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RECOGNIZING UNITS IN NUMBER FIELDS

GUOQIANG GE

Abstract. We present a deterministic polynomial-time algorithm that decides
whether a power product n¿=i ff is a umt m tne ring of integers of K , where
K isa number field, y, are nonzero elements of K and n¡ are rational integers.
The main algorithm is based on the factor refinement method for ideals, which
might be of independent interest.

1. Introduction

A number field K is a finite field extension of the field Q of rational numbers
([3, 5, 8, 12]). Denote by cf the ring of integers of K and by cf* the unit
group of cf. The main result of the present paper is as follows.

Theorem 1.1. There exists a polynomial-time algorithm that, given a number
field K, nonzero elements yx, ... ,yk of K and rational integers nx, ... , nk ,
decides whether the power product T[i=l yf is in cf*.

The proof of Theorem 1.1 will be given in §6. Theorem 1.1 answers a question
suggested by H. W. Lenstra, Jr. in the the survey article Algorithms in algebraic
number theory ([9, Problem 5.2]).

The problem of testing whether a power product is a unit arises from cal-
culating the unit group cf* of a number field K. It is conjectured that, for
an infinite sequence of real quadratic fields, the total number of digits of the
coefficients of e on a given basis of cf over Z is as large as A1/2"1"^1', where
e is a fundamental unit and A is the discriminant of K . A different represen-
tation for e is necessary since just writing down e on a given basis of cf over
Z may be both time- and space-consuming. The algorithms that are actually
used for finding units suggest that it is better to represent units in a compact
form such as a power product Y[k=l yf of small nonzero elements yx, ... ,yk
of K with integer exponents nx, ... , nk . Theorem 1.1 provides an efficient
method of recognizing units if elements of number fields are represented as
power products.

The algorithm on which the proof of our theorem is based depends on the use
of basic ring theory. More specifically, Theorem 1.1 is obtained by the factor
refinement method for ideals. If K = Q, it is easy to see that Theorem 1.1 can
be obtained from the results in [2]. The essential idea of the factor refinement
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method for integers ([2]) is as follows: given m = ab, compute d = gcd(a, b)
and write m = (a/d) • (d2) • (b/d), then continue this process until all factors
are relatively prime. For the general number field K, we can efficiently calculate
an order A in K. But we cannot assume that the computed order A is the
ring of integers cf of K, since finding the ring of integers of a given number
field is not known to be computable in polynomial time (cf. [4, 6]). If a, b
belong to the order A , then gcd(a, b) is not an element of A but is an ideal
of A . The division of ideals of A cannot be carried out if the divisor is not
an invertible ideal. On the other hand, if an ideal that is not invertible is found
in the process of factor refinement, then an order B that is strictly larger than
the order A can be found efficiently. This enlargement process will eventually
stop after polynomially many steps.

The structure of this paper is as follows. In §2, we review some basic knowl-
edge of algorithmic algebraic number theory. In §3, we recall some basic ring
theory that will be used later. In §4, we give some estimates on the sizes of
fractional ideals and overorders. In §5, we give the factor refinement method
for ideals of an order in a number field. The proof of Theorem 1.1 will be given
in §6.

Algorithms presented in this paper are not necessarily efficient from a prac-
tical point of view. Accordingly, I have not estimated the running time of the
algorithms precisely.

2. Preliminaries

In this section, we review some basic knowledge of algorithmic algebraic
number theory. For more details, we refer to [9]. All rings in this paper are
supposed to be commutative with a unit element, subrings contain the same
unit element.

A number field K of degree n is encoded as a ring. This amounts to giving
a positive integer n , as well as a system of m3 rational numbers a¡jk with the
property that there is a Q-vector space basis cox, ... , œ„ of K over Q such
that coiojj = £Lj aijkQ>k for all i, j = 1, ... ,n.

An order in K isasubring A of K of which the additive group is free of rank
n . We will encode an order A in a number field K of degree n by specifying
A as a ring, which amounts to giving a positive integer n and a system of n3
integers c¿jk with the property that there is a free abelian group basis ex, ... ,
e„ of A over Z such that e¡ej = Y^k=l c¡jkek for all i, j = 1,... , n. It is easy
to see that the same data encoding A also encode K . Given a number field K
as above, one can construct an order A in K efficiently. The discriminant A^
of an order A with Z-basis ex, ... , e„ is defined to be the determinant of the
matrix (Tr(e¡ej))¡ , where Tr: K —> Q is the trace map. The discriminant of
any order is a nonzero integer.

