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Abstract

Most gesture recognition systems analyze gestures intended

for communication (e.g. sign language) or for command

(e.g. navigation in a virtual world). We attempt instead to

recognize gestures made in the course of performing every-

day work activities. Specifically, we examine activities in

a wood shop, both in isolation as well as in the context of

a simulated assembly task. We apply linear discriminant

analysis (LDA) and hidden Markov model (HMM) tech-

niques to features derived from body-worn accelerometers

and microphones. The resulting system can successfully

segment and identify most shop activities with zero false

positives and 83.5% accuracy.

1 Introduction

Advances in technology are allowing computer support for

mobile applications. Delivery, maintenance, and manufac-

turing personnel are adopting mobile computing devices to

support their work. Similarly, consumers now have access

to mobile electronic tourist guides, communication devices,

and health and wellness monitoring devices.

A key issue in most such mobile applications is the ef-

fort required to devote to operating the devices. Whereas

in a desktop setting the computer is the focus of the user’s

attention, the user is forced to focus his attention on the

environment for many mobile applications. Accessing the

computer should require minimal cognitive and physical ef-

fort to prevent distracting the user from his primary task.

1.1 Context Sensitivity in Wearable Systems

In addressing the above issues wearable computers have re-

cently emerged as a promising new paradigm. To reduce

the physical effort required to operate the device they are

designed to be a permanently accessible part of the user’s

outfit, have mostly hands free input devices, and head-up

displays.

With respect to the cognitive load, many wearable sys-

tems focus on context sensitivity and proactiveness (e.g [1]).

The system should be aware of the user’s action and the ac-

tivities occuring in his environment. Based on this aware-

ness, the system can adapt its configuration, deliver infor-

mation to the user, or record interesting events without any

explicit user input [17]. For example, a maintenance sup-

port system could recognize what particular task is being

performed by the user and automatically display the rele-

vant manual pages on the system’s head-up display. The

wearable could also record the sequence of operations that

are being performed for later analysis or could warn the user

if an important step has been forgotten.

1.2 Recognition Approach

Past approaches by the authors have used head-mounted

cameras and computer vision techniques to identify user

context [17]. Although the visual signal contains much rel-

evant information about any given situation, vision–based

recognition has several disadvantages. For one, reliable lo-

calization and recognition of the relevant objects (hands,

machine parts, tools) in complex scenes is an open research

problem. In addition, computer vision techniques have diffi-

culty with the unstructured, moving backgrounds and vary-

ing lighting condition as is common to many wearable sce-

narios, and relevant parts of the scene might be out of view

or obstructed. Finally, video recognition is computationally

intensive, often requiring resources not available on a wear-

able system.

A recognition approach gaining popularity in the wear-

able community is simple sensors integrated in the user’s

outfit and in the user’s artifacts (e.g. tools, appliances, or

parts of the machinery) [10]. One of the key aspects of

this approach is the recognition and tracking of postures and

gestures using motion sensors attached to appropriate loca-

tions on the user’s limbs. Initial experiments have shown

that many activities can be well identified through such

analysis[8]. Another important source of information about



environmental activity is sound. It has been shown that in

many situations ambient sound analysis can be used to dis-

tinguish between different settings, activities, and situations

[4].

1.3 Paper Aims and Contributions

This paper is part of our work aiming to develop a reli-

able context recognition methodology based on the above

approach. It presents a novel way of combining motion

sensor-based gesture recognition with sound data from dis-

tributed microphones. In particular we exploit intensity dif-

ferences between microphones on the wrist of the dominant

hand and on the chest to identify relevant actions performed

by the user’s hand.

In the paper we focus on tracking user activity during as-

sembly or maintenance tasks. Such tasks are among the

most important applications of wearable computing (e.g.

[2, 7]) and could significantly benefit from context sensi-

tivity. At the same time these tasks are well structured and

limited to a reasonable number of often repetitive actions.

In addition, machines and tools typical to a workshop envi-

ronment generate distinct sounds. Therefore, these activi-

ties are well suited for a combination of gesture and sound–

based recognition.

This paper describes our approach and the results pro-

duced in an experiment performed on an assembly task in

a wood workshop. We demonstrate that simple sensors

placed on the user’s body can reliably select and recognize

user actions during a workshop procedure.

