
Recognizing Weakly Simple Polygons∗1

Hugo A. Akitaya† Greg Aloupis† Jeff Erickson‡ Csaba D. Tóth†§
2

Abstract3

We present an O(n log n)-time algorithm that determines whether a given n-gon in the plane4

is weakly simple. This improves upon an O(n2 log n)-time algorithm by Chang, Erickson, and5

Xu [6]. Weakly simple polygons are required as input for several geometric algorithms. As such,6

recognizing simple or weakly simple polygons is a fundamental problem.7

Keywords: simple polygon, combinatorial embedding, perturbation8

MSC: 05C10, 05C38, 52C45, 68R10.9

1 Introduction10

A polygon is simple if it has distinct vertices and interior-disjoint edges that do not pass through11

vertices. Geometric algorithms are often designed for simple polygons, but many also work for12

degenerate polygons that do not “self-cross.” A polygon with at least three vertices is weakly13

simple if for every ε > 0, the vertices can be perturbed within a ball of radius ε to obtain a14

simple polygon. Such polygons arise naturally in numerous applications, e.g., for modeling planar15

networks or as the geodesic hull of points within a simple polygon (Figure 1).16

(a) (b) (c)

Figure 1: (a) A simple polygon P with 16 vertices. (b) Eight points in the interior of P (solid dots); their
geodesic hull is a weakly simple polygon P ′ with 14 vertices. (c) A perturbation of P ′ into a simple polygon.

∗A preliminary version of this paper appeared in the Proceedings of the 32nd International Symposium on Com-
putational Geometry (SoCG 2016), doi:10.4230/LIPIcs.SoCG.2016.8.

†Department of Computer Science, Tufts University, Medford, MA. Email: hugo.alves akitaya@tufts.edu,
aloupis.greg@gmail.com, cdtoth@eecs.tufts.edu

‡Department of Computer Science, University of Illinois, Urbana-Champaign, IL. Email: jeffe@illinois.edu
§Department of Mathematics, California State University Northridge, Los Angeles, CA.

1

doi:10.4230/LIPIcs.SoCG.2016.8

Several alternative definitions have been proposed for weakly simple polygons, formalizing the17

intuition that such polygons do not self-cross. Some of these definitions were unnecessarily restric-18

tive or incorrect; see [6] for a detailed discussion and five equivalent definitions for weak simplicity19

of a polygon. Among others, a result by Ribó Mor [16, Theorem 3.1] implies an equivalent defini-20

tion in terms of Fréchet distance, in which a polygon is perturbed into a simple closed curve (see21

Section 2). This definition is particularly useful for recognizing weakly simple polygons, since it22

allows transforming edges into polylines (by subdividing the edges with Steiner points, which may23

be perturbed). With suitable Steiner points, the perturbation of a vertex incurs only local changes.24

(In other words, we do not need to worry about stretchability of the perturbed configuration.)25

We can decide whether an n-gon in the plane is simple in O(n log n) time by a sweepline26

algorithm [17]. Chazelle’s polygon triangulation algorithm also recognizes simple polygons (in27

O(n) time), because it only produces a triangulation if the input is simple [7]. Recognizing weakly28

simple polygons, however, is more subtle. Skopenkov [18] gave a combinatorial characterization of29

the topological obstructions to weak simplicity in terms of line graphs. Cortese et al. [10] gave an30

O(n6)-time algorithm to recognize weakly simple n-gons. Chang et al. [6] improved the running31

time to O(n2 log n) in general; and to O(n log n) in several special cases. They identified two32

features that are difficult to handle: A spur is a vertex whose incident edges overlap, and a fork33

is a vertex that lies in the interior of an edge. (A vertex may be both a fork and a spur.) They34

gave an easy algorithm for polygons that have neither forks nor spurs, and two more involved ones35

for polygons with spurs but no forks and for polygons with forks but no spurs, all three running36

in O(n log n) time. In the presence of both forks and spurs, they presented an O(n2 log n) time37

algorithm that eliminates forks by subdividing all edges that contain vertices in their interiors,38

potentially creating a quadratic number of vertices.39

We show how to manage both forks and spurs efficiently, while building on ideas from [6, 10]40

and from Arkin et al. [2], and obtain the following main results.41

Theorem 1. Deciding whether a polygon P with n vertices in the plane is weakly simple takes42

O(n log n) time.43

Theorem 2. Given a weakly simple polygon P with n vertices and a constant ε > 0, a simple44

polygon with 2n vertices within Fréchet distance ε from P can be computed in O(n log n) time.45

Our decision algorithm is detailed in Sections 3–5. It consists of three phases, simplifying46

the input polygon by a sequence of reduction steps. First, the preprocessing phase rules out47

edge crossings in O(n log n) time and applies known reduction steps such as crimp reductions and48

node expansions (Section 3). Second, the bar simplification phase successively eliminates all forks49

(Section 4). Third, the spur elimination phase eliminates all spurs (Section 5). When neither forks50

nor spurs are present, we can decide weak simplicity in O(n) time [10]. Finally, by reversing the51

sequence of operations, we can also perturb any weakly simple polygon into a simple polygon in52

O(n log n) time (Section 6).53

2 Preliminaries54

In this section, we review previously established definitions and known methods from [6] and [10].55

Polygons and weak simplicity. An arc in R
2 is a continuous function γ : [0, 1] → R

2. A closed56

curve is a continuous function (map) γ : S1 → R
2. A closed curve γ is simple (also known as57

2

a Jordan curve) if it is injective. A (simple) polygon is the image of a piecewise linear (simple)58

closed curve. Thus a polygon P can be represented by a cyclic sequence of points (p0, . . . , pn−1),59

called vertices, where the image of γ consists of line segments p0p1, . . . , pn−2pn−1, and pn−1p0 in this60

cyclic order. Note that a nonsimple polygon may have repeated vertices and overlapping edges [14].61

Similarly, a polygonal chain (alternatively, path) is the image of a piecewise linear arc, and can be62

represented by a sequence of points [p0, . . . , pn−1].63

A polygon P = (p0, . . . , pn−1) is weakly simple if n = 2, or if n > 2 and for every ε > 0 there is a64

simple polygon (p′0, . . . , p
′
n−1) such that |pi, p

′
i| < ε for all i = 0, . . . , n−1. This definition is difficult65

to work with because a small perturbation of a vertex modifies the two incident edges, which may be66

long, and the effect of a perturbation is not localized. Combining earlier results from [9], [10], and67

[16, Theorem 3.1], an equivalent definition was formulated by Chang et al. [6] in terms of Fréchet68

distance: A polygon given by γ : S1 → R
2 is weakly simple if for every ε > 0 there is a simple69

closed curve γ′ : S1 → R
2 such that distF (γ, γ

′) < ε, where distF denotes the Fréchet distance70

between two closed curves. The curve γ′ can approximate an edge of the polygon by a polyline,71

and any perturbation of a vertex can be restricted to a small neighborhood. With this definition,72

recognizing weakly simple polygons becomes a combinatorial problem, as explained below. Note73

that in topology, the broader question of isotopic embeddability has been considered [15, 18]: Given74

a continuous map f : A → R
d for a simplicial complex A, is it isotopic to some injective continuous75

map (i.e., embedding) g : A → R
d?76

Bar decomposition and image graph. Two edges of a polygon P cross if their interiors intersect77

at precisely one point; we call this an edge crossing. Weakly simple polygons cannot have edge78

crossings. In the remainder of this section, we assume that such crossings have been ruled out. Two79

edges of P overlap if their intersection is a (nondegenerate) line segment. The transitive closure of80

the overlap relation is an equivalence relation on the edges of P ; see Figure 2(a) where equivalence81

classes are represented by purple regions. The union of all edges in an equivalence class is called a82

bar.1 All bars of a polygon can be computed in O(n log n) time [6]. The bars are open line segments83

that are pairwise disjoint. There are at most n bars, since the bars are unions of disjoint subsets84

of edges.85

The vertices and bars of P define a planar straight-line graph G, called the image graph of P .86

We call the vertices and edges of G nodes and segments1 to distinguish them from the vertices and87

edges of P . Every node that is not in the interior of a bar is called sober1. The set of nodes in G88

is {p0, . . . , pn−1} (note that P may have repeated vertices that correspond to the same node); two89

nodes are connected by a segment in G if they are consecutive nodes along a bar; see Figure 2(b).90

Hence G has O(n) nodes and segments, and it can be computed in O(n log n) time [6]. Note,91

however, that up to O(n) edges of P may pass through a node of G, and there may be O(n2)92

edge-node pairs such that an edge of P passes through a node of G. An O(n log n)-time algorithm93

cannot afford to compute these pairs explicitly.94

Operations. We use certain elementary operations that successively modify a polygon and ul-95

timately eliminate forks and spurs. An operation that produces a weakly simple polygon if and96

only if it is performed on a weakly simple polygon is called ws-equivalent. Several such operations97

are already known (e.g., crimp reduction, node expansion, bar expansion). We shall use these and98

introduce several new operations in Sections 3.3–5.99

Combinatorial characterization of weak simplicity. To show that an operation is ws-100

1We adopt terminology from [6].

3

(a) (b) (c)

u
v

Figure 2: (a) The bar decomposition for a weakly simple polygon P with 16 vertices (P is perturbed into
a simple polygon for clarity). (b) The image graph of P . (c) A perturbation in a strip system of P .

equivalent, it suffices to provide suitable simple ε-perturbations for all ε > 0. We use a combi-101

natorial representation of an ε-perturbation (independent of ε or any specific embedding). When a102

weakly simple polygon P is perturbed into a simple polygon, overlapping edges in P are perturbed103

into interior-disjoint near-parallel edges, which define an ordering. It turns out that these orderings104

over all segments of the image graph are sufficient to encode an ε-perturbation and to (re)construct105

an ε-perturbation.106

We rely on the notion of “strip system” introduced in [6, Appendix B]. Similar concepts have107

previously been used in [9, 10, 11, 15, 18]. Let P be a polygon and G its image graph. Without108

loss of generality, we assume that no bar is vertical (so that the above-below relationship is defined109

between disjoint segments parallel to a bar). For every ε > 0, the ε-strip-system of P consists of110

the following regions:111

• For every node u of G, let Du be a disk of radius ε centered at u.112

• For every segment uv, let the corridor Nuv be the set of points at distance at most ε2 from113

uv, outside of the disks Du and Dv, that is, Nuv = {p ∈ R
2 : dist(p, uv) ≤ ε2, p 6∈ Du ∪Dv}.114

Denote by Uε the union of all these disks and corridors. There is a sufficiently small ε0 = ε0(P) > 0,115

depending on P , such that the disksDu are pairwise disjoint, the corridors Nuv are pairwise disjoint,116

and every corridor Nuv of a segment intersects only the disks at its endpoints Du and Dv. These117

properties hold for all ε, 0 < ε < ε0.118

A polygon is in the ε-strip-system of P if its edges alternate between an edge that connects the119

boundaries of two disks Du and Dv and whose interior is contained in Nuv; and an edge between120

two points on the boundary of a disk. In particular, the edges of P that lie in a disk Du or a121

corridor Nuv form a perfect matching. See Figure 2(c) for an example, where the edges within122

the disk Du are drawn with circular arcs for clarity. Let Φ(P) be the set of simple polygons in123

the ε-strip-system of P that cross the disks and corridors in the same order as P traverses the124

corresponding nodes and segments of G. It is clear that every Q ∈ Φ(P) is within Fréchet distance125

ε from P . By [6, Theorem B.2], P is weakly simple if and only if Φ(P) 6= ∅.126

Combinatorial representation by signatures. Let Q be a polygon in the strip system of P .127

For each segment uv, the above-below relationship of the edges of Q in Nuv is a total order. We128

define the signature of Q ∈ Φ(P), denoted σ(Q), as the collection of these total orders for all129

segments of G.130

4

Given the signature σ(Q) of a polygon Q in the strip system of P , we can easily (re)construct a131

simple polygon Q′ with the same signature in the ε-strip-system of P for any 0 < ε < ε0. For every132

segment uv of G, let the volume vol(uv) be the number of edges of P that lie on uv. Place vol(uv)133

parallel line segments between ∂Du and ∂Dv in Nuv of the ε-strip-system of P . Finally, for every134

disk Du, construct a straight-line perfect matching between the endpoints of these edges that lie135

in ∂Du: connect the endpoints of two edges if they correspond to adjacent edges of P . It is easily136

verified that the Fréchet distance between Q and Q′ is at most 2ε. Furthermore, Q ∈ Φ(P) implies137

Q′ ∈ Φ(P), since Q and Q′ determine the same perfect matching between corresponding endpoints138

on ∂Du at every node u.139

Remark 1. The construction above has two consequences: (1) To prove weak simplicity, it is140

enough to find a signature that defines a simple perturbation. In other words, the signature can141

witness weak simplicity (independent of the value of ε). (2) Weak simplicity of a polygon depends142

only on the combinatorial embedding of the image graph G (i.e., the counterclockwise order of143

edges incident to each vertex), as long as G is a planar graph. Consequently, when an operation144

modifies the image graph, it is enough to maintain the combinatorial embedding of G (the precise145

coordinates of the nodes do not matter).146

In the presence of spurs, the size of a signature is O(n2), and this bound is the best possible.147

We use this simple combinatorial representation in our proofs of correctness, but our algorithm148

does not maintain it explicitly. In Section 6, we introduce another combinatorial representation of149

O(n) size that uses the ordering of the edges in each bar (rather than each segment) of the image150

graph.151

Combinatorially different perturbations. In the absence of spurs, a polygon P determines a152

unique noncrossing perfect matching in each disk Du, hence a unique noncrossing 2-regular graph153

in the ε-strip-system of P [6, Section 3.3]. Consequently, to decide whether P is weakly simple it is154

enough to check whether this graph is connected. The uniqueness no longer holds in the presence of155

spurs. In fact, it is not difficult to construct weakly simple n-gons that admit 2Θ(n) perturbations156

into simple polygons that are combinatorially different (i.e., have different bar-signatures); see157

Figure 3.158

Figure 3: Two perturbations of a weakly simple polygon on 6 vertices (all of them spurs) that alternate
between two distinct points in the plane.