Let A be an order in a number field K of degree n . By a fractional ideal
of A we mean a finitely generated nonzero ^-submodule of K. The additive
group of a fractional ideal of A is isomorphic to Z" . A fractional ideal / of
A is called an ideal of A if / is contained in A . An ideal / of an order A is
encoded by an n x n matrix H¡ over Z in Hermite Normal Form ([4, 7, 11])
such that the rows of the matrix H¡ consist of a basis of / over Z. Since the
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product of all diagonal entries in H¡ is the index of I in A, ix follows that
all entries of the matrix H¡ are bounded by the index (A : I). A fractional
ideal J of A is given by means of a pair d, I, where d is the least positive
integer such that dJ ç A and I = dJ is an ideal of A of finite index. This
representation is clearly unique. If I, J are fractional ideals of A, then we
define I : J = {x e A : xJ ç I}; this is also a fractional ideal of A . There are
polynomial-time algorithms that given an order A and fractional ideals /, /
of A determine I + J, I-J, ID J, and I:J (cf. [4, §5]).

By an overorder of A we mean a fractional ideal of A that is a subring of
K. It is clear that any overorder of A contains A . If / is a fractional ideal
of A, then / : / is an overorder of A. Every overorder B of A is an order
in K, and it satisfies AA = AB(B : A)2 . Overorders of A and their fractional
ideals will be represented as fractional ideals of A .

Among all orders in K there is a unique maximal one denoted by cf, which
is the integral closure of Z in K and is called the ring of integers of K. A
subring A of cf is an order in K if and only if it has finite additive index in
(f. The discriminant of cf is also called the discriminant of K over Q, and
denoted by AK.

We will not give the precise meaning of the notions such as length of the
encoding data, algorithm, running time, etc. For conventions concerning these
notions we refer to [9, §2]. If O is an object (e.g., a number field, an order, a
fractional ideal, etc.), then by size(O) we denote the length of the data encoding
O. An algorithm is said to be a polynomial-time algorithm if its running time
is polynomially bounded by the size of its input. In this case we also say that
the algorithm runs in polynomial time.

3. Basic ring theory

In this section, we recall some basic ring theory that will be used later. For
conventions, we refer to [1].

Let A be a domain with quotient field K, let /, J be fractional ideals of
A . It is noted that in general I(J : I) may not be equal to J . We recall that
a fractional ideal / of A is invertible if there exists a fractional ideal J of A
such that I• J = A.

Proposition 3.1. A fractional ideal I of A is invertible if and only if I(A : I) =
A. In this case we have I(J : I) = J and J : I = J(A : I) for any fractional
ideal J of A.
Proof. The proof of the "if part is obvious. For the "only if part, let H be
a fractional ideal of A such that IH = A . Let J be any fractional ideal of
A ; then x e J <* xIH c J <* xH ç J : I & xIH ç I(J : I) & x e I(J : I).
Hence /(/ : I) = J, in particular I(A : I) = A.   Furthermore,  J : I =
(J:I)-I(A:I) = J(A:I).   □
Remark 3.2. It is easy to see from Proposition 3.1 that if / is invertible, then
its inverse is unique and is equal to A : I. For any fractional ideal / of A, we
define Io = A and I" = (A: I)~n if n is a negative integer.