1.4 Related Work

Acceleration–based activity recognition has been studied by

different research groups [11, 14, 19]. However all of the

above work focused on recognizing comparatively simple

activities (walking, running, and sitting). Sound based sit-

uation analysis has been investigated by Pelton et al. and

in the wearables domain by Clarkson and Pentland [12, 5].

Intelligent hearing aids have also exploited sound analysis

to improve their performance [3].

2 Experimental Setup

Performing initial experiments on live assembly or mainte-

nance tasks is unadvisable due to the cost and safety con-

cerns and the ability to obtain repeatable measurements un-

der experimental conditions. As a consequence we have de-

cided to focus on an “artificial” task performed at the work-

bench of wood workshop of our lab (see Figure 1). The task

consisted of assembling a simple object made of two pieces

of wood and a piece of metal. The task required 8 process-

ing steps using different tools and including walking and

Figure 1: Left: the wood workshop with 1) grinder, 2) drill,

3)file and saw, 4) vice, and 5) cabinet with drawers. Right:

The sensor type and placement is identical with the one used

in our experiment: 1,4: microphone, 2,3 and 5: 3-axis ac-

celeration sensors.

other gestures similar to an assembly task in a real world

setting.

2.1 Procedure

No action

1 take the wood out of the drawer

2 put the wood into the vice

3 take out the saw

4 saw

5 put the saw into the drawer

6 take the wood out of the vice

7 drill

8 get the nail and the hammer

9 hammer

10 put away the hammer, get the driver and the screw

11 drive the screw in

12 put away the driver

13 pick up the metal

14 grind

15 put away the metal, pick up the wood

16 put the wood into the vice

17 take the file out of the drawer

18 file

19 put away the file, take the sandpaper

20 sand

21 take the wood out of the vice

Table 1: Steps of workshop assembly task.

The assembly sequence consists of sawing a piece of

wood, drilling a hole in it, grinding a piece of metal, at-

taching it to the piece of wood with a screw, hammering in

a nail to connect the two pieces of wood, and then finish-

ing the product by smoothing away rough edges with a file



and a piece of sandpaper. The wood was fixed in the vice

for sawing, filing, and smoothing (and removed whenever

necessary). The test subject moved between areas in the

workshop between steps. Also, whenever a tool or an ob-

ject (nail screw, wood) was required, it was retrieved from

its drawer in the cabinet and returned after use.

The exact sequence of actions is listed in Table 1. The

task was to recognize all tool-based activities. Tool-based

activities excludes drawer manipulation, user locomotion,

and clapping (a calibration gesture). The experiment was

repeated 10 times in the same sequence to collect data for

training and testing. For practical reasons, the individual

processing steps were only executed long enough to obtain

an adequate sample of the activity. This policy did not re-

quire the complete execution of any one task (e.g. the wood

was not completely sawn), allowing us to complete the ex-

periment in a reasonable amount of time. However this pro-

tocol influenced only the duration of each activity and not

the manner in which it was performed.

2.2 Data Collection System

The data was collected using the ETH PadNET sensor net-

work [8] equipped with 3 axis accelerometer nodes and two

Sony mono microphones connected to a body worn com-

puter. The position of the sensors on the body is shown in

Figure 1: an accelerometer node on both wrist and on the

upper arm of the right hand and a microphone on the chest

and on the right wrist (the test subject was right handed).

As can be seen in Figure 1 each PadNET sensor node

consist of two modules. The main module incorporates

a MSP430149 low power 16-Bit mixed signal micropro-

cessor (MPU) from Texas Instruments running at 6 MHz

maximum clock speed. The current module version reads

out up to three analog sensor signals including amplifica-

tion and filtering and handles the communication between

modules through dedicated I/O pins. The sensors them-

selves are hosted on an even smaller ’sensor-module’ that

can be either placed directly on the main module or con-

nected through wires. In the experiment described in this

paper sensor modules were based on a 3-axis accelerom-

eter package consisting of two ADXL202E devices from

Analog Devices. The analog signals from the sensor were

lowpass filtered ( �✂✁☎✄✝✆✟✞✡✠☛✠✌☞✎✍✂✏✂✑✓✒ ) and digitized with 12Bit

resolution using a sampling rate of 100Hz.

3 Recognition

3.1 Acceleration Data Analysis

Figure 2 shows a segment of the acceleration data collected

during the experiment. The segment includes sawing, re-

moving the wood from the vice, and drilling. The user ac-

cesses the drawer two times and walks between the vice and

the drill. Clear differences can be seen in the acceleration

signals. For example, sawing clearly reflects a periodic mo-

tion. By contrast, the drawer access (marked as 1a and 1b in

the figure) shows a low frequency “bump” in acceleration.