3 Preprocessing159

We are given a polygon P = (p0, . . . , pn−1) in the plane. By a standard line sweep [17], we can test160

whether any two edges properly cross; if they do, the algorithm halts and reports that P is not161

weakly simple. We then simplify the polygon, using some known steps from [2, 6], and some new162

ones. All of this takes O(n log n) time.163

5

3.1 Crimp reduction164

Arkin et al. [2] gave an O(n)-time algorithm for recognizing weakly simple n-gons in the special case165

where all edges are collinear (in the context of flat foldability of a polygonal linkage). They defined166

the ws-equivalent crimp-reduction operation. A crimp is a chain of three consecutive collinear edges167

[a, b, c, d] such that both the first edge [a, b] and the last edge [c, d] contain the middle edge [b, c]168

(the containment need not be proper). The operation crimp-reduction(a, b, c, d) replaces the crimp169

[a, b, c, d] with edge [a, d]; see Figure 4.170

⇒

⇒

a c b d a d

Figure 4: A crimp reduction replaces [a, b, c, d] with [a, d]. Top: image graph. Bottom: polygon.

Lemma 1. The crimp-reduction operation is ws-equivalent.171

Proof. Let P1 and P2 be two polygons such that P2 is obtained from P1 by the operation crimp-172

reduction(a, b, c, d). Without loss of generality, assume that ad is horizontal with a on the left and173

d on the right.174

First assume that P1 is weakly simple. Then there exists a simple polygon Q1 ∈ Φ(P1). We175

modify Q1 to obtain a simple polygon Q2 ∈ Φ(P2). Without loss of generality, assume that edge176

[a, b] is above [b, c] (consequently, [c, d] is below [b, c]) in Q1. The modification involves the perfect177

matchings at the disks Db and Dc, and all disks and corridors along the line segment bc. Denote by178

Wtop the set of maximal paths that lie in the convex hull of Db ∪Dc, below [a, b] and above [b, c];179

similarly, let Wbot be the set of maximal paths that lie in the convex hull of Db∪Dc, below [b, c] and180

above [c, d]. We proceed in two steps; refer to Figure 5. First, replace the path [a, b, c, d] with the181

path [a, c, b, d] such that the new edge [a, c] replaces the old [a, b] in the edge ordering of segment182

ac, the new [c, b] replaces [b, c] in the segments contained in bc, and finally the new [b, d] replaces183

[c, d] in bd. Second, exchange Wtop and Wbot such that the top-to-bottom order within each set of184

paths remains the same. Since the top-to-bottom order within Wtop and Wbot is preserved, and the185

paths in Wtop (resp., Wbot) lie below (resp., above) the new path [a, c, b, d], no edge crossings have186

been introduced. We obtain a simple polygon Q2 ∈ Φ(P2), which shows that P2 is weakly simple.187

ca b d ca b d

⇒

Figure 5: The operation crimp-reduction replaces a crimp [a, b, c, d] with an edge [ad].

ca b d ca b d

⇒

Figure 6: The reversal of crimp-reduction replaces edge [ad] with a crimp [a, b, c, d].

Next assume that P2 is weakly simple. Then, there exists a simple polygon Q2 ∈ Φ(P2). We188

modify Q2 to obtain a simple polygon Q1 ∈ Φ(P1); refer to Figure 6. Replace edge [a, d] by [a, b, c, d]189

6

also replacing [a, d] in the ordering of the affected segments by [c, d], [b, c], and [a, b], in this order.190

The new ordering produces a polygon Q1 in the strip system of P . Because Q2 is simple, by191

construction the new matchings do not interact with the preexisting edges in the disks. Hence,192

Q1 ∈ Φ(P1), which shows that P1 is weakly simple.193

Given a chain of two edges [a, b, c] such that [a, b] and [b, c] are collinear but do not overlap, the194

merge operation replaces [a, b, c] with a single edge [a, c]. The merge operation (as well as its inverse,195

subdivision) is ws-equivalent by the definition of weak simplicity in terms of Fréchet distance [6]. If196

we greedily apply crimp-reduction and merge operations, in linear time we obtain a polygon with197

the following two properties:198

(A1) Every two consecutive collinear edges overlap (i.e., form a spur).199

(A2) No three consecutive collinear edges form a crimp.200

Assuming properties (A1) and (A2), we can characterize a chain of collinear edges with the201

sequence of their edge lengths.202

Lemma 2. Let C = [ei, . . . , ek] be a chain of collinear edges in a polygon with properties (A1)203

and (A2). Then the sequence of edge lengths (|ei|, . . . , |ek|) is unimodal (all local maxima are204

consecutive); and no two consecutive edges have the same length, except possibly the maximal edge205

length that can occur at most twice.206

Proof. For every j such that i < j < k, consider |ej |. If |ej−1| and |ej+1| are at least as large207

as |ej |, then the three edges form a crimp, by (A1). However, this contradicts (A2). This proves208

unimodality, and that no three consecutive edges can have the same length. In fact if |ej | is not209

maximal, one neighbor must be strictly smaller, to avoid the same contradiction.210

The operations introduced in Section 4 maintain properties (A1)–(A2) for all maximal paths211

inside an elliptical disk Db.212

3.2 Node expansion213

Compute the bar decomposition of P and its image graph G (defined in Section 2, see Figure 2).214

For every sober node of the image graph, we perform the ws-equivalent node-expansion operation,215

described in [6, Section 3] (Cortese et al. [10] call this a cluster expansion). Let u be a sober node216

of the image graph. Let Du be the disk centered at u with radius δ > 0 sufficiently small so that Du217

intersects only the segments incident to u. For each segment ux incident to u, create a new node218

ux at the intersection point ux ∩ ∂Du. Then modify P by replacing each subpath [x, u, y] passing219

through u by [x, ux, uy, y]; see Figure 7. If a node expansion produces an edge crossing, report that220

P is not weakly simple.221

3.3 Bar expansion222

Chang et al. [6, Section 4] define a bar expansion operation. In this paper, we refer to it as old-bar-223

expansion. For a bar b of the image graph, draw a long and narrow ellipse Db around the interior224

nodes of b, create subdivision vertices at the intersection of ∂Db with the edges, and replace each225

maximal path in Db by a straight-line edge. If b contains no spurs, old-bar-expansion is known to226

7

Du

Figure 7: Node expansion. (Left) Changes in the image graph. (Right) Changes in P (the vertices
are perturbed for clarity). New nodes are shown as squares.

Db

⇒

Figure 8: The old-bar-expansion converts a non-weakly simple polygon to a weakly simple one.

be ws-equivalent [6]. Otherwise, it can produce false positives, hence it is not ws-equivalent; see227

Figure 8 for an example.228

New bar expansion operation. Let b be a bar in the image graph with at least one interior node;229

see Figure 9. Without loss of generality, assume that b is horizontal. Let Db be an ellipse whose230

major axis is in b such that Db contains all interior nodes of b (nodes in b except its endpoints),231

but does not contain any other node of the image graph and does not intersect any segment that232

is not incident to some node inside Db.233

Similar to old-bar-expansion, the operation new-bar-expansion introduces subdivision vertices on234

∂Db, however we keep all interior vertices of a bar at their original positions. In Section 4, we apply235

a sequence of new operations to eliminate all vertices on b sequentially while creating new nodes in236

the vicinity of Db. Our bar expansion operation can be considered as a preprocessing step for this237

subroutine.238

For each segment ux between a node u ∈ b∩Db and a node x 6∈ b, create a new node ux at the239

intersection point ux ∩ ∂Db and subdivide every edge [u, x] to a path [u, ux, x]. For each endpoint240

v of b, create two new nodes, v′ and v′′, as follows. Node v is adjacent to a unique segment vw ⊂ b,241

where w ∈ b∩Db. Create a new node v′ ∈ ∂Db sufficiently close to the intersection point vw∩∂Db,242

but strictly above b; and create a new node v′′ in the interior of segment vw ∩Db. Subdivide every243

edge [v, y], where y ∈ b, into a path [v, v′, v′′, y]. Since the new-bar-expansion operation consists of244

only subdivisions (and slight perturbations of the edges passing through the end-segments of the245

bars), it is ws-equivalent.246

Db Db

⇒

Figure 9: The changes in the image graph caused by new-bar-expansion.

8

Crossing paths. Apart from node-expansion and old-bar-expansion, none of our operations creates247

edge crossings. In some cases, our bar simplification algorithm (Section 4) detects whether two248

subpaths cross. Crossings between overlapping paths are not easy to identify (see [6, Section 2] for249

a discussion). We rely on the following simple condition to detect some (but not all) crossings.250

Lemma 3. Let P be a weakly simple polygon parameterized by a curve γ1 : S1 → R
2; and let251

γ2 : S1 → R
2 be a closed Jordan curve that does not pass through any vertices of P and intersects252

every edge of P transversely. Suppose that q1, . . . , q4 are distinct points in γ2(S
1) in counterclockwise253

order. Then there are no two disjoint arcs I1, I2 ⊂ S
1 such that γ1(I1) and γ1(I2) connect q1 to q3254

and q2 to q4, each passing through the interior of γ2(S
1).255

Proof. Suppose, to the contrary, that there exist two disjoint arcs I1, I2 ⊂ S1 such that γ1(I1)256

and γ1(I2) respectively connect q1 to q3 and q2 to q4, passing through the interior of γ2(S
1). (See257

Figure 10.) Since P is weakly simple, then γ1 can be perturbed to a closed Jordan curve γ′1 with258

the same properties as γ1. Let U denote the interior of γ2(S
1), and note that U is simply connected.259

Consequently, U \ γ′1(I1) has two components, which are incident to q2 and q4, respectively. The260

Jordan arc γ′1(I2) connects q2 to q4 via U , so it must intersect γ′1(I1), contradicting the assumption261

that γ′1 is a Jordan curve.262

γ′1 γ2(S
1)

S
1

I1 I2

q1

q2 q3

q4

Figure 10: Forbidden configuration described by Lemma 3.

We show that a weakly simple polygon cannot contain certain configurations, outlined below.263

Corollary 1. A weakly simple polygon cannot contain a pair of paths of the following types:264

1. [u1, u2, u3] and [v, u2, w], where u2u1, u2v, u2u3, and u2w are nonoverlapping segments in265

this cyclic order around u2 (node crossing; see Figure 11(a)).266

2. [u1, u3, w] and [v, u2, u4], where u1, u2, u3, and u4 are on a line in this order, and nodes v267

and w lie in an open halfplane bounded by this line (Figure 11(b)).268

3. [u1, u2, u3] and [v1, v2, . . . , vk−1, vk] where v2 ∈ int(u2u3), v3, . . . , vk−1 ∈ {u2} ∪ int(u2u3),269

nodes u1 and v1 lie in an open halfplane bounded by the supporting line of u2u3, and node vk270

lies on the other open halfplane bounded by this line (Figure 11(c)).271

Proof. In all four cases, Lemma 3 with a suitable Jordan curve γ2 completes the proof. In case 1,272

let γ2 be a small circle around u2. In case 2, let γ2 be a small neighborhood of segment u1u2. In273

case 3, let γ2 be a small neighborhood of the convex hull of {v2, . . . , vk−1}.274

Terminology. We classify the maximal paths in Db. All nodes u ∈ ∂Db lie either above or275

below b. We call them top and bottom nodes, respectively. Let P denote the set of maximal paths276

p = [ux1 , u1, . . . , uk, u
y
k] in Db. The paths in P are classified based on the position of their endpoints.277

A path p can be labeled as follows:278

9

(a) (b) (c)

v

u1 u2 u3

w

v w

u1 u2 u3 u4

u1 v1

v3 = u2

v5

v6

v4 u3v2

Figure 11: Three pairs of incompatible paths.