Proposition 3.3. Let A be a Noetherian one-dimensional domain, and let P be
a nonzero prime ideal. Then A : P strictly contains A.
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Proof It is clear that A : P contains A. Pick a nonzero element x e P,
and let H be the ideal generated by x. Since A is Noetherian, there exist
prime ideals Px, ... , Pn such that H ç P¡ and [\"=x P¡ ç H. We may assume
n is the smallest integer with these properties. Since n"=i F¡ ç H C P and
P is prime, there exists some k, 1 < k < n, such that Pk ç P. In fact,
we have Pk = P since A is one-dimensional. Pick aye Yl¡¿kP¡\H; then
y F = ir=i PtQH = Ax. Hence, y/x e A : P but y/x£A. This proves the
proposition.   D

Proposition 3.4. Let A be a domain, and H, I, J fractional ideals of A ; then
H:(I-J) = (H:I):J.
Proof. xeH:(I-J)&xIJçH&xJÇH:I&xe(H:I):J.   o

Proposition 3.5. Let A be a Noetherian one-dimensional domain, and let I be
a fractional ideal of A. Then I is invertible if and only if (A: I) : (A: I) = A.
Proof. By Proposition 3.4, we have (A : I) : (A : I) = A : (I • (A : I)). If I is
invertible, then I - (A : I) = A. Hence, (A : I) : (A : I) = A : (I ■ (A : I)) =
A : A = A. If I is not invertible, then J = I(A : I) is a proper ideal of A.
Let P be a maximal ideal of A containing J ; then (A : I) : (A : I) = A : (I •
(A : I)) = A : J 2 A : P. Thus (A : I) : (A : I) ± A, since A : P strictly
contains A by Proposition 3.3. This proves Proposition 3.5.   D

Remark 3.6. The same result is proved in [4] for orders over principal ideal
domains. For more details on this we refer to [4, §2].

Proposition 3.7 (Krull-Akizuki Theorem). Let A be a Noetherian one-dimen-
sional domain with field of fractions K, let L be a finite algebraic extension
field of K, and B a ring with A ç B ç L; then B is a Noetherian domain of
dimension at most one.
Proof. See [10, p. 84].   d
Proposition 3.8. Every order in a number field is a Noetherian one-dimensional
domain.
Proof. This is an immediate corollary of the Krull-Akizuki Theorem, since the
dimension of every order is at least one.   D

Proposition 3.9. Let A be an order in a number field, and let I be a fractional
ideal of A. Then I is invertible if and only if the overorder (A : I) : (A : I) of
A equals A.
Proof. This immediately follows from Proposition 3.5 and Proposition 3.8.   □

Proposition 3.10. Let A be a domain, let Jx, ... , J¡ be proper invertible ideals
of A such that Jj + J¡< = A for all j ¿ j', let I = rii<7</ rf where e¡ e Z.
Then I ÇA if and only if e¡ > 0 for all 1 < j < I.
Proof. The proof of the "if part is obvious. For the "only if part, it is enough
to prove ex > 0. Let P be a maximal ideal containing Jx. Let H be any
finitely generated fractional ideal of A ; then (H~X)P = (A : H)P = (Ap : HP) =
(Hp)-X (cf. [1, Corollary 3.15]). So (Hn)P = (HP)n for any n e Z. Thus,
(Jje')p = (Jjp)e> = Ap (j > 2), since invertible ideals are finitely generated and
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Jj + P = A  (j > 2). Therefore,

Ap2ip=[llJji) =IM> = (-/f')>' = (-/i/')ei.
V=>     / p    J=x

Since JXP is a proper invertible ideal of AP , we have ex > 0.
This proves Proposition 3.10.   D

Proposition 3.11. Let A be a domain, let Jx, ... , J¡ be proper invertible ideals
of A such that J¡ + Jji = A for all j ^ j', let I = Ylx<j<¡ J]', where e¡ e Z.
Then I = A if and only if ej = 0 for all 1 < j < I.
Proof. This follows from Proposition 3.10 by considering / and I~x.   D

Proposition 3.12. Let A be an order in a number field K, and let cf be the ring
of integers of K. If I is a proper ideal of A, then Icf is a proper ideal of cf.
Proof. Suppose that Icf = cf. Let P be a maximal ideal of A containing / ;
then Pcf = cf. Localize at P ; we get PPcfP = cfP. Since cfP is a finitely
generated ^-module and Ap is a local ring with maximal ideal PF, we have
cfp = 0 by Nakayama's Lemma (cf. [1, p. 21]). This is a contradiction.   □

4. Bounding sizes

Given a number field K as in §2, we can efficiently find an order A in K.
We will represent overorders of A and their fractional ideals as fractional ideals
of A. In the following, we will give some estimates on the sizes of fractional
ideals and overorders of A .