This bump corresponds to the 90 degree turns of the wrist

as the user releases the drawer handle, retrieves the object,

and grasps the handle again to close the drawer.

Given the data, time series recognition techniques such

as hidden Markov models (HMMs) [13] should allow the

recognition of the relevant gestures. However, a closer anal-

ysis reveals two potential problems. First, not all relevant

activities are strictly constrained to a particular sequence of

motions. While the characteristic motions associated with

sawing or hammering are distinct, there is high variation in

drawer manipulation and grinding. Secondly, the activities

are separated by sequences of user motions unrelated to the

task (e.g the user scratching his head). Such motions may

be confused with the relevant activities. We define a “noise”

class to handle these unrelated gestures.

3.2 Sound Data Analysis

Considering that most gestures relevant for the assem-

bly/maintanance scenario are associated with a distinct

sounds, sound analysis should help to address the problems

described above. We distinguish between three different

types of sounds:

1. Sounds made by a handtool: - Such sounds are directly

correlated with user hand motion. Examples are saw-

ing, hammering, filing, and sanding. These actions are

generally repetitive, quasi–stationary sounds (i.e. rel-

atively constant over time - such that each time slice

on a sample would produce an identical spectrum over

a reasonable length of time). In addition these sounds

are much louder than the background noise (dominant)

and are likely to be much louder at the microphone

on the user’s hand than on his chest. For example,

the intensity curve for sanding (see Figure 2 top right)

reflects the periodic sanding motion with the minima

corresponding to the changes in direction and the max-

ima coinciding with the maximum sanding speed in the

middle of the motion. Since the user’s hand is directly

on the source of the sound the intensity difference is

large. For other activities it is smaller, however in most

cases still detectable.

2. Semi-autonomous sounds: These sounds are initiated

by user’s hand, possibly (but not necessarily) remain-

ing close to the source for most of the sound duration.

This class includes sound produced by a machine, such

as the drill or grinder. Although ideal quasi-stationary

sounds, sounds in this class may not necessarily be
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Figure 2: Left: example accelerometer data from sawing and drilling. Right top: audio profile of sanding from wrist and

chest microphones. Right bottom: clustering of activities in LDA space

dominant and tend to have a less distinct intensity dif-

ference between the hand and the chest (for example,

when a user moves their hand away from the machine

during operation).

3. Autonomous sounds: These are sounds generated by

activities not driven by the user’s hands (e.g loud back-

ground noises or the user speaking).

Obviously the vast majority of relevant actions in assembly

and maintanance are associated with hand tool sounds and

semi–autonomous sounds. In principle, these sounds should

be easy to identify using intensity differences between the

wrist and the chest microphone. In addition, if extracted ap-

propriately, these sounds may be treated as quasi-stationary

and can be reliably classified using simple spectrum pattern

matching techniques.

The main problem with this approach is that many ir-

relevant actions are also likely to fall within the definition

of handtool and semi–autonomous sound. Such actions

include scratching or putting down an object. Thus, like

acceleration analysis, sound–based classification also has

problem distinguishing relevant from irrelevant actions and

will produce a number of false positives.

3.3 Recognition Methodology

Neither acceleration nor sound provide enough information

for perfect extraction and classification of all relevant activ-

ities; however, we hypothesize that their sources of error are

likely to be statistically distinct. Thus, we develop a tech-

nique based on the fusion of both methods. Our procedure

consists of three steps:

1. Extraction of the relevant data segments using the in-

tensity difference between the wrist and the chest mi-

crophone. We expect that this technique will segment

the data stream into individual actions (including many

actions we will model as noise).

2. Independent classification of the actions based on

sound or acceleration. This step will yield imperfect

recognition results by both the sound and acceleration

subsystems.

3. Removal of false positives. While the sound and ac-

celeration subsystems are each imperfect, when their

classifications of a segment agree, the result may be

more reliable (if the sources of error are statistically

distinct).

4 Isolated Activity Recognition

As an initial experiment, we segment the activities in the

data files by hand and test the accuracy of the sound and

acceleration methods separately.



4.1 Sound Recognition

4.1.1 Method

The basic classification scheme operates on individual

sound segments of length �✂✁ . The approach follows a three

step process: feature extraction, dimensionality reduction,

and the actual classification.