• cross-chain if ux1 and uyk are top and bottom nodes respectively,279

• top chain (resp., bottom chain) if both ux1 and uyk are top nodes (resp., bottom nodes),280

• pin if p = [ux1 , u1, u
x
1] (note that every pin is a top or a bottom chain),281

• V-chain if p = [ux1 , u1, u
y
1], where x 6= y and p is a top or a bottom chain.282

Finally, let Pin ⊂ P be the set of pins, and V ⊂ P the set of V-chains.283

3.4 Clusters284

As a preprocessing step for spur elimination (Section 5), we group all nodes that do not lie inside a285

bar into clusters. After node-expansion and new-bar-expansion, all such nodes lie on a boundary of286

a disk (circular or elliptical). For every sober node u, we create deg(u) clusters as follows. Refer to287

Figure 12. The node expansion has replaced u with new nodes on ∂Du. Subdivide each segment288

in Du with two new nodes. For each node v ∈ ∂Du, form a cluster C(v) that consists of v and289

all adjacent (subdivision) nodes inside Du. For each node u on the boundary of an elliptical disk290

Db, subdivide the unique edge outside Db incident to u with a node u∗. Form a cluster C(u∗)291

containing u and u∗. Every cluster maintains the following invariants.292

Cluster Invariants. For every cluster C(u):293

(I1) C(u) induces a tree T [u] in the image graph rooted at u.294

(I2) Every maximal path of P in C(u) is of one of the following two types:295

(a) both endpoints are at the root of T [u] and the path contains a single spur;296

(b) one endpoint is at the root, the other is at a leaf, and the path contains no spurs.297

(I3) Every leaf node ℓ satisfies one of the following conditions:298

(a) ℓ has degree one in the image graph of P (and every vertex at ℓ is a spur);299

(b) ℓ has degree two in the image graph of P and there is no spur at ℓ.300

(I4) No edge passes through a leaf ℓ (i.e., there is no edge [a, b] such that ℓ ∈ ab but ℓ 6∈ {a, b}).301

Initially, every cluster trivially satisfies (I1)–(I2) and every leaf node satisfies (I3)–(I4) since it302

was created by a subdivision.303

Dummy vertices. Although the operations described in Sections 4 and 5 introduce new nodes in304

the clusters, the image graph will always have O(n) nodes and segments. A vertex at a cluster node305

is called a benchmark if it is a spur or if it is at a leaf node; otherwise it is called a dummy vertex.306

Paths traversing clusters may jointly contain Θ(n2) dummy vertices in the worst case, however we307

10

Du

v C(v)

∂Db
u u

u∗ C(u∗)

⇒ ⇒ ⇒ ⇒

Figure 12: Formation of new clusters around (left) a sober node and (right) a node on the boundary
of an elliptical disk. The roots of the induced trees are colored blue.

do not store these explicitly. By (I1), (I2), and (I3) a maximal path in a cluster can be uniquely308

encoded by one benchmark vertex: if it goes from a root to a spur at an interior node s and back,309

we record only [s]; and if it traverses T [u] from the root to a leaf ℓ, we record only [ℓ].310

4 Bar simplification311

In this section we introduce three new ws-equivalent operations and show that they can eliminate312

all vertices from each bar independently (thus eliminating all forks). The bar decomposition is313

pre-computed, and the bars remain fixed during this phase (even though all edges along each bar314

are eliminated).315

We give an overview of the overall effect of the operations (Section 4.1), define them and show316

that they are ws-equivalent (Sections 4.2–4.3), and then show how to use these operations to317

eliminate all vertices from a bar (Section 4.4).318

4.1 Overview319

After preprocessing in Section 3, we may assume that P has no edge crossings and satisfies (A1)–320

(A2). We summarize the overall effect of the bar simplification subroutine for a given expanded321

bar.322

Changes in the image graph G. Refer to Figure 13. All nodes in the interior of the ellipse323

Db are eliminated. Some spurs on b are moved to new nodes in the clusters along ∂Db. Segments324

inside Db connect two leaves of trees induced by clusters.325

Db Db

⇒

Figure 13: The changes in the image graph caused by a bar simplification.

Changes in the polygon P. Refer to Figure 14. Consider a maximal path p in P that lies in326

Db. The bar simplification replaces p = [u, . . . , v] with a new path p′. By (I3)-(I4), only nodes327

u and v in p lie on ∂Db. If p is the concatenation of a path p1 and p−1
1 (the path formed by the328

vertices of p1 in reverse order), then p′ is a spur in the cluster containing u (Figure 14 (a)). If p329

has no such decomposition, but its two endpoints are at the same node, u = v, then p′ is a single330

11

edge connecting two leaves in the cluster containing u (Figure 14 (b)). If the endpoints of p are at331

two different nodes, p′ is an edge between two leaves of the clusters containing u and v respectively332

(Figure 14 (c) and (d)).333

(a)

(b)

(c)

(d)

⇒

⇒

⇒

⇒

Figure 14: The changes in the polygon caused by a bar simplification.

4.2 Primitives334

The operations in Section 4.3 rely on two basic steps, spur-reduction and node-split (see Figure 15).335

Together with merge and subdivision, these operations are called primitives.336

spur-reduction(u, v). Assume that every vertex at node u has at least one incident edge337

[u, v]. While there exists a path [u, v, u], replace it with a single-vertex path [u]. (See338

Figure 15, left.)339

node-split(u, v, w). Assume that segments uv and vw are consecutive in radial order340

around v, node v is not in the interior of any edge that contains uv or vw; and P has341

no spurs of the form [u, v, u] or [w, v, w]. Create node v∗ in the interior of the wedge342

∠uvw sufficiently close to v; replace every path [u, v, w] with [u, v∗, w]. (See Figure 15,343

right.)344

12

u
v

u
v

w

v∗

u

v
v∗

u

w

v
⇒ ⇒

Figure 15: Left: Spur-reduction(u, v). Right: Node-split(u, v, w).

The following two lemmas are generalizations of the results in [6, Section 5].345

Lemma 4. Operation spur-reduction is ws-equivalent.346

Proof. Let P ′ be obtained from applying spur-reduction(u, v) to P . First suppose that P is weakly347

simple. Then, there exists a simple polygon Q ∈ Φ(P) represented by its signature. Successively348

replace any path [u, v, u] by [u] and delete these two edges from the ordering. The new signature349

defines a polygon Q′ in the strip system of P ′. By the assumption in the operation, every edge of350

Q in Du is adjacent to an edge in Nuv, which has another endpoint in ∂Dv. Since Q is simple, the351

counterclockwise order of the endpoints of the deleted edges in ∂Dv is the same as the clockwise352

order of the endpoints of the new edges in ∂Du. Thus, the new matching in Du produces no353

crossings, Q′ ∈ Φ(P ′), and P ′ is weakly simple.354

Now suppose P ′ is weakly simple. Then, there exists a simple polygonQ′ ∈ Φ(P ′) represented by355

its signature. Let H ′
u be the set of all vertices in the node u in P ′. Each vertex in H ′

u corresponds to356

an edge inQ′ that lies in the diskDu; these edges are noncrossing chords of the circle ∂Du. We define357

a partial ordering on H ′
u: For two vertices u1, u2 ∈ H ′

u, let u1 ≺ u2 if the chord corresponding to u1358

separates the chord of u2 from Nuv within the disk Du. Intuitively, we have u1 ≺ u2 if u1 blocks u2359

from the corridor Nuv. Note that if u1 ≺ u2, then neither endpoint of the chord corresponding to u1360

is on the boundary of Nuv; consequently u1 was obtained from a path [u, v, u] or [u, v, u, v, u, . . . , u]361

in P after removing one or more spurs. We expand the paths ui ∈ H ′
u incrementally, in an order362

determined by any linear extension of the partial ordering ≺. Replace the first vertex u1 ∈ H ′
u by363

[p, u, v, u] (or [p, u, v, u, v, u, . . . , u, q] if needed), and modify the signature by inserting consecutive364

new edges into the total order of the edges along uv at any position that is not separated from365

the chord in Du that corresponds to u1. The resulting polygon P ′′ and the new signature define a366

polygon Q′′ in the strip system of P ′′. By construction, the new edges in Dv connect consecutive367

endpoints in counterclockwise order around v, thus the new matching in Dv is noncrossing. In the368

disk Du, the operation replaces the chord corresponding to u1 by noncrossing new chords. Each369

new edge in Du has at least one endpoint in Nuv; consequently, none of them blocks access to Nu,v.370

Then, the new matching in Du has no crossing and Q′′ ∈ Φ(P ′′). By repeating this procedure we371

obtain P and a simple polygon Q ∈ Φ(P), hence P is weakly simple.372

Lemma 5. Operation node-split is ws-equivalent.373

Proof. Let P ′ be obtained from P via node-split(u, v, w). First assume that P is weakly simple.374

Then there is a simple polygon Q ∈ Φ(P). Consider the clockwise order of edges around v. Since375

Q is simple, the order of the edges [u, v] of paths [u, v, w] must be the reverse order of its adjacent376

edges [v, w] (the paths must be nested as shown in Figure 15(right)). Because P has no spurs of377

the form [u, v, u] or [w, v, w], and the edges of P that pass through v avoid both uv and vw, every378

edge between a pair of adjacent edges [u, v] and [v, w] is also part of a path [u, v, w]. Replace the379

13

paths [u, v, w] by [u, v∗, w] and set the order of edges at segments uv∗ and v∗w to be the same order380

of the removed edges at uv and vw. This defines a polygon Q′ ∈ Φ(P ′), which is simple because381

the circular order of endpoints around Du and Dw remains unchanged and the matching in Dv∗ is382

a subset of the matching in Dv.383

Now, assume that P ′ is weakly simple. Since the face in the image graph bounded by u, v, w, v∗ is384

empty, we can change the embedding of the graph by bringing v∗ arbitrarily close to v, maintaining385

weak simplicity. Let δ be the distance between v∗ and v. Let Q′ ∈ Φ(P ′) be a simple polygon386

defined on disks of radius ε. Then, Q′ is within ε + δ Fréchet distance from P and therefore P is387

weakly simple.388

4.3 Operations389

We describe three complex operations: pin-extraction, V-shortcut, and L-shortcut. In Section 4.4, we390

show how to use them to eliminate spurs along any given bar b. The pin-extraction and V-shortcut391

operations eliminate pins and V-chains. Chains in P with two or more vertices in the interior of392

Db are simplified incrementally, removing one vertex at a time, by the L-shortcut operation.393

Since the image graph is determined by the polygon, it would suffice to describe how the394

operations modify the polygon. However, it is sometimes more convenient to first define new nodes395

and segments in the image graph, and use them to describe the changes in the polygon. In the last396

step of these operations, we remove any node (segment) that contains no vertex (edge), to ensure397

that the image graph is consistent with the polygon.398

pin-extraction(u, v). Assume that P satisfies (I1)–(I4) and contains a pin [v, u, v] ∈ Pin.399

By (I3), node v is adjacent to a unique node w outside ofDb. Perform the following three400

primitives: (1) subdivision of every path [v, w] into [v, w∗, w]; (2) spur-reduction(v, u).401

(3) spur-reduction(w∗, v). (4) Update the image graph. See Figure 16 for an example.402

V-shortcut(v1, u, v2). Assume that P satisfies (I1)–(I4) and [v1, u, v2] ∈ V. Furthermore,403

P contains no pin of the form [v1, u, v1] or [v2, u, v2], and no edge [u, q] such that segment404

uq is in the interior of the wedge ∠v1uv2. By (I3), nodes v1 and v2 are each adjacent405

to unique nodes w1 and w2 outside of Db, respectively.406

The operation executes the following primitives sequentially: (1) node-split(v1, u, v2),407

which creates a temporary node u∗; (2) node-split(u∗, v1, w1) and node-split(u∗, v2, w2);408

which create v∗1, v
∗
2 ∈ ∂Db, respectively; (3) merge every path [v∗1, u

∗, v∗2] to [v∗1, v
∗
2]. (4)409

Update the image graph. See Figure 17 for an example.410

Lemma 6. pin-extraction and V-shortcut are ws-equivalent and maintain (A1)–(A2) in Db and411

(I1)–(I4) in adjacent clusters.412

Proof. pin-extraction. By construction, the operation maintains (A1)–(A2) in Db and (I1)–(I4) in413

adjacent clusters. Also, (I3)–(I4) ensure that spur-reduction(v, u) in step (2) satisfies its precondi-414

tions. Consequently, all three primitives are ws-equivalent.415

V-shortcut. By construction, the operation maintains (A1)–(A2) in Db and (I1)–(I4) in adjacent416

clusters. The first two primitives are ws-equivalent by Lemma 5. The third step is ws-equivalent417

because triangle ∆(u∗v∗1v
∗
2) is empty of nodes and segments, by assumption.418

14

w

v

u

w

v

u

w
w∗

v

u

u

w∗

v

w

⇒

⇒

Figure 16: pin-extraction. Changes in the image graph (top), changes in the polygon (bottom).

u

u u

u

w1

w1

w1

w1

w2

w2 w2

w2

v1

v1

v1

v1

v2

v2 v2

v2
v∗1

v∗1

v∗2

v∗2

⇒

⇒

Figure 17: V-shortcut. Changes in the image graph (top), changes in the polygon (bottom).

L-shortcut operation. The purpose of this operation is to eliminate a vertex of a path that has419

an edge along a given bar. Before describing the operation, we introduce some notation; refer to420

Figure 18. For a node v ∈ ∂Db, let Lv be the set of paths [v, u1, u2] in P such that u1, u2 ∈ int(Db).421

Each path in P is either in Pin, in V, or has two subpaths in some Lv. Let Mcr be the set of422

longest edges of cross-chains in P. Denote by L̂v ⊂ Lv the set of paths [v, u1, u2], where [u1, u2] is423

not in Mcr.424

Figure 18: Paths in Pin, V, LTR
v , LTL

v , LBR
v , and LBL

v .