Let / be a fractional ideal of A . Suppose d is the smallest positive integer
such that dl ç A. The index (A : dl) is the product of all main diagonal
entries in the matrix representation HdI of the ideal dl. Each entry in the
matrix HdI is bounded by a main diagonal entry. Hence, size(7) is polyno-
mial^ equivalent to the length of the data encoding the integer d, the index
(A : dl) and the order A .

Proposition 4.1. Let A be an order in a number field, and let B be any overorder
of A. Then size(B) is bounded by a polynomial function of size(A). Further-
more, if I is a fractional ideal of A, then size(IB) is bounded by a polynomial
function of size(7) and size(^4).
Proof. Let B be an overorder of A, and let d be the smallest positive integer
such that dB ç A; then d divides lA^I since (B : A)B ç A and (B : A)
divides \AA\. On the other hand, the index (A : dB) divides (A : dA) =
dn, since dA ç dB ç A. So (A : dB) divides |A^|". Therefore, size(B)
is bounded by a polynomial function of size(^). Furthermore, size(/5) is
bounded by a polynomial function of size(7) and size(^4), since size(IB) is
polynomially bounded by size(7) and size(5).   d

Proposition 4.2. Let A be an order in a number field, and let I be a fractional
ideal of A such that I ç cf. Then lo%2(cf : Icf) is polynomially bounded by
size(I) and size(^).
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Proof Let d be the smallest positive integer such that dl ç A; then the index
(cf : Icf) < (cf : I) < (cf : dl) = (cf : A)(A : dl) < \AA\(A : dl). So
log2(t^ : Icf) is polynomially bounded by size(I) and size(A).   u

Proposition 4.3. Let A be an order in a number field, and let I be a fractional
ideal of A such that I ç cf. Let J be any fractional ideal of A such that
I ç J Ccf. Then size(J) is bounded by a polynomial function of size(I) and
size(A).
Proof. Let d be the smallest positive integer such that dcf ç A, let e be the
smallest positive integer such that eJ ç A, and let / be the smallest positive
integer such that fiçA. Since dJ ç dcf ç A, we have that e divides d.
So e < d < \AA\. The index (A : eJ) < (A : dJ) = (A : dcf)(dcf : dJ)
< (A : dA)(cf :J)<dn(cf: fl) <dn(cf: A)(A : fl) < \AA\n+x(A : fl). There-
fore, size(/) is bounded by a polynomial function of size(7) and size(^4).   D

Proposition 4.4. Let A be an order in a number field, and let C be an overorder
of A. Suppose that /, (1 < i < k) are ideals of C, Jj ( 1 < j < I) are proper
ideals of C and e,   ( 1 < j < I) are positive integers such that

l<i<k l<;'</

Then
l k

;=1 (=1

In particular, both I and YJj=xej are polynomially bounded by k,  size(/,)
(1 < i <k) and size(yl).
Proof. Since n '<= n /?'.
we have

n hcf= n Me?)*.
l<i<k l<j<l

Hence,
fl (cf : I,cf) =  Y[ (cf : JjCf)e>.

l<i<k l<j<¡

By Proposition 3.12, Jjcf is a proper ideal of cf  (1 < j < I). Therefore,

2^UeJ <   Yl (cf : Jjcff' =   W (cf : 1¡cf).

That is,
/ k

j=i        i=i
By Proposition 4.2, \og2(cf : 10) is polynomially bounded by size(/,)  (1 < i <
k). Therefore, both / and ¿Jj=x ej are polynomially bounded by k, size(I¡)
(1 < i < k) and size(A). This proves the proposition.   D
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5. Factor refinement

In this section, we give the factor refinement algorithm for ideals of an or-
der in a number field. For history and applications of the factor refinement
technique, we refer to [2].

Algorithm 5.1. We describe an algorithm that, given an order A, an overorder
B of A, and a fractional ideal I of B , determines an overorder C of A and
an invertible fractional ideal J of C such that B C C and IC — J.

The algorithm begins by putting C = B and J = I, then does the following.
It calculates the overorder O = (C : J) : (C : J) of A. If O = C, the
algorithm stops. Otherwise, it replaces C by O and J by JO, then the
algorithm iterates on the new C and J .