The features used are the spectral components of each �✄✁
obtained by Fast Fourier Transformation (FFT). This pro-

duces ☎ ☞ ✠✂✆✝✟✞ �✠✁ dimensional feature vectors.

Rather than attempting to classify such large ☎ -

dimensional vectors directly, Linear Discriminant Analysis

(LDA)[6] is employed to derive an optimal projection of the

data into a smaller, ✡ dimensional feature space (where M

is the number of classes). In the “recognition phase”, the

LDA transformation is applied to the data segment under

test to produce the corresponding ✡☞☛✍✌ dimensional fea-

ture vector.

Using a labeled training-set, class means are calculated

in the ✡✎☛✏✌ dimensional space. Classification is performed

simply by choosing the class mean which has the minimum

Euclidean distance from the test feature vector (see Figure

3 bottom right).

4.1.2 Intensity Analysis

Making use of the fact that signal intensity is inversely pro-

portional to the square of the distance from its source, the

ratio of the two intensities ✑ ✁✓✒✕✔✗✖ ✆✕✘✙✑ ✁✛✚✢✜ ✖ ✆ is used as a mea-

sure of absolute distance of source from the user. Assuming

the sound source is distance ✣ from the wrist microphone

and ✣✥✤✧✦ from the chest, the ratio of the intensities will be

proportional to

✑★✁✓✒✄✔✩✖ ✆
✑ ✁✛✚✢✜ ✖ ✆✫✪

✬ ✣✥✤✟✦✙✭ ✝
✣ ✝ ☞ ✣ ✝ ✤✯✮✙✣✰✦✱✤✧✦ ✝

✣ ✝ ☞✲✌✳✤ ✮✙✦✣ ✤
✦ ✝
✣ ✝

When both microphones are separated by at least ✦ , any

sound produced a distance ✣ ( where ✣✵✴✶✴✷✦ ) from the

user will bring this ratio close to one. Sounds produced near

the chest microphone (e.g. the user speaking) will cause the

ratio to approach zero whereas any sounds close to the wrist

mic will make this ratio large.

Sound extraction is performed by sliding a window ✸ ✔✗✹
over the � ✖ Hz resampled audio data. On each iteration,

the signal energy over ✸✺✔✗✹ for each channel is calculated.

For these windows, the difference in ratio ✑✻✁✓✒✄✔✗✖ ✆ ✘✼✑ ✁✛✚✢✜ ✖ ✆ and

its reciprocal are obtained, which are then compared to an

empirically obtained threshold �✂✽✾✔✗✹ .
The difference ✑✿✁✓✒✕✔✗✖ ✆ ✘✙✑ ✁✛✚✢✜ ✖ ✆ ☛✧✑ ✁✛✚✢✜ ✖ ✆ ✘✼✑★✁✓✒✄✔✩✖ ✆ provides a

convenient metric for thresholding - zero indicates a far off

(or exactly equidistant) sound while above or below zero

values indicate a sound closer to the wrist or to the chest

mic respectively.

Sound LDA IA+LDA maj(IA+LDA)

Hammer 96.79 98.85 100

Saw 92.71 92.98 100

Filing 69.68 81.43 100

Drilling 99.59 99.35 100

Sanding 93.66 92.87 100

Grinding 97.77 97.75 100

Screwing 91.17 93.29 100

Vice 80.10 81.14 100

Overall 90.18 92.21 100

Table 2: Isolated Recognition Accuracy Per Sound (in %)

for LDA alone, LDA with IA preselection and majority de-

cision.

4.2 Results

In order to analysis the performance of the LDA on isolated

classes, individual examples of each class were partitioned

from each of the 10 experiments, providing 10 examples

of each class. Eight examples of each class were used for

training while testing on the remaining two examples.

Earlier work[15] cited �❀✖ =5kHz and �✂✁ =0.05 seconds

(256 points) as optimal parameters for general purpose

sound recognition tasks. In this task, it was found that

recognition rates were improved using a larger � ✁ =0.1; at

the same time � ✖ could be reduced to 2kHz without any no-

table adverse effects.

With these parameters, a sliding window � ✁ LDA classi-

fication was run directly over all the class partitioned sam-

ples. This process returned an overall recognition rate of

90.19%. The individual class results are given in the first

column of Table 2. We next used intensity analysis to select

only the samples over a given threshold to pass to the LDA

procedure. This technique resulted in a slightly higher accu-

racy of 92.21% as shown in the second column of Table 2.