We partition Lv into four subsets (refer to Figure 18): a path [v, u1, u2] ∈ Lv is in425

1. LTR
v (top-right) if v is a top vertex and x(u1) < x(u2);426

2. LTL
v (top-left) if v is a top vertex and x(u1) > x(u2);427

3. LBR
v (bottom-right) if v is a bottom vertex and x(u1) < x(u2);428

15

4. LBL
v (bottom-left) if v is a bottom vertex and x(u1) < x(u2).429

We partition L̂v into four subsets analogously. We define the operation L-shortcut for paths in LTR
v ;430

the definition for the other subsets can be obtained by suitable reflections.431

L-shortcut(v, TR). Assume that P satisfies (I1)–(I4), v ∈ ∂Db and LTR
v 6= ∅. By (I3), v432

is adjacent to a unique node u1 ∈ b and to a unique node w /∈ Db. Let U denote the set433

of all nodes u2 for which [v, u1, u2] ∈ LTR
v . Let umin ∈ U and umax ∈ U be the leftmost434

and rightmost node in U , respectively. Further assume that P satisfies:435

(B1) there is no pin of the form [v, u1, v];436

(B2) no edge [p, u1] such that segment pu1 is in the interior of the wedge ∠vu1umin;437

(B3) no edge [p, q] such that p ∈ ∂Db is a top vertex and q ∈ b, x(u1) < x(q) < x(umax).438

Do the following (see Figure 19 for an example).439

(0) Create a new node v∗ ∈ ∂Db to the right of v sufficiently close to v.440

(1) For every path [v, u1, u2] ∈ LTR
v in which u1u2 is the only longest edge of a cross-441

chain, create a crimp by replacing [u1, u2] with [u1, u2, u1, u2].442

(2) Replace every path [w, v, u1, umin] by [w, v∗, umin].443

(3) Replace every path [w, v, u1, u2], where u2 ∈ U and u2 6= umin, by [w, v∗, umin, u2].444

(4) Update the image graph.445

w

w

w

w

umin
v

v

u1

v

v

u1 u1

u1

umin

umin umin

umax

umax

umax

umax

v∗

v∗

⇒

⇒

Figure 19: L-shortcut. Changes in the image graph (top), changes in the polygon (bottom).

See Figure 20 for an explanation of why L-shortcut requires conditions (B2)–(B3) and phase (1)446

of the operation. If we omit any of these conditions, L-shortcut would not be ws-equivalent.447

Lemma 7. L-shortcut is ws-equivalent and maintains (A1)–(A2) in Db and (I1)–(I4) in adjacent448

clusters.449

Proof. Let P1 be the polygon obtained from P after phase (1) of L-shortcut(v, TR) and P2 be the450

polygon obtained after phase (3). Note that phase (1) of the operation only creates crimps, and it451

is ws-equivalent by Lemma 1. Let H be the set of edges [u1, u2] of paths [v, u1, u2] ∈ LTR
v . Phases452

(2)–(3) are equivalent to the concatenation of the primitives: subdivision, node-split, and merge.453

Specifically, they are equivalent to subdividing every edge in H into [u1, umin, u2] whenever u2 6=454

umin, and applying node-split(v, u1, umin) (which creates u∗1) to P2 followed by node-split(w, v, u∗1)455

16

w

v

u1 umin

w

v

u1 umin

v∗
w

v

u1 umin umax

w

v

u1 umin umax

v∗

w

v

u1

umax

w

v

u1

umax

v∗

⇒ ⇒

⇒

Figure 20: Cases in which L-shortcut is not ws-equivalent. Top left: P does not satisfy (B2). Top
right: P does not satisfy (B3). Bottom: the operation skips phase (1).

(which creates v∗), and merging every path [v∗, u∗1, umin] to [v∗, umin]. The only primitive that may456

not satisfy its preconditions is node-split(v, u1, umin): segment u1umin may be collinear with several457

segments of b, and P2 may contain spurs that overlap with u1umin. In the next paragraph, we show458

that the spurs that may overlap with u1umin do not pose a problem, and we can essentially repeat459

the proof of Lemma 5.460

Assume that P1 is weakly simple and consider a polygon Q1 ∈ Φ(P1). Due to (A1)–(A2) and461

phase (1), every path in LTR
v is a sub-path of some path [v, u1, u2, u3] where x(u3) ≤ x(u2). We462

show that P1 has a perturbation in Φ(P1) with the following property:463

(⋆) Every edge [u1, u2] ∈ H lies above all overlapping edges e /∈ H.464

Let Q1 ∈ Φ(P1) be a perturbation of P1 into a simple polygon that has the minimum number of465

edges [u1, u2] ∈ H that violate (⋆). We claim that Q1 satisfies (⋆). Suppose the contrary, that Q1466

does not satisfy (⋆). For a contradiction, we modify Q1 ∈ Φ(P1) and obtain another perturbation467

Q′
1 ∈ Φ(P1) that has strictly fewer edges that violate (⋆) as shown in Figure 21. Recall that468

Q1 yields a total order of edges in each segment of b based on the above-below relationship. Let469

[u1, u
′
2] ∈ H be the highest edge that violates (⋆), and assume that this edge is part of a path470

[v, u1, u
′
2, u

′
3]. Let Z be the set of edges that are above [u1, u

′
2] within the corridors between u1 and471

u′2, and are not in H. By (B2)–(B3) and Lemma 2, every edge [z1, z2] ∈ Z must be part of a path472

[z1, z2, z3] where x(u1) ≤ x(z2) < x(u′2) ≤ x(z1) and x(u′2) ≤ x(z3), otherwise Q1 would not be473

simple. We modify σ(Q1) by moving the edges in Z, maintaining their relative order, immediately474

below edge [u′2, u
′
3] in all segments between u1 and u′2. This results in a simple polygon Q′

1 ∈ Φ(P1)475

such that [u1, u
′
2] and all edges in H above [u1, u

′
2] satisfy (⋆), contradicting the choice of Q1.476

We can proceed as in the proof of Lemma 5, using a perturbation Q1 ∈ Φ(P1) that satisfies477

(⋆) to show that P2 is weakly simple if and only if P1 is weakly simple, that is, phases (2)–(3) are478

ws-equivalent.479

By construction, (I1)–(I4) are maintained. Note that the intermediate polygon P1 may violate480

condition (A2), since phase (1) introduces crimps. However, after phase (3), conditions (A1) and481

(A2) are restored, and operation L-shortcut maintains (A1)–(A2) in the ellipse Db.482

17

u1

umax

u1

umax

u1

umax

(a) (b) (c)

Figure 21: (a) A perturbation Q1 that violates property (⋆); the highest edge [u1, u
′
2] ∈ H that

violates (⋆) is red, and edges in Z are blue. (b) We can modify Q1 to reduce the number of edges
in H that violate (⋆). (c) There exists a perturbation Q1 that satisfies (⋆).

4.4 Bar simplification algorithm483

In this section, we describe an algorithm, called bar-simplification, that incrementally removes all484

spurs of the polygon P from a bar b using a sequence of pin-extraction, V-shortcut, and L-shortcut485

operations. Informally, our algorithm “unwinds” each polygonal chain in the bar. It extracts486

pins and V-chains whenever possible. Any other chain in Db contains edges along bar b, and487

the sequence of these edge lengths is unimodal (cf. Lemma 2). Our algorithm “unwinds” these488

chains by a sequence of L-shortcut operations. Each operation eliminates or reduces one of the489

shortest edges along b (see Figure 22). The algorithm alternates between L-shortcut(v, TR) and490

L-shortcut(v, TL) to unwind the chains from their top endpoints to the longest edge in b; and then491

uses L-shortcut(v,BR) and L-shortcut(v,BL) to resolve the bottom part.492

When we unwind the chains in Db starting from their top vertices using L-shortcut(v, TR) and493

L-shortcut(v, TL), we cannot hope to remove the longest edge of a cross-chain. We stop using the494

operations when every path in LTR
v contains a longest edge of a cross-chain. This motivates the495

use of L̂TR
v (instead of LTR

v) in step (iii) below. We continue with the algorithm and its analysis.496

Figure 22: Life cycle of a cross-chain in the while loop of bar-simplification. The steps applied, from
left to right, are: (iii), (iv), (iii), (iv), and (vi).

Algorithm bar-simplification(P, b).497

While P has an edge along b, perform one operation as follows.498

(i) If Pin 6= ∅, pick an arbitrary pin [v, u, v] and perform pin-extraction(u, v).499

(ii) Else if V 6= ∅, then let [v1, u, v2] ∈ V be a path where |x(v1) − x(v2)| is minimal. If there is500

no segment uq in the wedge ∠v1uv2, perform V-shortcut(v1, u, v2), else report that P is not501

weakly simple and halt.502

(iii) Else if there exists v ∈ ∂Db such that L̂TR
v 6= ∅, do:503

(a) Let v be the rightmost node where LTR
v 6= ∅.504

(b) If LTR
v satisfies (B2)–(B3), do L-shortcut(v, TR).505

(c) Else let v′ be the leftmost node such that x(v) < x(v′) and LTL
v′ 6= ∅, or record that no506

such vertex v′ exists.507

18

(c.1) If v′ does not exist, or LTL
v′ does not satisfy (B2)–(B3), or any path in LTL

v′ contains508

a longest edge of a cross-chain, then report that P is not weakly simple and halt.509

(c.2) Else do L-shortcut(v′, TL).510

(iv) Else if there exists v ∈ ∂Db such that LTL
v 6= ∅, perform steps (iii)a–(iii)c with left–right and511

TR–TL interchanged. (Note the use of Lv instead of L̂v. The same applies to (vi) below).512

(v) Else if there exists v ∈ ∂Db such that L̂BL
v 6= ∅, perform steps (iii)a–(iii)c using BL and BR513

in place of TR and TL, respectively, and left-right interchanged.514

(vi) Else if there exists v ∈ ∂Db such that LBR
v 6= ∅, perform steps (iii)a–(iii)c using BR and BL515

in place of TR and TL, respectively.516

(vii) Else invoke old-bar-expansion.517

Return P (end of algorithm).518

519

Lemma 8. The operations performed by bar-simplification(P, b) are ws-equivalent, and maintain520

properties (A1)–(A2) in Db and (I1)–(I4) in adjacent clusters. The algorithm either removes521

all nodes from the ellipse Db, or reports that P is not weakly simple. The L-shortcut operations522

performed by the algorithm create at most two crimps in each cross-chain in P.523

Proof. We show that the algorithm only uses operations that satisfy their preconditions, and reports524

that P is not weakly simple only when P contains a forbidden configuration.525

Steps (i)–(ii). Since every pin can be extracted from a polygon satisfying (I1)–(I4), we may assume526

that Pin = ∅. Suppose that V 6= ∅. Let [v1, u, v2] ∈ V be a V-chain such that |x(v1) − x(v2)| is527

minimal. Since Pin = ∅, the only obstacle for the precondition of V-shortcut is an edge [u, q]528

such that segment uq is in the interior of the wedge ∠v1uv2 (or else the image graph would have a529

crossing). If such an edge exists, it is part of a path [p, u, q]. The node q is in ∂Db between v1 and v2.530

Note that p 6= q, otherwise [p, u, q] would be a pin. Further, p cannot be a node in the interior of the531

wedge ∠v1uv2, otherwise [p, u, q] would be a V-chain where |x(p)−x(q)| < |x(v1)−x(v2)|, contrary532

to the choice of [v1, u, v2] ∈ V. Consequently, p must be in the exterior of the wedge ∠v1uv2. In533

this case, the paths [v1, u, v2] and [p, u, q] form the forbidden configuration in Corollary 1(1), and534

the algorithm correctly reports that P is not weakly simple. If no such edge [u, q] exists, then535

V-shortcut(v1, u, v2) satisfies all preconditions and it is ws-equivalent by Lemma 6. Henceforth, we536

may assume that Pin = ∅ and V = ∅.537

Step (iii)–(iv). By symmetry, we consider only step (iii). Since Pin = ∅, condition (B1) is met.538

In step (iii)b, if (B2)-(B3) are also satisfied, then L-shortcut(v, TR) is ws-equivalent by Lemma 7.539

If condition (B2) or (B3) fails, we proceed with step (iii)c.540

Step (iii)(c.1). We show that in these cases the algorithm correctly reports that P is not weakly541

simple. Assume first that v′ does not exist. Since LTR
v does not satisfy (B2) or (B3), there exists542

an edge [p, q] such that x(u1) ≤ x(q) < x(umax) and p ∈ ∂Db is a top node. Edge [p, q] is part of543

some path [p, q, r]. Note that r cannot be a top vertex of ∂Db, since Pin = ∅ and V = ∅. If r is544

on b and x(q) < x(r), then [p, q, r] ∈ LTR
p , which contradicts the choice of node v. If r is on b and545

x(r) < x(q), then [p, q, r] ∈ LTL
p and v′ exists. It follows that r is a bottom vertex, and then the546

paths [v, u1, umax] and [p, q, r] form a forbidden configuration in Corollary 1(1) or (3).547

Assume now that v′ exists but LTL
v′ does not satisfy (B2) or (B3). Let [v′, u′1, u

′
max] be the path548

in LTL
v′ with the longest edge on b. By the definitions of (B2)–(B3), x(u1) ≤ x(u′1) < x(umax).549