Proposition 5.2. Given an order A, an overorder B of A, and a fractional ideal
I of B, Algorithm 5.1 determines in polynomial time an overorder C of A and
an invertible fractional ideal J of C such that B ç C and IC = J.
Proof. Algorithm 5.1 iterates at most log2(cf : A) steps, since the index (C : A)
increases by a factor of at least 2 in each step. Hence the number of iterating
steps is bounded by log2 |A^ |. The running time of each step is bounded by a
polynomial function of size(/C) and size(C), hence bounded by a polynomial
function of size (7) and size(,4) by Proposition 4.1. When the algorithm stops,
we have (C : J) : (C : J) = C. Thus, J is invertible in C by Proposition 3.9.
This completes the proof of Proposition 5.2.   d

Algorithm 5.3. We describe an algorithm that, given an order A, an overorder
B of A , and k proper ideals Ix, ... ,Ik of B, determines an overorder C of
A , proper invertible ideals Jx, ... , J¡ of C, and positive integers e¡ ( 1 < j <
I) such that BCC, Jj + Jy = C for all ; ^ / and n i</<* hC = Ili<7<, rf ■

Step 1. The algorithm begins by putting Co = B. For each i = 1, ... , k
we do the following. Applying Algorithm 5.1 to the ideal /, and the overorder
C,_i of A, we find an overorder C, of A and an invertible ideal 7,C,.

Step 2. Put C = Ck , J¡ = IjCk and e,■ = 1 (i = 1, ... , k). The algorithm
works with a set S of all pairs (Jj, ef) ( j = 1,... , /) such that Hx<i<k hC =
rii< j<t JjJ > where / is the cardinality of the set S and Jj (j'= 1,... , I) are
proper invertible ideals of C.

Step 3. First the algorithm searches for two members (Jj, e}) and (Jy, e¡>)
of the set S such that Jj + Jj' ^ C. If these cannot be found, the algorithm
stops. Suppose that (Jj, e¡) and (Jj>, ej<) can be found; it calculates H =
Jj + Jj' . Applying Algorithm 5.1 to C and its ideal H, we find an overorder
O DC of A and an invertible ideal H' of O with H' = HO. Replace C by
O , H by H', and all Jj by JjO , then remove pairs (Jj, e¡) and (//<, ey)
from the set S and add the pairs (Jj : H, e¡), (H, e¡ + e¡<), (Jy : H, ey) to
5 except for those pairs containing C as their first entry. Next one iterates
Step 3 on the new set S.

This completes the description of the algorithm.

Proposition 5.4. Given an order A, an overorder B of A, and k proper ideals
Ix, ... , Ik of B, Algorithm 5.3 determines in polynomial time an overorder C
of A, proper invertible ideals Jx, ... ,J¡ of C and positive integers e¡ (l<j<l)
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such that B ç C, Jj + Jy = C for ail j ¿ f, and Ui<¡<k ¡¡c = Ui<j<t tf ■
Moreover, there are nonnegative integers fi¡   (1 < i < k, 1 < j < I) such that
IiC = Ux<j<,jf,J fori=l,... ,k.
Proof. When the algorithm terminates, we clearly have B ç C, Jj + Jy = C
for all j + f . We also have Iïi<,<* hC = Y[x<j<i Jj' and I(C = Ui<j<i jfJ
for some nonnegative integers fij (1 < i < k, 1 < j < I), since they hold at
the start of Step 3 and they are preserved after each iteration in Step 3.

Clearly, Step 1 and Step 2 can be done in polynomial time.
We refer to the process of removing (Jj, e¡) and (Jy , ey) from S and

adding pairs (Jj : H, e¡), (H, e¡ + ej'), (Jy : H, ej>) to S as a refinement
step. Let

/
m = 5>;-l).

;=i
We claim that m is increased by at least one after each refinement step. The
contribution of (Jj, e¡) and (Jy, e¡*) to m is e¡ + e¡< - 2 before removing
them. After adding [Jj : H, e¡), (H, e¡ + e¡<), (Jy : H, e¡<) to S, the contri-
bution of these pairs is:

'2e¡ + ley -3 if J¡:H¿C and Jy : H ¿ C ;
2ej + er -2 if Jj : H ¿ C and Jy : H = C ;

i ej + ley -2 if Jj: : H = C and Jy : H ¿ C ;
ej + ey - 1 if Jj.H =C and Jy : H = C.