The third column of Table 2 shows a variation of this tech-

nique where we slide a window over the data and classify

the data at each window segment. A majority decision over

the window segments was used to determine the overall la-

bel for a given isolated activity. This technique resulted in

100% recognition over the test data.

Figure 3: HMMs topologies.



4.3 Accelerometer–Based Activity Recogni-

tion

Hidden Markov models (HMMs) are probabilistic models

used to represent non-deterministic processes in partially

observable domains and are defined over a set of states, tran-

sitions, and observations. Details of HMMs and the respec-

tive alogrithms are beyond the scope of this paper but may

be found in Rabiner’s tutorial on the subject [13].

Hidden Markov models have been shown to be robust

for represention and recognition of speech [9], handwriting

[16], and gestures [18]. HMMs are capable of modelling

important properties of gestures such as time variance (the

same gesture can be repeated at varying speeds) and repe-

tition (a gesture which contains a motion which can be re-

peated any number of times). They also handle noise due

to sensors and imperfect training data by providing a prob-

abilistic framework.

For gesture recognition, a model is trained for each of the

gestures to be recognized. In our experiment, the set of ges-

tures includes saw, drill, screw, hammer, sand, file, drawer,

vice, and clap. Once the models are trained, a sequence of

features can be passed to a recognizer which calculates the

probability of each model given the observation sequence

and returns the most likely gesture. For our experiments,

the set of features consists of readings from the accelerom-

eters positioned at the wrist and at the elbow. This provides

6 total feature values which are then normalized to sum to

one and collected at approximatedly 93 Hz.

We found that most of the workshop activities typically

require only simple HMMs for modelling. For file, sand,

saw, and screw, a 5 state model with 1 skip transition and

1 loopback transtion suffice because they consist of simple

repetitive motions. Drill is better represented using a 7 state

model. Clapping, drawer, and grinding are slightly more

complex and required 9 state models. The vice is unique in

that it has two seperate motions, opening and closing. Thus

a 9 state model is used with two appropriate loopbacks to

correctly represent the gesture. These models were selected

through inspection of the data, an understanding of nature

of the activities, and experience with HMMs.

4.4 HMM Isolation Results

For this project, a prototype of the Georgia Tech Gesture

Recognition Toolkit was used to train the HMMs and for

recognition. The Toolkit is an interface to the HTK toolkit

[20] designed for training HMMs for speech recognition.

HTK handles the algorithms for training and recognizing

the Hidden Markov Models allowing us to focus primarily

on properly modelling the data.

To test the performance of the HMMs in isolation, the

shop accelerometer data was partitioned by hand into 255

individual examples of gestures then used as a training set

for the HMMs. Accuracy of the system was calculated by

performing leave-one-out validation by iteratively reserving

one sample for testing and training on the remaining sam-

ples for each sample. The HMMs were able to correctly

classify 93.33% of the gestures over data collected from the

shop experiments. While this method has slightly more er-

rors than the LDA method in isolation, we continue to pur-

sue it for use in the continuous recognition case.

5 Continuous Recognition

Recognition of gestures from a continuous stream of fea-

tures is difficult. However, we can simplify the problem

by partitioning the continuous stream into segments and at-

tacking the problem as isolated recognition. This approach

requires a method of determining a proper partitioning of

the continuous stream. We take advantage of the intensity

analysis described in the previous section as a technique for

identifying appropriate segments for recognition.

Since neither LDA nor the HMM are perfect at recog-

nition, and each is able to recognize a different set of ges-

tures well due to working in different feature space, it is

advantagous to compare their independant classifications of

a segment. If the classification of the segment by the HMMs

matches the classification of the segment by the LDA, the

classification can be believed. Otherwise, the noise class

can be assumed, or perhaps a decision appropriate to the

task can be taken (such as requesting additional information

from the user).

Thus, the recognition is performed in three main stages:

1) Extracting potentially interesting partitions from the con-

tinuous saquence, 2) Classifying these individually using

the LDA and HMMs, and 3) Combining the results from

these approaches.

5.1 LDA for partitioning

For classification, partitioned data needs to be arranged in

continuous sections corresponding to a single user activity.

