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Abstract

A graph G is well-covered if every minimal vertex cover of G is minimum, and a graph G
is well-dominated if every minimal dominating set of G is minimum. Studies on well-covered

graphs were initiated in [Plummer, JCT 1970], and well-dominated graphs were �rst introduced

in [Finbow, Hartnell and Nowakow, AC 1988]. Well-dominated graphs are well-covered, and both

classes have been widely studied in the literature. The recognition of well-covered graphs was

proved coNP-complete by [Chvátal and Slater, AODM 1993] and by [Sankaranarayana and Stewart,

Networks 1992], but the complexity of recognizing well-dominated graphs has been left open since

their introduction. We close this complexity gap by proving that recognizing well-dominated graphs

is coNP-complete. This solves a well-known open question (c.f. [Levit and Tankus, DM 2017] and

[Gözüpek, Hujdurovic and Milanič, DMTCS 2017]), which was �rst asked in [Caro, Sebő and Tarsi,

JAlg 1996]. Surprisingly, our proof is quite simple, although it was a long-standing open problem.

Finally, we show that recognizing well-totally-dominated graphs is coNP-complete, answering a

question of [Bahadır, Ekim, and Gözüpek, AMC 2021].
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1 Introduction

Minimum Dominating Set, Maximum Independent Set, and Minimum Vertex Cover are some

of the most important computational and combinatorial problems, having a number of “real world”

relevant applications and appearing in a wide range of natural situations. These problems cannot be

solved in polynomial time unless P = NP, since they were proved to be NP-hard in 1972 in the seminal

paper of Karp [2323]. In spite of this fact, a minimal dominating set, and a maximal independent set of a

graph can be found in polynomial time using a greedy algorithm. Also, the complement of a maximal

independent set is a minimal vertex cover, so the same applies for vertex covers.

In 1970, Plummer [2727] de�ned well-covered graphs as the class of graphs G where every minimal

vertex cover is also a minimum vertex cover. This is equivalent to requesting that all maximal inde-

pendent sets have the same cardinality. Therefore, well-covered graphs form a natural graph class for

which Maximum Independent Set and Minimum Vertex Cover can be solved in polynomial time.

In the 1990’s, the problem of recognizing a graph in the class of well-covered graphs, called

Well-Coveredness, was independently proved to be coNP-complete by Chvátal and Slater [1212] and

by Sankaranarayana and Stewart [3333]. In addition, structural characterizations or polynomial-time

algorithms for recognizing well-covered graphs were studied on claw-free graphs [2525, 3535], graphs

without large cycles [1717], block-cactus graphs [3131], bipartite graphs [3232], graphs with large girth [1818],

P4-sparse graphs [2424], planar, chordal, and circular arc graphs [2929], bounded degree graphs [1010], and

perfect graphs of bounded clique size [1414]. A survey on well-covered graphs due to Plummer from

1993 can be found in [2828]. In addition, Sankaranarayana and Stewart determined the complexity of

several problems on well-covered graphs [3333]. In 2011, Brown and Hoshino [99] showed that recognizing

well-covered graphs is coNP-complete even when restricted to the family of circulant graphs. In 2020,

Alves, Couto, Faria, Gravier, Klein, and Souza [11] studied the complexity of the Graph Sandwich

Problem for the property of being a well-covered graph whose vertex set can be partitioned into k
independent sets and into ` cliques for �xed integers k and `, i.e., well-covered graphs that are also

(k, `)-graphs. In 2021, Faria and Souza [1515] studied the complexity of Probe Problem for the property

of being a (k, `)-graph that is well-covered. Also, a polynomial-time algorithm for recognizing some

sparse-dense graphs that are well-covered can be found in [3434].

Regarding parameterized complexity, in 2018, Alves, Dabrowski, Faria, Klein, Sau, and Souza proved

that determining whether every minimal vertex cover of a given graph G has size k is �xed-parameter

tractable with respect to k, but the problem of determining whether every maximal independent set ofG
has size k is coW[2]-hard, considering k as parameter. This last result illustrates that when considering

the “wellness” variant of graph problems Π, there can be a leap in terms of complexity when analyzing

the resulting well version of Π. Recall that k-Independent Set is one of the canonical problems of the

class W[1] but its well version is hard for coW[2]. In 2019, Araújo, Costa, Klein, Sampaio, and Souza

showed that the problem of determining whether every minimal vertex cover of a graph G has size k
admits a kernel having O(k) vertices. In addition, parameterized algorithms for Well-Coveredness

considering other structural parameterizations can also be found in [22, 44].

