GHz desktop computer with 1-GB memory. On av-

erage, it takes 16.43 min for face-shape modelling, 3.76 min for

reflectance analysis, and 0.256 min for synthesizing 11 virtual

views. Note that all of these are virtual view database processes

in real applications, which are done offline. In the recognition

experiment, the AA-PCA algorithm (the most time-consuming

strategy) takes 24.04 s for eigenspace training and projection

which are offline processes and 0.11 s for online probe fea-

ture extraction and recognition. The AA-LBP algorithm takes

4.16 s for the offline gallery view LBP feature extraction and

0.635 s for the online probe feature extraction and recognition.

Though the steps of virtual view synthesis are offline processes,

the computational times of the algorithms should and can be re-

duced. For instance, the lattice resolution can be reduced from

512 512 to 256 256 as the virtual views used in recogni-

tion are of lower resolution (160 160 for PCA and 80 80

for LBP). We will work on reducing the processing time in a

future study.

The recognition rates of the aforementioned identification

experiments using PCA [50] as the classifier are summarized in

Table III. The results show that the proposed face-recognition

approaches dramatically improve the face-recognition rates

against pose variations. The improvements of the average

recognition rates range from 35.45% to 77.91%. Under every

viewing direction, the proposed approaches outperformed the

baseline face-recognition approaches. Four plots of cumula-

tive match curves for four representative poses were shown

in Fig. 10 to compare the performances of the six different

methods. These four poses (i.e., pose “05,” “37,” “02,” and

“25”) were in an ascending series of rotations (i.e., pose “05” is

under a 16 horizontal rotation, “37” is under a 31 horizontal

rotation, “02” is under a 44 horizontal rotation, and “25” is
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Fig. 10. Cumulative match curves of the proposed approaches and the baseline approaches using PCA as the classifier for (a) pose 05, (b) 37, (c) 02, and (d) 25.

under a 44 horizontal, and 11 vertical rotations. In all poses,

the proposed approaches using view synthesis and augmenta-

tion outperformed the three baseline approaches in every rank.

For small rotations (e.g., pose “05”), the proposed approaches

reached 100% much earlier than the baseline approaches (B2

and BF only). For larger rotations (e.g., pose “02” and “25”), the

proposed approaches improved the performances significantly

over the baseline approaches. Moreover, these three proposed

approaches (i.e., AC-PCA, A2-PCA, and AA-PCA) performed

similarly, which indicates that the selections of recognition

strategies are not decisive to performance.

The recognition rates of the face identification experiments

using LBP [1] as the classifier are summarized in Table IV.

It shows that the proposed approaches again significantly im-

proved the face-recognition performance. The improvements

on the average accuracy range from 14.82% to 81.81%. Four

plots of cumulative match curves for the poses “05,” “37,”

“02,” and “25” were shown in Fig. 11. Fig. 11 showed that

by using the local LBP classifier, the proposed approaches

outperformed the baseline approaches in large pose variations,

while in small pose variations, the two approaches performed

perfectly. Compared to Fig. 10, the LBP classifier is more

robust to pose variations than the PCA classifier using the

baseline recognition scheme. Consistently, switching from

TABLE III
FACE RECOGNITION RATES (%) OF THE BASELINE RECOGNITION STRATEGIES

AND THE PROPOSED APPROACHES USING PCA AS THE CLASSIFIER

PCA to LBP also provides more robustness for the proposed

face-recognition approaches using view synthesis and augmen-

tation to pose variations. For instance, AA-LBP outperformed

AA-PCA under pose “02” and “25.” The improvements shown

in cumulative match curves contributed to the synthesis of

virtual views in the same (or similar) viewing conditions to

the probe images. By performing the proposed approaches, the

image differences between gallery images and probe images
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Fig. 11. Cumulative match curves of the proposed approaches and the baseline approaches using LBP as the classifier for (a) pose 05, (b) 37, (c) 02, and (d) 25.

TABLE IV
FACE RECOGNITION RATES (%) OF THE BASELINE RECOGNITION STRATEGIES

AND THE PROPOSED APPROACHES USING LBP AS THE CLASSIFIER

caused by pose changes were minimized, which helped face

classifiers consistently handle rotated probe images.

Tables III and IV show that holistic (PCA) and local (LBP)

classifiers suffer from pose variations in face recognition, es-

pecially when the rotation angle is larger than 30 . Without

using the proposed approaches, the recognition accuracies of

both classifiers were below 47%, when the probe views were in

poses 02 (44 rotation), 14 (47 rotation), 25 (44 yaw, and 11

tilt rotations), and 31 (47 yaw and 11 tilt rotations). The pro-

posed approach significantly improved the performance of face

recognition under large pose variations by increasing the recog-

nition rates by at least 37%. The only exception is pose 34 (a side

view opposite that is opposite pose 22), where the recognition

rates of the proposed approaches remain as limited improvement

(Table III) and no improvement (Table IV). This may be because

the virtual views were synthesized from the opposite side view

of the face and, consequently, the asymmetry of human faces

affected the quality of the virtual view synthesis. Comparing

different strategies using the proposed approach, the recogni-

tion performance using frontal, side, and corresponding rotated

views (A2) is the best for PCA and the recognition performance

by using the corresponding rotated views only (AC) is the best
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TABLE V
ACCURACY (%) COMPARISON OF THE PROPOSED APPROACHES (AA-PCA,
AA-LBP) AND THE REPORTED APPROACHES OF THE EIGENLIGHT FIELD

(ELF-F, ELF-S)[27] AND POINT DISTRIBUTION MODEL WITH FACIAL

SYMMETRY (PDM)[24]

for LBP except for pose 34. The recognition of AC-PCA is lower

probably because of the small training dataset for the eigenspace

establishment in PCA, and the use of a large training dataset may

improve AC-PCA performance. LBP outperformed PCA in al-

most every aspect even in the baseline recognition strategies,

which indicates that local classifiers are more suitable for face

recognition under pose variations than holistic classifiers.