19

If x(u′max) < x(u1), then [v, u1, umax] and [v′, u′1, u
′
max] form the forbidden configuration in Corol-550

lary 1(2). Else, we have x(u1) ≤ x(u′max) < x(u′1) < x(umax). This implies that any edge [p, q] that551

violates (B2) or (B3) for LTL
v′ must also violate (B2) or (B3) for LTR

v . However, this contradicts552

the choice of v (rightmost where LTR
v 6= ∅) and v′ (leftmost, x(v) < x(v′), where LTL

v′ 6= ∅).553

Next assume that there is a path [v′, u′1, u
′
2] ∈ LTL

v′ such that [u′1, u
′
2] is the longest edge of a554

cross-chain. Then this cross-chain is of the form [v′, u′1, u
′
2, . . . , p

′], where all interior vertices lie555

on the line segment u′1u
′
2, and p′ is a bottom vertex. Now [v, u1, umax] and this cross-chain form556

the forbidden configuration in Corollary 1(3). In all three cases in step (iii)(c.1), the algorithm557

correctly reports that P is not weakly simple.558

Step (iii)(c.2). Let the path [v′, u′1, u
′
max] ∈ LTL

v′ be selected in L-shortcut(v′, TL) by the algorithm.559

Since conditions (B1)–(B3) are satisfied, L-shortcut(v′, TL) is ws-equivalent by Lemma 7.560

Steps (v)–(vii). If steps (i)–(iv) do not apply, then L̂TR
v ∪ LTL

v = ∅. That is, for every path561

[v, u1, u2] ∈ LTR, we have [u1, u2] ∈ Mcr. In particular, there are no top chains. The operations in562

(v)–(vi) do not change these properties. Consequently, once steps (v)–(vi) are executed for the first563

time, steps (iii)–(iv) are never executed again. By a symmetric argument, steps (v)–(vi) eliminate564

all paths in L̂BL
v ∪ LBR

v . When the algorithm reaches step (vii), every edge in b is necessarily in565

Mcr and LTL
v ∪ LBR

v = ∅. Consequently, by Lemma 2, b contains no spurs and old-bar-expansion is566

ws-equivalent. This operation eliminates all nodes in the interior of Db.567

Termination. Each pin-extraction and V-shortcut operation reduces the number of vertices of568

P within Db. Operation L-shortcut(v,X), X ∈ {TR, TL,BR,BL}, either reduces the number569

of interior vertices, or produces a crimp if edge [u1, u2] is a longest edge of a cross-chain. For570

termination, it is enough to show that, for each cross-chain c ∈ P, the algorithm introduces a crimp571

at most once in steps (iii)–(iv), and at most once in steps (v)–(vi). Without loss of generality,572

consider step (iii).573

Note that step (iii) may apply an L-shortcut operation in two possible cases: (iii)b and (iii)c.574

However, an L-shortcut operation in (iii)c does not create crimps: L-shortcut is performed when all575

three conditions in (iii)(c.1) fail. In this case, LTR
v′ does not contain any edge in Mcr, and L-shortcut576

does not create crimps. We may assume that step (iii) creates crimps in case (iii)b only.577

Every cross-chain remains a cross-chain in algorithm bar-simplification: operations pin-extraction578

and V-shortcut do not modify cross-chains; and operations L-shortcut and old-bar-expansion modify579

only the first or last few edges of a cross-chain. A longest edge of a cross-chain c always connects580

the same two nodes in b until step (vii) (old-bar-expansion), although the number of longest edges581

in c may change. When L-shortcut(v,X) modifies a cross-chain, it moves its endpoint from v ∈ ∂Db582

to a nearby new node v∗ ∈ ∂D. Consequently, if LX
v , X ∈ {TR, TL} contains the first two edges583

of two chains in P, then they have been modified by the same sequence of previous L-shortcut584

operations.585

Suppose, for contradiction, that two invocations of step (iii)b create crimps in a cross-chain c,586

say, in operations L-shortcut(v0, TR) and L-shortcut(v2, TR) (see Figure 23). The first invocation587

replaces [v0, u1, u2] with [v∗0, umin, u2, u1, u2] (where the edge [umin, u2] may vanish if umin = u2).588

The resulting cross-chain has two maximal longest edges, [u2, u1] and [u1, u2]. Since L-shortcut589

creates crimps only if the longest edge is unique, there must be an intermediate operation L-590

shortcut(v1, TL) that removes or shortens the edge [u2, u1], so that [u1, u2] becomes the unique591

longest edge again. When L-shortcut(v1, TL) is performed in a step (iv), we have L̂TR
v = ∅ for all592

top nodes v, and LTL
v′ = ∅ for all top nodes v′, x(v′) < x(v1). The steps between L-shortcut(v1, TL)593

and L-shortcut(v2, TR) modify only cross-chains whose top node is at or to the right of the top node594

20

of c (L-shortcut operations move the top vertex of c to the left, from v1 to v2 in one or more steps).595

Consequently, when L-shortcut(v2, TR) is performed in a step (iii), we still have L̂TR
v′ = LTL

v′ = ∅596

for all top nodes v′, x(v′) < x(v2).597

v0 v1

v2

u1

u2
⇒ . . . ⇒ ⇒ . . . ⇒

Figure 23: At most one crimp can be created in a cross-chain by steps (iii)b.

When L-shortcut(v2, TR) is performed, we have [v2, u1, u2] ∈ LTR
v2 but [v2, u1, u2] /∈ L̂TR

v2 (since598

u1u2 is the longest edge of c). Step (iii) is performed only if L̂TR
p 6= ∅ for some top vertex p.599

Since the rightmost top vertex where LTR
v 6= ∅ is v = v2, we have x(p) ≤ x(v2). This implies600

p = v2. Consequently there exists a chain c′ ∈ P that contains a subpath [v2, u1, u3] ∈ LTR
v2 , such601

that [u1, u3] is not the longest edge of c′. Since LTR
v2 contains the first two edges of both c and602

c′, they have been modified by the same sequence of L-shortcut operations. Therefore c′ contained603

[v, u1, u2, u1] initially. By Lemma 2, only the longest edge can repeat, hence [u1, u2] is the longest604

edge of c′. This implies that u3 = u2 and L̂TR
v2 = ∅, contradicting the condition in Step (iii).605

We conclude that bar-simplification(P, b) introduces a crimp at most once in steps (iii)–(iv), and606

at most once in steps (v)–(vi) in each cross-chain. Since all other steps decrease the number of607

vertices in Db, the algorithm terminates, as claimed.608

Lemma 9. Algorithm bar-simplification(P, b) takes O(m logm) time using suitable data structures,609

where m is the number of vertices in b.610

Proof. Operations pin-extraction, V-shortcut, and L-shortcut each make O(1) changes in the image611

graph. Operations pin-extraction and V-shortcut decrease the number of vertices inside Db. Each612

L-shortcut does as well, except for the steps that create crimps. By Lemma 7, L-shortcut operations613

may create at most 2|P| = O(m) crimps. So the total number of operations is O(m).614

When [v, u1, u2] ∈ LTR
v and u2 6= umin, L-shortcut replaces [v, u1, u2] by [v∗, umin, u2]: vertex615

[u1] shifts to [u2], but no vertex is eliminated. In the worst case, one L-shortcut modifies Θ(m)616

paths, so in Θ(m) operations the total number of vertex shifts is Θ(m2).617

Data structures. We maintain a cyclic list of nodes in ∂Db given by the combinatorial embedding618

of the image graph. Since each operation adds a constant number of nodes to ∂Db at positions619

adjacent to the nodes to which the operation was applied, such a list can be maintained using O(1)620

time per operation. Our implementation does not maintain the paths in P explicitly. Instead, we use621

set operations. We maintain the sets Pin, V, and LX
v , with v ∈ ∂Db and X ∈ {TR, TL,BR,BL},622

in sorted lists. The pins [v, u, v] ∈ Pin are sorted by x(v); the wedges [v1, u, v2] ∈ V are sorted by623

|x(v1) − x(v2)|. In every set LX
v , the first two nodes in the paths [v, u1, u2] ∈ LX

v are the same by624

(I3)b, and so it is enough to store vertex [u2]; these vertices are stored in a list sorted by x(u2).625

We also maintain binary variables to indicate for each path [v, u1, u2] ∈ LX
v whether it is part of a626

cross-chain, and whether [u1, u2] is the only longest edge of that chain.627

Running time analysis. The condition in step (ii) can be tested in O(1) time by checking whether628

uv1 and uv2 are consecutive segments in the rotation of node u in the image graph. Steps (i)-(ii)629

21

remove pins and V-chains, taking linear time in the number of removed vertices, without introducing630

any path in any set.631

Consider L-shortcut(v, TR), executed in step (iii), which can be generalized to other occurrences632

of the L-shortcut operation performed in one of steps (iii)–(vi). Recall that Pin = V = ∅. Let p′633

be the leftmost top vertex in ∂Db to the right of v, which can be found in O(1) time using the634

cyclic list of nodes in ∂Db. By (I3)b, every path [p′, q′, r′] ∈ LX
p′ , X ∈ {TR, TL}, must contain the635

edge [p′, q′]. If x(q′) < x(umax), then (B2) or (B3) are not satisfied. Assume that x(q′) ≥ x(umax)636

and (B2) (resp., (B3)) is not satisfied. Then there must exist an edge [p, u1] (resp., [p, q] where637

x(q) < x(umax)) such that p is to the right of p′. Then, segments p′q′ and pu1 (resp., pq) properly638

cross. This is a contradiction since no operation introduces crossings in the image graph. Hence639

(B2)–(B3) are satisfied if and only if either p′ does not exist (i.e., v is the rightmost top vertex), or640

x(umax) ≤ x(q′); this can be tested in O(1) time. The elements [v, u1, umin] ∈ LTR
v are simplified to641

[v∗, umin]. Consider one of these paths, and assume that the next edge along P is [umin, u3]. Then,642

the path [v∗, umin, u3] is inserted into either Pin ∪ V if u3 ∈ ∂Db is a top vertex, or LTL
v∗ if u3 ∈ b.643

We can find each chain [v, u1, umin] ∈ LTR
v in O(1) time since LTR

v is sorted by x(u2). Finally, all644

other paths of the form [v, u1, u2] ∈ LTR
v , where u2 6= umin, become [v∗, umin, u2] and they form the645

new set LTR
v∗ . Since we store only the last vertex [u2], which is unchanged, we create LTR

v∗ at no646

cost.647

This representation allows the manipulation of O(m) vertices with one set operation. The648

number of insert and delete operations in the sorted lists is proportional to the number of vertices649

that are removed from the interior ofDb, which is O(m). Each insertion and deletion takes O(logm)650

time, and the overall time complexity is O(m logm).651

5 Spur elimination algorithm652

After bar-simplification (Section 4), we obtain a polygon that has no forks and every spur is at653

an interior node of some cluster (formed on the boundary of some ellipse Db). In the absence654

of forks, we can decide weak simplicity using [6, Theorem 5.1], but a näıve implementation runs655

in O(n2 log n) time: successive applications of spur-reduction would perform an operation at each656

dummy vertex. In this section, we show how to eliminate spurs in O(n log n) time.657

Formation of Groups. We create groups by gluing pairs of clusters with adjacent roots together.658

Recall that by (I1) each cluster induces a tree. We modify the image graph, transforming each659

tree in a cluster into a binary tree using ws-equivalent primitives. For each node s with more than660

two children, let s1 and s2 be the first two children in counterclockwise order. Create new nodes661

s′1 and s′2 by subdivision in ss1 and ss2, respectively, and create a segment s′1s2. Use the inverse of662

node-split to merge nodes s′1 and s′2 into a node s′, reducing the number of children of s by one.663

In the course of our algorithm, an analogue of the pin-extraction operation extracts a spur from664

one group into an “adjacent” group. This requires a well-defined adjacency relation between groups.665

By construction, if a segment uv connects nodes in different clusters, both u and v are leaves or666

both are root nodes. For every pair of clusters, C(u) and C(v), with adjacent roots, u and v, create667

a group Guv = C(u) ∪C(v); see Figure 24. By construction, the groups are pairwise disjoint. Two668

groups are called adjacent if they have two adjacent leaves in the image graph.669

Recall that a maximal path in each cluster is represented by benchmark vertices (leaves and670

spurs). We denote by [u1; . . . ;uk] (using semicolons) a maximal path inside a group defined by the671

22

C(u)

C(v)

Guv

u

v

Figure 24: The formation of a group Guv, containing clusters C(u) and C(v). Leaf nodes are shown
as black dots.

benchmark vertices u1, . . . , uk. For a given group Guv, let P denote the set of maximal paths with672

vertices in Guv; and let B be the set of subpaths in P between consecutive benchmark vertices.673