Since every maximal independent set is a minimal dominating set, the well-covered graph class

is a superclass of the class of graphs whose all minimal dominating sets have the same size. Such

graphs were �rst studied in 1988 by Finbow, Hartnell, and Nowakow [1919] and are called well-dominated
graphs. The structure of well-dominated bipartite graphs and well-dominated graphs with no cycle

of length less than 5 were analyzed in [1919]. Also, structural characterizations of well-dominated

block graphs and unicyclic graphs were presented in [3636], and well-dominated chordal graphs were

characterized in [2929, 3737]. In 2011, a characterization of 4-connected, 4-regular, claw-free, well-dominated

graphs was given, see [2020]. In 2017, Levit and Tankus proved that every well-covered graph without

cycles of lengths 4 and 5 is well-dominated [2626]. In the same year, Gözüpek, Hujdurovic, Milanič [2121]

presented a characterization of well-dominated graphs with domination number two and show that

well-dominated graphs can be recognized in polynomial time in any class of graphs with bounded

domination number. In 2021, Anderson, Kuenzel, and Rall [33] showed that there are exactly eleven
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connected, well-dominated, triangle-free graphs whose domination number is at most 3, and Rall [3030]

gave a complete characterization of nontrivial direct products that are well-dominated.

Well-covered graphs G with no isolated vertices such that every maximal independent set has size

|V (G)|
2 form the class of very well-covered graphs. Similarly, one can de�ne the very well-dominated

graphs. Very well-covered graphs and very well-dominated graphs can be recognized in polynomial-time

due to their structural characterizations, see [1616, 3737].

Although well-dominated graphs have been widely studied from 1988 to nowadays, the complexity

status of recognizing well-dominated graphs was unknown until this current work. In this paper, we

show that recognizing well-dominated graphs is coNP-complete, solving a well-known open question

(c.f. [1111, 2121, 2626]). To the best of our knowledge, the �rst time the recognition of well-dominated

graphs was explicitly stated as an open question was in 1996 by Caro, Sebő and Tarsi [1111]. In [1111],

well-dominated graphs are called greedy instances of the Minimum Dominating Set problem.

Besides that, analogously to well-dominated graphs, in 1997, Hartnell and Rall [2222] initiated the

study of graphs all whose minimal total dominating sets are of the same size. Such graphs are called

well-totally-dominated graphs. In 2021, Bahadır, Ekim, and Gözüpek [55] showed among other results

that well-totally-dominated graphs having bounded total domination number can be recognized in

polynomial time. They left as an open question the complexity of recognizing well-totally-dominated

graphs. In this paper, we also answer this question, showing that the recognition of well-totally-

dominated graphs is coNP-complete.

We consider the following “wellness” problems related to domination and covering.

Instance: A graph G = (V,E).

Goal: Determine whether every minimal vertex cover of G has the same size.

Note: A vertex cover of G is a subset of V (G) intersecting all edges of G.

Well-Coveredness

Instance: A graph G = (V,E).

Goal: Determine whether every minimal dominating set of G has the same size.

Note: A dominating set of G is a subset S ⊆ V (G) such that each vertex

v ∈ V (G) \ S has a neighbor in S.

Well-Domination

Instance: A graph G = (V,E).

Goal: Determine whether whether every minimal total dominating set of G has the

same size.

Note: A total dominating set of G is a subset S ⊆ V (G) such that any vertex

of G has a neighbor in S, including vertices of S.

Well-Total Domination

Instance: An universe set U of elements, and a family F of subsets of elements of U .

Goal: Determine whether every minimal hitting set of (U ,F) has the same size.

Note: a hitting set of (U ,F) is a subset of U intersecting every set in F .

Well-Hitting Set

Instance: An universe set U of elements, and a family F of subsets of elements of U .

Goal: Determine whether every minimal set cover of (U ,F) has the same size.

Note: a set cover of (U ,F) is a subset S of F such that every element of U is

contained in at least one set in S .

Well-Set Cover
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Instance: An universe set U of elements, and a family F of subsets of elements of U .

Goal: Determine whether every minimal set cover and every minimal hitting set of

(U ,F) has the same size.

Well-Hitting-Set Cover

In this paper, we see that all these problems are coNP-complete.

2 Computational Complexity

First, observe that all problems studied in this work are in coNP, since any pair of minimal solutions

having di�erent sizes certi�es no-instances for them. In addition, the minimality of solutions for such

problems can easily checked in polynomial time. A similar general observation is contained in [1111].

Thus, we focus on coNP-hardness in this section.

Any Vertex Cover instance can be interpreted as a Hitting Set instance or a Set Cover in-

stance. Therefore, the following corollary holds as a consequence of the coNP-completeness of Well-

Coveredness [1212, 3333].

Corollary 1. Well-Hitting Set and Well-Set Cover are coNP-complete.