In all cases the contribution to m is greater than e¡ + ey - 2.
Since each refinement step preserves

n W- n ^>
1 < I < At l<j<l

we have by Proposition 4.4 that
/ k

m<Y,ej<Ylloz2(cf:Iicf)
i=\        i=i

which is polynomially bounded by k, size(/i),... , size(/fe) and size(^4).
Therefore, the number of refinement steps is bounded by a polynomial function
of k, size(/i), ... , size(/fc), and size(/l).

All the fractional ideals (Jj and H, etc.) appearing in Step 3 have their
sizes uniformly bounded by a polynomial function of size(/i), ... , size(/*)
and size(A) by Proposition 4.3, since each of them is contained in cf and
contains at least one /, for some i e {1, ... , k} . Since the cardinality / of
the set S is polynomially bounded at any stage, each iteration in Step 3 runs
in polynomial time.

Therefore, Algorithm 5.3 runs in polynomial time.   □

Remark 5.5. The properness assumption on ideals Ix, ... ,Ik in Algorithm 5.3
and Proposition 5.4 is not necessary since we can apply Algorithm 5.3 to the
ideals 7, that are proper in B and let fj = 0 for those I¡ that are equal to
B . We will drop this assumption in the Factor Refinement Algorithm below.
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Algorithm 5.6 (Factor Refinement Algorithm). Given an order A of a number
field K, an overorder B of A, and ideals Ix, ... , Ik of B. We describe
an algorithm that determines an overorder C of A, proper invertible ideals
Jx, ... , Ji of C, and nonnegative integers f¡   ( 1 < i < k, 1 < j < I) such
that B ç C, Jj + Jy = C for all ; ^ /, and ItC = U\<j<ijfJ for i =
1,... ,k.

Applying Algorithm 5.3 to order A, overorder B, and proper ideals 1%,... ,
Ik of B, we find an overorder C of A and proper invertible ideals Jx, ... , J¡
of C and positive integers ex, ... , e¡ such that B ç C, Jj + Jy = C for all
j t¿ / and l\x<i<k hC = rii</</ JjJ • Moreover, there are nonnegative integers
fij  (1 < i < k, 1 < j < I) such that I¡C = Ui<j<i Jf' for i=l, ■■■ ,k.

For each i = I, ... , k, put H¡ = I¡C, then do the following: For each
j = 1, ... , I, let fij = 0, if Ht ç Jj , then replace H¡ by H¡ : Jj and increase
fj by 1 and continue the division process. Otherwise advance to the next j.

Proposition 5.7. Given an order A, an overorder B of A, and ideals Ix,... ,Ik
of B, Algorithm 5.6 determines in polynomial time an overorder C of A, proper
invertible ideals Jx, ... , J¡ of C, and nonnegative integers fj ( 1 < i < k, 1 <
j < I) such that B ç C, Jj + Jy = C for all j ¿ f, and I¡C = lli<7</ jf'
for i=l, ... ,k.
Proof. The number of division steps is

k    i i

EE¿; = I>'i=i j=\      j=i
which is polynomially bounded. By Proposition 4.3, all the fractional ideals
( Jj and H¡, etc.) appearing in the division process have their sizes uniformly
bounded by a polynomial function of size(/i), ... , size(4) and size(^), since
each of them is contained in cf and contains at least one /, for some / e
{I, ... , k} . So the running time of each division step is polynomially bounded.
Therefore, Algorithm 5.6 runs in polynomial time.

This proves the proposition.   D

6. Proof of Theorem 1.1

We prove Theorem 1.1 in this section.

Proposition 6.1. There is a polynomial-time algorithm that, given an order A
and a nonzero element y e A, determines the ideal I of A generated by y.
Proof. We first describe the algorithm. Let {e,}i<,<„ be a Z-basis of A such
that e¿ej = Y^nk=x c¡jkek , where cijk (1 < i, j, k < n) are the data encoding
the order A (cf. §2). Let y = ¿?=ir'e«' wneTe r¡ e Z for i = 1,... , n.
Calculate a matrix M = (m¡j) such that ye, = £"=i nt\¡ej for / = 1,... , n,
where mkt = YT¡=i riciki for k, I = 1, ... , n . Find the Hermite Normal Form
H = (h¡j) (cf. [4, 7, 11]) of the matrix M; then H is the unique matrix
representation of the ideal I generated by y.