Remark 2. By invariants (I1)–(I3), a path in P of a group Guv has alternating benchmark vertices674

between C(u) and C(v). Consequently, every path in B has one endpoint in C(u) and one in C(v),675

and each spur in Guv is incident to two paths in B.676

Spur-elimination algorithm. Assume that G is a partition of the nodes of the image graph into677

groups satisfying (I1)–(I4). We consider one group at a time, and eliminate all spurs from one678

cluster of that group. When we process one group, we may split it into two groups, create a new679

group, or create a new spur in an adjacent group (similar to pin-extraction in Section 4). The latter680

operation implies that we may need to process a group several times. Termination is established681

by showing that each operation reduces a weighted sum of the number of benchmark vertices (i.e.,682

spurs and boundary vertices). Initially, the number of benchmarks is O(n).683

Algorithm spur-elimination(P,G).684

While P contains a spur, do:685

1. Choose a group Guv ∈ G that contains a spur, w.l.o.g. contained in cluster C(u),686

and create its supporting data structures (described in Section 5.1 below).687

2. While T [u] contains an interior node, do:688

(a) If u contains no spurs and is incident to only two edges uv and uw, eliminate689

u with a merge operation. Rename node w to u which becomes the new root690

of the tree T [u].691

(b) If u contains spurs, eliminate them as described in Section 5.2.692

(c) If u contains no spurs, split Guv into two groups along a chain of segments693

that contains uv as described in Section 5.3. Rename a largest resulting group694

to Guv.695

The detailed description of steps 2b and 2c are in Sections 5.2 and 5.3, respectively. We first696

present supporting data structures in Section 5.1, and then analyze the algorithm in Section 5.4.697

5.1 Data structures698

In this section, we describe the data structures that we maintain for a group Guv. We start699

with reviewing and introducing some notation. Consider a group Guv composed of two binary700

23

trees T [u] and T [v] rooted at u and v, respectively. Recall that B denotes the set of benchmark-701

to-benchmark paths, each with one benchmark in T [u] and one in T [v]. In the algorithm spur-702

elimination, we dynamically maintain the image trees T [u] ∪ T [v], and the set of paths B. In each703

group Guv, we maintain only O(|B|) nodes that contain benchmark vertices or have degree higher704

than 2. Dummy nodes of degree two that contain no benchmark vertices are redundant for the705

combinatorial representation, and will be eliminated with merge operations. However, a polyline706

formed by a chain of dummy nodes of degree two cannot always be replaced by a straight-line707

segment (this might introduce unnecessary crossings). By Remark 1, it suffices to maintain the708

combinatorial embeddings of the trees T [u] and T [v] (i.e., the counterclockwise order of the incident709

segments around each node).710

The partition of a group into two groups is driven by the partition of the paths in B. For a711

set B′ ⊂ B of benchmark-to-benchmark paths, we define a subtree T (B′) induced by B′ as follows.712

Let N = N(B′) be the set of nodes that contain endpoints of some path in B′. The tree T (B′) is713

obtained in two steps: take the minimum subtree of T [u] ∪ T [v] that contains all nodes in N , and714

then merge all nodes of degree two that are not in N . In particular, the nodes of T (B′) include715

N and the lowest common ancestor of any two nodes in N ∩ C(u) and in N ∩ C(v), respectively.716

Denote by lca(r, s) the lowest common ancestor of nodes r and s in T [u] (resp., T [v]).717

Description of data structures. For the image graph of Guv, we maintain the following data718

structures.719

• We store trees T [u] and T [v] each using the dynamic data structure of [8], which supports720

O(1)-time insertion and deletion of leaves, merging interior nodes of degree 2, subdivision of721

edges, and lowest common ancestor queries.722

• Imagine that Guv is inside an axis-aligned rectangle with the leaves of T [u] along the top723

edge and leaves of T [v] along the bottom edge (see Figure 25(a)). For each tree, we maintain724

a left-to-right Euler tour in an order-maintenance data structure [3, 19], which supports725

insertions immediately before or after an existing item, deletions, and precedence queries,726

each in O(1) amortized time. For any node w, let w♭ and w♯ respectively denote the first and727

last occurrences of w in the Euler tour. Note that we have w♯ = w♭ for a leaf w. We refer to728

the elements of the Euler tour as tokens. We write x < y to denote that some token x occurs729

before (“to the left of”) another token y in their common Euler tour.730

• We also maintain the cyclic list of all leaves of the tree T [u] ∪ T [v] (in the order determined731

by the Euler tour above).732

We now describe data structures for P and B. For every benchmark-to-benchmark path [s; t] ∈733

B, we assume that s is in T [u] and t is in T [v]. A path [s; t] is associated with the intervals [s♭, s♯]734

and [t♭, t♯]. For two consecutive benchmark-to-benchmark paths [s1; t; s2], where t is in T [v], we735

define the interval I[s1; t; s2] = [s♭1, s
♭
2].736

• The set of benchmark-to-benchmark paths [s; t] ∈ B is stored in four lists, sorted by s♭, s♯, t♭,737

and t♯, respectively, with ties broken arbitrarily. The sorted lists can be computed in O(|B|)738

time by an Eulerian traversal of the tree.739

• For each node s of T [u], let Bs denote the set of paths [s; t] ∈ B. We store Bs in two lists,740

sorted by t♭ and t♯, respectively.741

24

s♯1 s♭2

t♯2 t♭1

s1
s2

t2
t1

t♯ t♭max

s

t
tmaxtmin

t♭t♯min

(a) (b)

Figure 25: The geometry of crossing benchmark-to-benchmark paths. (a) Paths [s1; t1] and [s2; t2]

cross. (b) If t♯min < t♭ ≤ t♯ < t♭max, then any benchmark-to-benchmark path [s; t] crosses path
[tmin; tmax].

• We use a centered interval tree [4] for all O(n) intervals I[s1; t; s2] that can report, for a query742

node q, all intervals containing q in output-sensitive O(log n+k) time, where k is the number743

of intervals that contain q. Since the interval endpoints s♭ are already sorted, the interval tree744

can be constructed in O(|B|) time. The interval tree can handle the deletion of an interval in745

O(1) time (without re-balancing, hence maintaining the O(log n+ k) query time).746

All data structures described in this section can be constructed in O(|B|) preprocessing time.747

Crossing paths. The data structure described above can determine in O(1) time whether two748

paths in B cross. Straightforward case analysis implies the following characterization of path749

crossings (refer to Figure 25(a)).750

Lemma 10. Let s1 and s2 be arbitrary nodes in tree T [u], and let t1 and t2 be arbitrary nodes in751

T [v]. Paths [s1; t1] and [s2; t2] cross if and only if either (1) s♯1 < s♭2 and t♭1 > t♯2, or (2) s♯2 < s♭1752

and t♭2 > t♯1.753

5.2 Eliminating spurs from a root754

We describe step 2b of Algorithm spur-elimination. Suppose that the root node u contains a755

spur. The following operation eliminates all spurs from u, but the resulting cluster C(v) need not756

satisfy (I2) and (I3), and we need to perform other operations to restore these properties. Refer to757

Figure 26(a)–(b) for an example.758

spur-shortcut(u). Assume that Guv satisfies invariants (I1)–(I4), and u contains a spur.759

Replace every path [t1;u; t2] by [t1; t2]. Let S be the set of all such modified paths.760

25

Lemma 11. spur-shortcut is ws-equivalent and maintains properties (I1) and (I4).761

Proof. The operation is equivalent to a sequence of spur-reduction operations: First perform spur-762

reduction(v, u). In a BFS traversal of all nodes x of T [v], except for the root, perform spur-763

reduction(x, parent(x)). All these operations satisfy spur-reduction’s constraints. Initially, every764

path through the node x has an edge in the segment x parent(x), by (I2). The BFS traversal765

ensures that this property still holds when the algorithm performs spur-reduction(x, parent(x)).766

Note that for every path [t1;u; t2], both t1 and t2 are in T [v] (cf. Remark 2) and path [t1; t2] is767

uniquely defined by (I1). However, a maximal path in C(v) that contains [t1; t2] violates (I2), and if768

t1 = t2 is a leaf in C(v), then it forms a spur that may violate (I3). We proceed with a sequence of769

“repair” steps to restore them, after which the total number of benchmark vertices decreases by at770

least |S|. The following three steps restore (I2) and (I3) when t1 and t2 are in ancestor-descendent771

relation, that is, lca(t1, t2) ∈ {t1, t2}. Let min(t1, t2) denote the node in {t1, t2} farther from the772

root.773

For every path [t1; t2] ∈ S, do774

1. If lca(t1, t2) ∈ {t1, t2} and t1 6= t2, then replace [t1; t2] with [min(t1, t2)].775

2. If t1 = t2 and t1 is not a leaf of T [v] that has degree two in the image graph, then776

replace [t1; t2] with [t1].777

3. If t1 = t2 and t1 is a leaf of T [v] that has degree two in the image graph, then do:778

by (I3), node t1 is adjacent to a unique node z /∈ Guv and z is incident to a single779

segment in the cluster containing z. Subdivide such segment creating a new node780

z∗ (added to the cluster containing z), and replace every path [z, t1, z] with [z∗].781

See Figure 26(b)–(c) for an example.782

(a) (b) (c)z z
z
z∗

T [ℓ]

Guv Guv Guv

u u u

v v = ℓ
v = ℓ

tmin

tmax ℓ−ℓ+

Gℓ−ℓ+

Figure 26: (a) Node u contains spurs. (b) After eliminating spurs, T [v] does not satisfy (I2). (c)
The analogues of pin-extraction and V-shortcut.

26

These steps restore (I3) at all leaves, and (I2) for the affected paths [t1; t2] ∈ S. Note that these783

steps are ws-equivalent: Steps 1–2 do not modify the polygon (they change only the benchmarks);784

and step 3 is analogous to pin-extraction(t1, z).785

We are left with paths [t1; t2] ∈ S where t1 and t2 are in different branches of T [v]. In this case,786

we perform an elaborate version of the V-shortcut operation, that creates a new group. For every787

node ℓ of T [v], let Sℓ be the set of paths [t1; t2] ∈ S such that lca(t1, t2) = ℓ. Consider every node788

ℓ of T [v] where Sℓ 6= ∅ in a bottom-up traversal of T [v]; and create a new group Gℓ−ℓ+ as follows789

(refer to Figure 26).790

Let N− (resp., N+) be the set of nodes t1 (resp., t2) such that there is a path [t1; t2] ∈ Sℓ, and791

t1 is in the left (resp., right) subtree of ℓ. Let N = N− ∪N+. Sort the nodes t1 ∈ N− by t♯1, and792

let tmin be the minimum node; and similarly sort the nodes t2 ∈ N+ by t♭2, and let tmax be the793

maximum node. The following lemma shows that interior nodes of the path from tmin to ℓ in T [v]794

have no right branches, and the interior nodes of the path from tmax to ℓ have no left branches.795

Lemma 12. If there is a path [s; t] ∈ B \ Sℓ such that t♯min < t♭ ≤ t♯ < t♭max, then it crosses some796

path in Sℓ, hence P is not weakly simple.797

Proof. Let C be the path between tmin and tmax in T [v]. Refer to Figure 25(b). By the choice of ℓ798

(in a bottom-up traversal of T [v]), we have Sℓ′ = ∅ for all descendants of ℓ. Path [s; t] reaches C at799

some interior node t∗ ∈ C, and then continues to ℓ, and farther to parent(ℓ). If t∗ is in a left (resp.,800

right) subtree of ℓ, then [s; t] crosses every path in Sℓ that starts at tmin (resp., ends at tmax).801

We can find the set N ′ of nodes t such that t♯min < t♭ ≤ t♯ < t♭max, in O(|N ′| + log n) time,802

by binary search in the list of leaves to find all the leaves between tmin and tmax, and by lowest803

common ancestor queries to find nodes in N ′. The algorithm reports that the input polygon is not804

weakly simple and halts if some node in N ′ has a path satisfying the condition in Lemma 12. We805

can now assume that N ′ ⊂ N . The nodes in N induce a binary tree, denoted T [ℓ], of size at most806

2|N |: its nodes are all nodes in N and the lowest common ancestors of consecutive nodes in N−
807

and N+ respectively. Note that a segment of T [ℓ] might not correspond to a segment of T [v] (see808

Figure 26(b)). Denote by C∗ the path between tmin and tmax in T [ℓ].809

We now define the changes in the image graph. Every node t ∈ N \ C∗ is deleted from Guv,810

and added to the new group. Create two nodes, ℓ− and ℓ+, in Gℓ−ℓ+ sufficiently close to ℓ in the811

wedge between the two children of ℓ, and connect them by a segment ℓ−ℓ+. Duplicate each node812

t ∈ C∗ \ {ℓ}, by creating a node t′ (added to Gℓ−ℓ+) sufficiently close to t, and add a segment tt′.813

Subdivide every segment tt′ with two new boundary nodes, tleaf (added to T [v]) and t′leaf (added814

to Gℓ−ℓ+). The nodes t or t′ might now have degree 4. Adjust the image graph so that the group815

trees are binary. Finally partition the nodes in Gℓ−ℓ+ into two trees, T [ℓ−] and T [ℓ+], rooted at ℓ−816

and ℓ+, respectively.817

We now define the changes in the polygon. Replace every path [t; t1] ∈ Sℓ, where t ∈ C∗, by818

[t′; t1] if it is adjacent to a path [t; t2] ∈ Sℓ, i.e., replacing the path [t1; t; t2] by [t1; t
′; t2]. Otherwise,819

replace [t; t1] by [tleaf ; t
′
leaf ; t1]. Now we can build B′ as the set of benchmark-to-benchmark paths820

[t′1; t
′
2] where t′1, t

′
2 ∈ Gℓ−ℓ+ in O(|B′|) time.821

To prove ws-equivalence, we consider the changes in the polygon. These amount to a sequence of822

ws-equivalent primitives: a node-split at ℓ, a sequence of node-splits along the chain C from ℓ to tmin823

and tmax, respectively, subdivision operations that create the new leaf nodes, and merge operations824

at degree two nodes that no longer contain spurs. The creation of new groups takes O(|Sℓ|+ log n)825

time and O(|Sℓ|) paths in B are removed or modified in Guv. Thus the data structures for Guv are826

27

updated in O(|Sℓ| log n) time. Overall, operation spur-shortcut(u) and the repair steps that follow827

take O(|S| log n) time.828

5.3 Splitting a group in two829

In this section we describe step 2c of Algorithm spur-elimination(P,G). Assume that Guv satisfies830

invariants (I1)–(I4) and u contains no spur.831

Denote the left and right child of u by u− and u+, respectively. Let B−,B+ ⊂ B, resp., be832

the set of benchmark-to-benchmark paths that contain u− and u+. We split Guv into two groups833

induced by B− and B+, respectively. Refer to Figure 27.834

It would be easy to compute the groups induced by B− and B+ in O(|B|) time. However, for835

an overall O(n log n)-time algorithm, we can afford O(min(|B−|, |B+|)) time for the split operation,836

and an additional O(log n) time for each eliminated spur and each node that we split into two837

nonempty nodes. Without loss of generality, we may assume |B−| ≤ |B+|. The group induced838

by |B−| can be computed from scratch in O(|B−|) time, and we construct the group for B+ by839

modifying Guv, and updating the corresponding data structures.840

(a) (b)

u−
u

C0

v

u+ u+u−

v− v+
Guv

Gu+v+
Gu−v−

Figure 27: Splitting group Guv. (a) Changes in the image graph. (b) Changes in the polygon.