Recall that, for n > 1, any n-vertex connected bipartite graph G is well-dominated if and only if

every minimal dominating set of G has size
n
2 , because any maximal independent set is also a minimal

dominating set. Thus, bipartite well-dominated graphs are very well-dominated and so recognized in

polynomial time, since they are either a C4 or the corona product of a connected graph with a K1,

see [3737]. Contrastingly, the next result shows that Well-Total Domination on bipartite graphs is

unlikely to be polynomial-time solvable.

Theorem 2. Well-Total Domination on bipartite graphs is coNP-complete.

Proof. Let H = (U ,F) be a hypergraph (F ⊆ 2U ) such that each hitting set has at least two element.

Then de�ne G = (V,E) with

V = {s, t} ∪ {vu | u ∈ U} ∪ {wF | F ∈ F},
E = {{s, t}} ∪ {{s, vu} | u ∈ U} ∪ {{vu, wF } | u ∈ F and F ∈ F}.

Since t has only the neighbor s, vertex s has to be in each total dominating set.

Let Z be a minimal hitting set of H . De�ne D = {s} ∪ {vz | z ∈ Z}. We want to show that D is a

minimal total dominating set. As s ∈ D, the vertices in {t} ∪ {vu | u ∈ U} are dominated. Since Z is

not empty, vertex s is also dominated. Let F ∈ F . Then there exists some u ∈ Z ∩F . This implies there

exists a vertex vu ∈ D ∩N(wF ). Therefore, D is a total dominating set of G. As mentioned before, s
has to be in D for total domination reasons. Assume there exists a vu ∈ D such that D \ {vu} is a total

dominating set of G. This implies that for each wF ∈ N(vu), there exists a vyF ∈ (N(wF )∩D) \ {vu}.
Hence, for each F ∈ F with u ∈ F , there exists a yF ∈ F ∩ Z such that yF 6= u. This contradicts the

minimality of Z .

Let D be a minimal total dominating set of G. As mentioned before, s ∈ D. For each F ∈ F ,

N(wF ) ⊆ {vu | u ∈ U} ⊆ N(s) holds. Therefore, wF is in no minimal total dominating set. But since

wF is not dominated by s, there has to be at least one element in D ∩ {vu | u ∈ U}, implying that t
cannot be in a minimal total dominating set. Therefore, each minimal total dominating set of G is a

subset of {s} ∪ {vu | u ∈ U}. De�ne Z = {u | vu ∈ D}. As D is a total dominating set, for each

F ∈ F , wF is dominated. Thus, Z is a hitting set of H . Assume that Z is not minimal. This implies

the existence of a u ∈ Z such that for each F ∈ F having u ∈ F , there exists a zF ∈ (F ∩ Z) \ {u}.
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This implies that for each wF ∈ N(vu), there exists a vzF ∈ (N(wF )∩D) \ {vu}. This contradicts the

minimality of D.

Therefore, for each minimal hitting set Z of H , there exists a minimal total dominating set DZ of G
with |DZ | = |Z|+ 1. Conversely, for each minimal total dominating set D of G, there exists a minimal

hitting set ZD of H with |ZD| = |D| − 1. Thus, H = (U ,F) is a yes-instance of Well-Hitting Set if

and only if G is a yes-instance of Well-Total Domination. Therefore, by Corollary 11 the claim holds.

The argument would also hold if H is a Vertex Cover instance. In this case, all vertices in

{wF | F ∈ F} would have degree 2 and G[V \ {wF | F ∈ F}] is a tree. Therefore, G would be

a 2-degenerate graph. If we would de�ne {s} ∪ {vu | u ∈ U} as a clique, it would not change the

argument, either. This modi�cation turns G into a split graph. Hence, the following holds.

Corollary 3. Well-Total Domination is coNP-complete on split or 2-degenerate bipartite graphs.

This result on split graphs is interesting insofar, as Well-Domination on chordal graphs is solvable

in polynomial time, see [3737]. This indicates that Well-Total Domination tends to be a more di�cult

problem to solve than Well-Domination. However, next result shows that on general graphs the

Well-Domination problem is also coNP-complete.

Theorem 4. Well-Domination is coNP-complete.

Proof. Let (U ,F) be an instance of Well-Hitting Set, where U is the universe set and F is a family

of subsets of U . Let k be the size of a minimal hitting set of (U ,F).

Note that (U ,F) is a yes-instance of a Well-Hitting Set if and only if every minimal hitting set

of (U ,F) has size k. Since a minimal hitting set of (U ,F) can be obtained in polynomial time, without

loss of generality, we assume that k is given together with (U ,F) and we are asked if every minimal

hitting set of (U ,F) has size k.

From (U ,F) we construct a graph G as follows:

1. De�ne

V (G) = {r} ∪ U ∪ F1, F2 ∪ . . . ∪ Fk−1,

where U is a vertex set of size |U| such that each vu ∈ U represents a distinct element u of the

universe U , and each Fi is a vertex set of size |F| where each vertex vij of Fi represents a set

Sj ∈ F .