To compare the proposed approach with existing face-recog-

nition methods considering pose variations, face recognition

using eigenlight fields [27], and face recognition using point

distribution models and facial symmetry [24], two of the best

methods using single images per person as gallery views with

the most thorough experiment tests on CMU-PIE database,

were chosen as the benchmark techniques. The experimental

results of our proposed approach were tabulated in Table V,

together with the reported results in [27] and [24]. In [27], either

the frontal view or the side view per person was used as gallery

view to recognize images under other viewing conditions. The

recognition accuracy using the frontal views as gallery images

is denoted as ELF-F and that using the side views as gallery

images is denoted as ELF-P. Our proposed face-recognition

approaches achieved better performances in every pose. The

average recognition rates of ELF using frontal gallery views

and using side gallery views are 72.55% and 53.36%, respec-

tively, while the proposed AA-PCA and AA-LBP achieving

accuracy increases, ranging from 12.18% to 40.09%. Note the

recognition rates in [27] and [24] were achieved using single

views per person as gallery views. These improvements of

AA-PCA and AA-LBP over ELF-F, ELF-P [27], and PDM

[24] were achieved by introducing an additional view as gallery

views for virtual view synthesis in the proposed approach.

In [24], frontal views were used as gallery views and the ro-

tated views labelled as 02, 05, 11, 14, 29, 34, and 37 were used as

probe views (denoted as PDM in Table V). Since their method

is based on 2-D transformations, the recognition rates drop as

the rotation angle increases. Under ~ 15 rotation (pose 05 and

29), ~ 30 rotation (pose 11 and 37), and ~ 45 rotation (pose 02

and 14), the recognition rates were 99%, 92%, and 67.5%, re-

spectively. Our proposed approach achieved 100%, 100%, and

93% of accuracies in these three poses, respectively. The recog-

nition rates under the poses associated with large vertical ro-

tations (i.e., for pose 07, 09, 25, and 31, refer to Fig. 6) were

not available in [24]. The challenges for face recognition under

different poses are different. For instance, it is more difficult to

recognize a face in pose 25 than that in pose 02, because pose

25 contains an additional vertical rotation than that in pose 02.

Comparing the available recognition rates in [24], the proposed

approach achieved higher recognition rates in all poses when

using LBP as the classifier.

V. CONCLUSIONS

In this paper, we have presented a novel approach to recognize

faces in rotated poses using frontal and side view mug shots as

gallery images. Targeting this common application scenario in

law enforcement and security surveillance, which appears over-

looked by the research community of face recognition, this re-

search investigated the feasibility and effectiveness of building

a face-recognition framework toward the use of widely avail-

able frontal and side view police mugshot databases. The pro-

posed approach is appearance based, which recognizes input

face views in arbitrary poses by comparing them against the

virtual views synthesized from gallery views. Personalized face

models are reconstructed using hierarchical multilevel variation

minimization for 3-D shape modelling and pixel-wise texture

analysis considering diffuse and specular reflections of human

face surfaces. Virtual face views synthesized in arbitrary poses

containing horizontal and vertical in-depth rotations have qual-

itatively justified the benefit of using frontal and side views as

gallery images, especially when the rotation angle is larger than

30 .

Quantitatively, we have tested the proposed face-recognition

approach on the pose subset of the CMU-PIE face database,

consisting of 884 images in 13 different poses. The proposed

face-recognition approach significantly improved the recogni-

tion accuracies over the baseline holistic [50] and local [1] face-

recognition algorithms and achieved much higher recognition

rates compared to state-of-the-art pose-invariant face-recogni-

tion techniques using single gallery views [24], [27]. Specifi-

cally, the experimental results reveal that:

• using two mugshot face images as gallery views achieved

higher recognition rates over face-recognition systems

using single face images as gallery views;

• the accuracy improvements of the proposed approach

over the baseline strategies were consistently achieved in

holistic and local face-matching schemes;

• the proposed approach is capable of handling large hor-

izontal and/or vertical rotation angles between gallery

views and probe views, which is a challenging task for

face recognition;

• the proposed approach using frontal and side view

mugshot gallery images outperformed the state-of-the-art

techniques of recognizing rotated faces [24], [27] using

single gallery images.

The experimental results demonstrated that the use of

mugshot face images as gallery views is a feasible and ben-

eficial solution, which provides an effective means toward

pose-invariant face recognition. It shows the possibility of a
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better and practical use of existing forensic information by

incorporating frontal and side views in existing police mugshot

databases into computerized face recognition, leading to an

effective solution for face-recognition applications dealing with

uncooperative subjects, for instance, in security surveillance

systems.
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