First, we find B− and B+. Compute B− using the list of paths [s; t] ∈ B sorted by s♯ or s♭.841

Since both lists naturally split into corresponding lists for B− and B+, we can split these lists in842

O(min(|B−|, |B+|)) = O(|B−|) time. To construct the list of B+ sorted by t♯ and t♭, we start with843

the corresponding lists for B, and delete all elements of B− in O(|B−|) time. To compute the lists844

sorted by t♯ and t♭ for B−, we shall first compute the subtree T [v−] induced by B−. However, we845

can already find the maximum t♯ of a path [s; t] ∈ B− in O(|B−|) time.846

Next, we test for crossings between the paths in B− and the paths in B+. Let t♯− be the847

maximum t♯ of a path [s; t] ∈ B−, and t♭+ the minimum t♭ of a path [s; t] ∈ B+. By Lemma 10,848

there is such a crossing if and only if t♭+ < t♯−, which can be determined in O(1) time using our849

order-maintenance structures. If a crossing is detected, the algorithm reports that P is not weakly850

simple and halts.851

Trees T [u−] and T [u+] are simple subtrees of T [u]; but splitting T [v] is nontrivial. We use852

binary search in the Eulerian cycle of all leaves to find the rightmost leaf ℓ0 in T [v] such that853

Bℓ0 ∩ B− 6= ∅, if such a leaf exists, otherwise the leftmost leaf ℓ0 in T [v]. Let C0 = [ℓ0;u]. We do854

not compute the path C0 explicitly, as it may contain more than O(|B−|) nodes, but we can test855

whether a query node t of T [v] is in C0 in O(1) time by checking whether lca(ℓ0, t) = t. Since the856

28

paths in B− and B+ do not cross, all nodes of T [v−] are in or to the left of the chain C0, and all857

common nodes of T [v−] and T [v+] are in C0. The image graph of T [v−] can be computed from858

scratch using B− in O(B−) time. Replace each node t of T [v−] that is in C0 by a duplicate copy859

t− located sufficiently close to t, to the right of t. The tree T [v+] is computed from T [v] by node860

deletion and merge operations as follows. First delete all nodes that are in T [v−] but not in C0.861

For every node t of T [v−] that lies in C0, if t has degree two in T [v−] and B+
t = ∅, then it would862

be a degree two node in T [v+] with no spurs, and so we can delete t by merging its two incident863

segments. Let v+ be the node not in T [u+] adjacent to u+. The resulting T [v+] becomes a tree864

induced by B+. It remains to resolve the connections between trees.865

Let V0 denote the set of chains [s1; t; s2] such that [s1; t] ∈ B− and [t; s2] ∈ B+. The spurs at t866

on all chains [s1; t; s2] ∈ V0 will be eliminated (they will become adjacent leaves in the two resulting867

groups). V0 can be found with a query for u in the interval tree. Let N0 be the set of all nodes t868

such that [s1; t; s2] ∈ V0. Each node t ∈ N0 is in C0 and, therefore, has a copy t− in T [v−]. Create869

a segment between t and t−, and subdivide the segment t−t with two new nodes t−leaf and tleaf in870

T [v−] and T [v+], respectively. The degree of nodes t or t− might increase to 4; and so we adjust871

the image graphs so that both trees are binary. The image graph is now split into groups Gu−v−872

and Gu+v+ .873

We next define the changes in the polygon. Replace every chain [s1; t; s2] ∈ V0 with a new chain874

[s1; t
−
leaf ; tleaf ; s2], while also replacing the corresponding paths in the lists B− and B+ in O(|V0|)875

time. In the sorted lists for B− and B+, this is done by deletions and reinsertions. Note that all876

leaves t−leaf (resp., tleaf) are at the end (resp., beginning) of the Euler tour of T [v−] (resp., T [v+]),877

so deletions can be performed in O(|V0|) time; and insertions take O(|V0| log n) time.878

The changes in the polygon are equivalent to a sequence of ws-equivalent primitives: a node-split879

operation at u, followed by a sequence of node-splits along the chain C0 from ℓ0 to u, and subdivision880

operations that create the new leaf nodes between the two groups. The interval tree is updated881

by deleting the intervals that contain u, and the query time remains the same output-sensitive882

O(log n+ k). Consequently, we can split Guv in O(min(|B−|, |B+|) + |V0| log n+ log n) time.883

5.4 Analysis of the spur-elimination algorithm884

Lemma 13. Given m benchmark vertices, spur-elimination(P,G) takes O(m logm) time.885

Proof. Let σ be the number of spurs, β the number of benchmark vertices at the leaves of clusters,886

and let φ = 2σ + β. Initially, φ = O(m) by (I1). All operations in spur-elimination monotonically887

decrease both σ and φ. Step 2b decreases φ by the number of spurs at u, and steps 2a and 2c both888

maintain φ. In particular, Step 2c converts some spurs into pairs of adjacent benchmark vertices at889

leaves. Consequently, the number of benchmark vertices remains O(m) throughout the algorithm.890

Step 1 creates data structures for new groups: For a group containing m benchmarks, all891

supporting data structures can be computed in O(m) time, that is, in O(1) time per benchmark.892

A new benchmark v appears in a group when (i) a benchmark is extracted into an adjacent group,893

or (ii) a group of size m is split and v is part of the smaller group of size at most m/2. Extraction894

strictly decreases φ, so it occurs O(m) times. The total number of benchmarks that are either895

present initially or created by extraction is O(m). Each of these benchmarks can move into a group896

of half-size O(logm) times. Consequently, there are O(m logm) new benchmarks overall, and the897

time spent on all instances of Steps 1 is O(m logm).898

Step 2a removes an interior node of degree two; the update of supporting data structures takes899

29

O(logm) time. Interior nodes are created only when they contain a spur, so at most O(m) interior900

nodes are ever created, and all instances of Step 2a take O(m logm) time. Step 2b eliminates901

|S| spurs in O(|S| logm) time. Eventually, all spurs are eliminated, thus all instances of Step 2b902

take O(m logm) time. Step 2c takes O(min(|B−|, |B+|) + |V0| logm+ logm) time. By a standard903

heavy-path decomposition argument, the terms min(|B−|, |B+|) contribute O(m logm) time. Every904

chain in V0 corresponds to a spur that is destroyed in a step 2c (and no new spurs are created in905

step 2c), therefore the terms O(|V0| logm) sum to O(m logm) over the course of the algorithm.906

Since every execution of step 2c increases the number of groups by one, and this step is repeated907

O(m) times, the logm terms sum to O(m logm) in the entire algorithm.908

Algorithm spur-elimination(P,G) returns a polygon P ′, a set G′ of groups, and a set B′ of909

benchmark-to-benchmark paths, each of which connects two leaves in two different clusters of a910

group. In each group Guv, the trees T [u] and T [v] have no interior nodes, thus Guv consists of two911

single-node clusters C(u) = {u} and C(v) = {v}, connected by a single edge uv. Consequently, the912

image graph is 2-regular. We can now decide whether P ′ is weakly simple in O(n) time similarly913

to [6, Section 3.3]. The polygon P ′ is weakly simple if and only if the image graph is connected914

and each group contains precisely one benchmark-to-benchmark path. These properties can be915

verified by a simple traversal of the image graph and P ′ in O(n) time. This completes the proof of916

Theorem 1.917

6 Perturbing weakly simple polygons into simple polygons918

In Sections 3–5, we have presented an algorithm that decides, in O(n log n) time, whether a given919

n-gon P is weakly simple. If P is weakly simple, then for every ε > 0 it can be perturbed into a920

simple polygon by moving each vertex a distance at most ε. In this section we show how to find,921

for any ε > 0, a simple polygon Q with 2n vertices such that distF (P,Q) < ε. Let P ′ and P ′′ be922

the polygons obtained after the bar-simplification and spur-elimination phases of the algorithm,923

respectively. P ′′ has O(n) vertices, none of which is a fork or a spur. Using the results in [6,924

Section 3], we can construct a simple polygon Q′′ ∈ Φ(P ′′) in O(n) time. In this section, we show925

that we can reverse the sequence of operations in O(n log n) time and perturb P as well into a926

simple polygon Q ∈ Φ(P).927

Combinatorial representation by bar-signatures. A perturbation of a weakly simple polygon928

has a combinatorial representation, called a signature, which consists of total orders of the overlap-929

ping edges in all segments of the image graph (cf. Section 2). In the absence of forks, every edge lies930

in a segment, and the size of such a signature is O(n). However, the signature may have size Θ(n2)931

in the presence of forks. When our algorithm eliminates forks from a polygon, it may create Θ(n2)932

dummy vertices and edges, which would again lead to a signature of size Θ(n2). For reversing the933

operations of the algorithm in Sections 3–5, we introduce a new combinatorial representation of934

size O(n) that maintains the total order of the edges in each bar that are outside of clusters.935

For n ≥ 3, let P = (p0, . . . , pn−1) be a weakly simple polygon with image graph G. Assume that936

the sober nodes of G are partitioned into a set C of disjoint clusters satisfying invariants (I1)–(I4)937

such that every bar is either entirely in a cluster or outside of all clusters. Let Q = (p′0, . . . , p
′
n−1)938

be a simple polygon such that |pi, p
′
i| < ε0 = ε0(P) for all i = 0, . . . , n− 1. We may assume that G939

has no vertical segments (so that the above-below relationship is defined between disjoint segments940

parallel to a bar). In each segment uv of G outside of clusters, the above-below relationship yields941

30

a total ordering over the edges of Q that contain uv. For each bar b outside of clusters, the total942

orders of the segments along b are consistent (since the above-below relationship between two edges943

is the same in every corridor). Consequently, the transitive closure of these total orders is a partial944

order over all edges in b. Consider a linear extension of such a partial order. The collection of945

these total orders for all bars in P is a bar-signature of Q. Since the linear extensions need not be946

unique, a polygon Q ∈ Φ(P) may have several bar-signatures.947

Given a bar-signature of a perturbation of P , we can (re)construct an approximate simple948

polygon Q′ as follows; refer to Figure 28. For every bar b = uv of G outside of clusters, let the949

volume vol(uv) be the number of edges of P that lie on b. Place vol(uv) parallel line segments,950

called lanes, between ∂Du and ∂Dv in the region Uε, ordered from bottom to top (the lanes contain951

the edges of Q′). For the i-th edge pq in the total order of b, let the corresponding edge in Q′ be the952

shortest edge connecting ∂Dp and ∂Dq in the i-th lane. For each cluster C(u), denote by R(u) the953

union of all disks Dv, v ∈ C(u), and all corridors between nodes in C(u). If C(u) contains only the954

node u, then R(u) = Du, but R(u) is always simply connected since C(u) induces a tree T [u]. For955

each cluster C(u), construct a noncrossing polyline matching, between the endpoints of the edges956

in ∂R(u), that connects the endpoints corresponding to a maximal subpath in T [u]. The edges in957

the lanes and the perfect matchings in the regions R(u) produce a polygon Q′. If the Euclidean958

diameter of each region R(u) is at most δ, then the Fréchet distance between P and Q′ is at most959

ε+ δ. Denote by Ψ(P) the set of all simple polygons that can be constructed in this manner from960

a bar-signature for some ε, 0 < ε < ε0.961

u

v

u
C(u)

R(u)

Figure 28: Construction of a simple polygon Q′ ∈ Ψ(P) from a bar-signature. Left: Bar uv of a simple
polygon obtained from an order compatible with the polygon shown in Figure 2(c). Right: maximal paths
of Q and Q′ inside clusters.