2. De�ne U and each vertex set Fi as cliques of G.

3. Add an edge between a vertex vij ∈ Fi and a vertex vu ∈ U if u ∈ Sj . Note that the subgraph

G[U ∪ Fi] is isomorphic to the bipartite incidence graph of (U ,F).

4. Add an edge between r and each vertex in U .

This completes the construction of G.

Now, we argue that every minimal hitting set of (U ,F) has size k if and only if G is well dominated.

Notice that G has a clique cover C of size k formed by the cliques (U ∪ {r}), F1, . . . , Fk−2, and

Fk−1. Also, any minimal dominating set of G that contains at least one vertex per clique of C , by

minimality, must contain exactly one vertex per clique (hence, it has size k). By taking r and one vertex

per clique Fi, we know that G has a minimal dominating set of size k. Besides, by construction, any

minimal dominating set of G contains either r or some vertex of U . Therefore, any minimal dominating

set of G having size di�erent from k must contain no vertex of F1 ∪ . . . ∪ Fk−1 ∪ {r}, but contain a

subset of vertices of U that dominate each Fi. Since G[U ∪ Fi] is isomorphic to the bipartite incidence

graph of (U ,F), it holds that G has a minimal dominating set of G having size di�erent from k (G is

not well-dominated) if and only if (U ,F) has a minimal hitting set of size di�erent than k (so, (U ,F) is

not a yes-instance of Well-Hitting Set).
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Finally, recall that Dominating Set and Total Dominating Set instances G can be interpreted as

Hitting Set or Set Cover instances where the elements of U are the vertices of G and the family F is

formed by the close neighborhood or the open neighborhood of the vertices of G, respectively. Also,

from the incidence bipartite graph of the resulting instance (U ,F), it is easy to see that the existence of

a hitting set of size k in (U ,F) also implies the existence of a set cover having the same size in (U ,F),

and vice versa. Hence, the following corollary holds as a consequence of the coNP-completeness of

Well-Domination and Well-Total Domination.

Corollary 5. Well-Hitting-Set Cover is coNP-complete.

Corollary 55 completes a P versus coNP-complete dichotomy regarding well domination problems

on bipartite instances. Let B be a bipartite graph having vertex set bipartition V (B) = VU ∪ VF . If

the question is if all minimal subsets of VU that dominate VF have the same size, we are dealing with

Well-Hitting Set. The converse would be Well-Set Cover. Also, one could consider, at the same

time, all minimal subsets of VU that dominate VF and all minimal subsets of VF that dominate VU
having all of them the same size, which is precisely the Well-Hitting-Set Cover problem. However,

if asked about all minimal subsets of VU ∪ VF that dominate VU ∪ VF having the same size then we are

dealing with Well-Domination on bipartite graphs, which is polynomial-time solvable, as previously

discussed. Therefore, the hardness result of Corollary 55 is tight concerning these constraints.

3 Conclusions

We have shown that well variations of a number of combinatorial properties is complete for the

complexity class coNP. One algorithmic interpretation of the well variations is that this de�nes a

graph class where a natural greedy strategy always �nds the optimum. One could actually relax this

requirement and ask, say, in the case of Maximum Independent Set, when the greedy heuristic that

always picks a vertex of smallest degree next achieves, say, a factor-2 approximation. (Recall that in

general, Maximum Independent Set does not allow polynomial-time constant-factor approximation

algorithms.) Alas, determining if a graph can be approximated by a factor of two in this way is again

a problem complete for coNP, as shown in [88]. It might be interesting to ask similar questions for

Minimum Dominating Set, for instance, seeing the �avor of results in this paper. In 1996, Caro, Sebő

and Tarsi [1111] had also pointed as a potentially interesting direction the study of instances where a

greedy algorithm always guarantees to provide a good approximation of the optimal goal.

There is also a further combinatorial way of looking at and possibly generalizing the questions

discussed in this paper. For instance, one could interpret the Well-Domination problem as asking

to decide, for a given graph G, if γ(G) = Γ(G), i.e., if the lower and upper domination numbers of G
coincide. Likewise, Well-Coveredness aks if ι(G) = α(G), i.e., if the independent domination number

and the independence number of G coincide. In this spirit, one could ask similar decision questions for

other parameters of the famous domination chain, as introduced in [1313]. For (a survey of) more recent

computational results, we refer to [66, 77]. As it is known that all these parameters can di�er arbitrarily,

the approximation questions discussed in the previous paragraph can be asked analogously for any

pair of parameters of the domination chain, or similarly for other graph parameters where inequality

relations are known.
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