Let U = (Ujj) be the unique n x n unimodular matrix such that H =
UM. Let n¡ = Y!j=i uijiyej) f°r i - 1, ■■■ , n ; then rç, = Y!]=x hije¡ for i =
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1, ... , n. Since {ye,}i<,<„ isa Z-basis of I and U isunimodular, {r¡i}i<¡<„
is also a Z-basis of I. Therefore, H is the unique matrix representation of
the ideal I, since the matrix H is in Hermite Normal Form. It is clear that
the algorithm runs in polynomial time. This proves the proposition.   D

Proposition 6.2. There is a polynomial-time algorithm that, given an order A
and nonzero elements yx, ... , yk e A, determines an overorder C of A, proper
invertible ideals J\,... , J¡ of C and nonnegative integers fj ( 1 < i < k, 1 <
j < 1) such that Jj + Jy = C for all j ± j' and y¡C = Ük/</«{/ f°r
1 = 1,... , k.
Proof. Compute ideals I¡ = y¡A by applying the algorithm in Proposition 6.1
to each y¡ e A (i = 1, ... , k). Applying the Factor Refinement Algorithm
(Algorithm 5.6) to the ideals 7,, we find an overorder C of A , proper invertible
ideals Jx, ... , J¡ of C, and nonnegative integers fj  (l<i<k,l<j<l)
such that Jj + Jy = C for all ; ^ / and y¡C = ItC = Ui<j<i jf'J for
1 = 1,... , k.

Apparently the algorithm runs in polynomial time since both the algorithm
in Proposition 6.1 and the Factor Refinement Algorithm run in polynomial
time.   D

Proposition 6.3. Let A be an order in a number field, and let yx, ... ,yk be
nonzero elements in A. Let C be an overorder of A, let Jx, ... , J¡ be proper
invertible ideals of C, and let fj   ( 1 < i < k, 1 < j < I) be nonnegative
integers such that Jj + Jj' = C for all j ^ j'  and y¡C = Y[x<j<¡Jj    for
i = I,... , k.  Let nx, ... ,nk be integers; then e = Y[k=l y"' e cf*  if and
only if Zli fij"i = 0 for j =1,... , I, and e = Y[k^ yf e cf if and only if
Eli fij"i>0 for i = l,... ,/•
Proof. Since

<c = ii(yicr = ii(iijA ={[jp^,
¡=1 ¡=1   V=l        / ;=1

we have
/

erf = Yl(Jjcf)^'fl'n¡.
7 = 1

By Proposition 3.12, J¡cf is a proper ideal of cf for j = 1, ... , I. We also
have Jjcf + Jycf = cf for all ;' ^ / , since J¡ + Jj, = C. Hence, ecf = cf if
and only if ¿j¡=i fijn¡ = 0 for ;'= 1,...,/ by Proposition 3.11, and ecf ccf
if and only if £JL, yj;«, > 0 for y' = 1,...,/ by Proposition 3.10.

This proves the proposition.   D

It is not difficult to see that Theorem 1.1 is equivalent to the following theo-
rem up to a polynomial-time transformation. Therefore, it is enough to prove:

Theorem 6.4. There is a polynomial-time algorithm that, given an order A,
nonzero elements yx, ... , yk e A and integers nx, ... , nk e Z, decides whether
e = n,=i y"' is a unit, i.e., belongs to cf*.
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Proof Applying the algorithm in Proposition 6.2 to order A and yx, ... ,yke
A, we find nonnegative integers fj (i = 1, ... , k, j = 1, ... , I) with prop-
erties stated in Proposition 6.2.

Compute 52j«i fijnj for each j = 1, ... , I. By Proposition 6.3, if all of
them are zero, then e is a unit, otherwise e is not a unit.

Clearly this can be done in polynomial time. This completes the proof.   D
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