Spur elimination. If a given n-gon is weakly simple, our decision algorithm computes a polygon962

P ′′, which is ws-equivalent to P and represented implicitly by a cyclic sequence of benchmark nodes.963

Specifically, P ′′ is represented by an image graph G′′, a set G′′ of groups, a set B′′ of benchmark-964

to-benchmark paths, and for every group Guv ∈ G′′, a linear order of the paths in B′′ that cross the965

corridor Nuv between Du and Dv. Consequently, the decision algorithm provides a bar-signature966

for the weakly simple polygon P ′′.967

We show that, by reversing the steps of Algorithm spur-elimination(P ′,G′), we can compute a968

bar-signature of P ′ in O(n log n) time. If a group Guv has been split in some step 2c (cf. Section 5.3),969

we can construct an ordering of the benchmark-to-benchmark paths of Guv by concatenating the970

orders of B− and B+ (the sets of benchmark-to-benchmark paths of the resulting two groups).971

31

If Guv had spurs eliminated from u in some step 2b (cf. Section 5.2), we reverse each of the steps972

in the following manner. Recall that if a new group Gℓ−ℓ+ was created, then every path [t′1; t
′
2] ∈ B′

973

in that group was created from a concatenation of two paths [t1;u] and [t2;u]. Use the ordering974

of the paths in B′ to insert the paths [t1;u] and [t2;u] into the ordering of B so that they form975

nested spurs, i.e., if [t′1; t
′
2] is the topmost edge in B′, [t1;u] (resp. [t2;u]) should be the leftmost976

(resp., rightmost) path (without loss of generality, we use the orientation of Figure 26). Identify977

the leftmost path in the segment that connects ℓ and its right child and place all nested paths that978

created Gℓ−ℓ+ immediately to its left.979

If one or more spurs were created at a node z in an adjacent group, we can find the position980

of the edges incident to each spur in the ordering of the adjacent group. Using this order, we can981

identify the first path in Guv to the right of the edges incident to [z]. Then, immediately to the982

left of such a path, we can place the paths [t1;u; t1] that generated the spurs at z. The relative983

order of these paths is the same as the one obtained by reversing a spur-reduction, described in the984

proof of Lemma 4, and therefore produces a simple polygon. If a path [t1;u; t2] is simplified to [t1]985

(Step 1 with min(t1, t2) = t1 without loss of generality; or Step 2), we can proceed analogously to986

the reversal of a crimp-reduction (cf. Lemma 1) from a path [t1;u; t2; s] to [t1; s]. Identify the path987

[t1; s] in the ordering of B and replace it with the paths [t1;u], [u; t2], and [t2; s] in this order.988

Bar simplification. The bar-signature determines all segments between adjacent clusters. Using989

these orders, we can reverse the operation pin-extraction(u, v) assigning the same order for the990

edges in uv as the order of its adjacent benchmark-to-benchmark paths. V-shortcut is also trivially991

reversible by concatenating the order of segments that get merged.992

Updating the bar-signature when we reverse an L-shortcut operation is a bit more challenging.993

Determining the edge order in segments vw and vu1 can be trivially done by just concatenating the994

order of merged segments. But phase (1) introduces a crimp in some cross-chains, and the reverse995

operation, crimp-reduction, may require nontrivial reordering in the bar-signature. Suppose that996

P ′ is obtained from P after a crimp-reduction. The proof of Lemma 1 shows a straightforward way997

to obtain a bar-signature of a polygon in Ψ(P) given a polygon in Ψ(P ′). However, obtaining a998

bar-signature of Q′ ∈ Ψ(P ′) given Q ∈ Ψ(P) requires identifying Wtop and Wbot, which takes O(n)999

time.1000

In order to handle the reversal of phase (1) in O(1) time, we divide the signature of each bar1001

into pieces. Recall that the bar-simplification algorithm does not eliminate any cross-chains from1002

Db, and when bar-simplification terminates, only one-edge cross-chains remain in the interior of Db.1003

Let K denote the set of cross-chains of Db. The segments of the image graph that cross the ellipse1004

Db, and the bar-signatures of these edges yield a linear order (from left to right) of K; and the1005

cross-chains subdivide Db into |K|+ 1 regions. We maintain a linear order for the edges along the1006

bar in each such region (including the boundary of the region), and denote the set of these edges1007

in b by E1, . . . , E|K|+1.1008

We reverse phases (2) and (3) of L-shortcut(v, TR) as follows (applying reflections for other1009

L-shortcut operations if necessary). Assign the new edges [u1, u2] the highest lanes in the ordering1010

of the appropriate Ei, maintaining the relative order of affected paths. To reverse phase (1), first1011

notice that the three edges in the crimp [u1, u2, u1, u2] are part of a cross-chain, consequently they1012

appear in two consecutive subsets Ei and Ei+1. In the ordering of the left (resp., right) subset,1013

assign the new edge [u1, u2] to the highest (resp., lowest) position among the positions of the three1014

edges [u1, u2].1015

When all operations in the bar simplification algorithm have been reversed, we have to combine1016

32

the linear orders of E1, . . . , E|K|+1 into a total order, a common linear extension of these orders.1017

The intersection of two edge sets, Ei ∩Ej with i < j, is either disjoint or contains the edges of the1018

i-th cross-chain. The above-below relationship between the edges of each cross-chain is uniquely1019

determined by Lemma 2, and must be the same in each total order. Therefore, the union of the1020

total orders is a partial order for all edges in the bar. Since the ordering of each subset guarantees1021

that its paths can be realized without crossing, any linear extension of this partial order produces1022

a bar-signature of a simple polygon.1023

Preprocessing. The cluster formation and new-bar-expansion consist of subdivision operations that1024

do not influence the order of edges that define the bar-signature. If an edge [v, w] in a bar b is1025

subdivided into [v, v′, w], where [v′, w] is in Db, we can assign [v, w] to the same lane of [v′, w] in1026

the ordering of edges in b. The crimp-reduction operations can be reversed by making the three1027

edges that form a new crimp consecutive in the ordering, as in the proof of Lemma 1.1028

We have shown how to maintain bar-signatures while reversing the operations of our algorithms,1029

in time proportional to those operations. For every ε > 0, the bar-signatures yield a perturbation1030

of a weakly simple polygon P into a simple polygon Q ∈ Φ(P) with 2n vertices, where each vertex1031

[u] of P corresponds to two vertices of Q on the circle ∂Du. This completes the proof of Theorem 2.1032

7 Conclusion1033

We presented an O(n log n)-time algorithm for deciding whether a polygon with n vertices is weakly1034

simple. Weak simplicity of polygons has a natural generalization for planar graphs [6, Appendix1035

D]. We can define the weak embedding for graphs in terms of Fréchet distance. A graph H = (V,E)1036

can be considered a 1-dimensional simplicial complex. A drawing of H is a continuous map of H1037

to R
2. The Fréchet distance between two drawings, P and Q, of H is defined as distF (P,Q) =1038

infφ:H→H maxx∈H dist(P (φ(x)), Q(x)), where φ is an automorphism of H (a homeomorphism from1039

H to itself). Very recently, Fulek and Kynčl [13] gave a polynomial-time algorithm for deciding1040

whether a given drawing of a graph H is weakly simple, i.e., whether a straight-line drawing P of H1041

is within ε Fréchet distance from some embedding Q of H, for all ε > 0. Earlier, efficient algorithms1042

were known only in special cases: when the embedding is restricted to a given isotopy class (i.e.,1043

given combinatorial embedding) [12]; and when all n vertices are collinear and the isotopy class is1044

given [1].1045

We can also generalize the problem to higher dimensions. A polyhedron can be described as1046

a map γ : M → R
3, where M is a 2-manifold without boundary. A simple polyhedron is an1047

injective function. A polyhedron P is weakly simple if there exists a simple polyhedron within ε1048

Fréchet distance from P for all ε > 0. This problem can be reduced to origami flat foldability. The1049

results of [5] imply that, given a convex polygon P and a piecewise isometric function f : P → R
2

1050

(called crease pattern), it is NP-hard to decide if there exists an injective embedding of P in three1051

dimensions λ : P → R
3 within ε Fréchet distance from f for all ε > 0, i.e., if f is flat foldable.1052

Given P and f , we can construct a continuous function g : S2 → P mapping each hemisphere of S21053

to P (for a point x ∈ P , the inverse image g−1(x) is a set of two points in opposite hemispheres of1054

S
2). Then, the polyhedron γ = g ◦ f is weakly simple if and only if f is flat foldable. Therefore, it1055

is also NP-hard to decide whether a polyhedron is weakly simple.1056

Finally it is an open problem to find a linear-time algorithm for recognizing weakly simple1057

polygons. Chang et al. [6] conjectured that this is possible in the absence of spurs and forks.1058

33

Acknowledgements. Research by Akitaya, Aloupis, and Tóth was supported in part by the1059

NSF awards CCF-1422311 and CCF-1423615. Akitaya was supported by the Science Without1060

Borders program. Research by Erickson was supported in part by the NSF award CCF-1408763.1061

We thank Anika Rounds and Diane Souvaine for many helpful conversations that contributed to1062

the completion of this project. We thank the anonymous referees for many useful comments and1063

suggestions.1064

References1065

[1] Zachary Abel, Erik D. Demaine, Martin L. Demaine, David Eppstein, Anna Lubiw, and Ryuhei1066

Uehara, Flat foldings of plane graphs with prescribed angles and edge lengths, in Proc. 22nd1067

Symposium on Graph Drawing, LNCS 8871, Springer, 2014, pp. 272–283.1068

[2] Esther M. Arkin, Michael A. Bender, Erik D. Demaine, Martin L. Demaine, Joseph S.B.1069

Mitchell, Saurabh Sethia, and Steven S. Skiena, When can you fold a map?, Computational1070

Geometry: Theory and Applications 29 (2004), 23–46.1071

[3] Michael A. Bender, Richard Cole, Erik D. Demaine, Martin Farach-Colton, and Jack Zito. Two1072

simplified algorithms for maintaining order in a list, Proc. 10th Annual European Symposium1073

on Algorithms, LNCS 2461, Springer, 2002, pp. 152–164.1074

[4] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars, Computational Geom-1075

etry: Algorithms and Applications, third edition, Springer, Berlin, 2008.1076

[5] Marshall Bern and Barry Hayes, The complexity of flat origami, in Proc. 7th ACM-SIAM1077

Symposium on Discrete Algorithms, SIAM, 1996, pp. 175–183.1078

[6] Hsien-Chih Chang, Jeff Erickson, and Chao Xu, Detecting weakly simple polygons, in Proc.1079

26th ACM-SIAM Symposium on Discrete Algorithm, SIAM, 2015, pp. 1655–1670.1080

[7] Bernard Chazelle, Triangulating a simple polygon in linear time, Discrete & Computational1081

Geometry 6 (1991), 485–524.1082

[8] Richard Cole and Ramesh Hariharan, Dynamic LCA queries on trees, SIAM J. Comput. 34(4)1083

(2005), 894–923.1084

[9] Robert Connelly, Erik D. Demaine, and Günter Rote, Infinitesimally locked self-touching link-1085

ages with applications to locked trees, in Physical Knots: Knotting, Linking, and Folding of1086

Geometric Objects in R
3, American Mathematical Society, Povidence, RI, 2002, pages 287–311.1087

[10] Pier Francesco Cortese, Giuseppe Di Battista, Maurizio Patrignani, and Maurizio Pizzonia,1088

On embedding a cycle in a plane graph, Discrete Mathematics 309(7) (2009), 1856–1869.1089

[11] Andrea Francke and Csaba D. Tóth, A census of plane graphs with polyline edges, SIAM J.1090

Discrete Math. 31(2) (2017), 1174–1195.1091

[12] Radoslav Fulek, Embedding graphs into embedded graphs, preprint, arXiv:1608.02087, 2016.1092

[13] Radoslav Fulek and Jan Kynčl, Hanani-Tutte for approximating maps of graphs, preprint,1093

arXiv:1705.05243, 2017.1094

[14] Branko Grünbaum, Polygons: Meister was right and Poinsot was wrong but prevailed, Beiträge1095

zur Algebra und Geometrie 53(1) (2012), 57–71.1096

[15] Piotr Minc, Embedding of simplicial arcs into the plane, Topology Proceedings 22 (1997),1097

305–340.1098

34

arXiv:1608.02087
arXiv:1705.05243

[16] Ares Ribó Mor, Realization and Counting Problems for Planar Structures: Trees and Linkages,1099

Polytopes and Polyominoes, Ph.D. thesis, Freie Universität Berlin, 2006.1100

[17] Michael Ian Shamos and Dan Hoey, Geometric intersection problems, in Proc. 17th IEEE1101

Symposium on Foundations of Computer Science, 1976, pp. 208–215.1102

[18] Mikhail Skopenkov, On approximability by embeddings of cycles in the plane. Topology and1103

its Applications 134 (2003), 1–22.1104

[19] Daniel D. Sleator and Paul F. Dietz, Two algorithms for maintaining order in a list, in Proc.1105

19th ACM Symposium on Theory of Computing, 1987, pp. 365–372. Full version in Tech. Rep.1106

CMU-CS-88-113, Carnegie Mellon University, Pittsburgh, PA, 1988.1107

35

	Introduction
	Preliminaries
	Preprocessing
	Crimp reduction
	Node expansion
	Bar expansion
	Clusters

	Bar simplification
	Overview
	Primitives
	Operations
	Bar simplification algorithm

	Spur elimination algorithm
	Data structures
	Eliminating spurs from a root
	Splitting a group in two
	Analysis of the spur-elimination algorithm

	Perturbing weakly simple polygons into simple polygons
	Conclusion