Such partitioning of the data is obtained in two steps: First,

LDA classification is run on segments of data chosen by

the IA. Those segments not chosen by intensity analysis are

returned with classification zero. (In this experiment, clas-

sifications are returned at the same rate as accelerometer

features); Secondly, these small window classifications are

further processed by a larger (several seconds) majority de-

cision window, which returns a single result for the entire

window duration.

This partitioning mechanism helps reduce the complex-

ity of continuous recognition. It will not give accurate

bounds on the beginning and end of a gesture. Instead, the

goal is to provide enough information to generate context at

a general level; ie., “The user is hammering” as opposed to



Gesture HMM LDA HMM + LDA

C I D S Acc C I D S Acc C I D S Acc P(G � Class)

Hammer 9 3 0 0 66.7 9 1 0 0 88.9 9 0 0 0 100 1.00

Saw 9 0 0 0 100 9 1 0 0 88.9 9 0 0 0 100 1.00

Filing 9 0 0 1 100 9 7 0 1 23.2 8 0 2 0 80 1.00

Drilling 9 4 0 0 55.6 9 1 0 0 88.9 9 0 0 0 100 1.00

Sanding 8 0 0 1 88.9 9 8 0 0 11.1 8 0 1 0 88.9 1.00

Grinding 11 11 0 0 0 9 0 0 2 81.8 9 0 2 0 81.8 1.00

Screwing 4 0 0 5 44.4 9 75 0 0 -733.3 4 0 5 0 44.4 1.00

Vice 41 0 0 2 95.3 34 1 2 7 76.6 35 0 8 0 81.3 1.00

Overall 100 18 0 9 72.5 97 94 2 10 2.8 91 0 18 0 83.5 1.00

Table 3: Continuous recognition accuracy per gesture (Correct ✁ Insertions ✁ Deletions ✁ Substitutions ✁ Accuracy) and proba-

bility of gesture given classification P(G ✁ Class)

“A hammering gesture occured between sample 1500 and

2300.” The system is tolerant of, and does not require, per-

fect alignment between the partitions and the actual gesture.

The example alignment shown in Figure 5 is acceptable for

our purposes.

5.2 LDA Results

Analysis of the data was performed to test the system’s abil-

ity to reconstruct the sequence of gestures in the shop exper-

iments based on the partitioning and recognition techniques

described to this point. Figure 4 shows an example of the

automated partitioning versus the actual events. For this

analysis of the system, the non-tool gestures, drawer and

clapping, were considered as part of the noise class. Af-

ter applying the parition scheme, a typical shop experiment

resulted in 25-30 different partitions.

5.3 HMM Classification

Once the partitions are created by the LDA method, they are

passed to set of HMMs for further classification. For this

experiment, the HMMs are trained on individual gestures

from the shop experiments using 6 accelerometer features

from the wrist and elbow. Ideally, the HMMs will return

a single gesture classification for each segment. However,

the segment sometimes includes the beginning or end of the

next or previous gesture respectively, causing the HMMs

to return a sequence of gestures. In such cases, the ges-

ture which makes up the majority of the segment is used as

the classification. For example the segment labelled “B” in

Figure 5 may return the sequence “hammer vice” and would

then be assigned as the single gesture “vice.”

5.4 Combining LDA and HMM classification

For each partitioned segment, the classification of the LDA

and HMM methods were compared. If the classifications

matched, that classification was assigned the segment. Oth-

erwise, the noise class was returned.
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Figure 4: LDA partitions versus ground truth
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Figure 5: Detailed example of LDA partitioning

Table 3 shows the number of correct classifications (C),

insertions (I), deletions (D), and substitutions(S) for the

HMMs, the LDA, and the combination. Insertions are de-

fined as noise gestures identified as a tool gesture. Deletions

are tool gestures recognized as noise gestures. A substitu-

tion for a gesture occurs when that gesture is incorrectly

identified as a different gesture. In addition, the accuracy of

the system is calculated based on the following metric:

✂☎✄✝✆✞✆✠✟☛✡✌☞✍✆✠✎ ☞
✏✒✑ ✡✓✡✌✔✓✆ � ☛ ✑✖✕✘✗ ✔✙✡ �✛✚ ✑ ✕✘✗✜ ✑ � ☞✣✢✥✤✦☞✣✧☎★✩✢✪✔ ✗

The final column reports the probability of a gesture hav-

ing occurred given that the system reported that gesture.



The accuracies for the HMMs and the LDA are calcu-

lated as well as for the combined method. Clearly, the

HMMs and LDA each perform better than the other on var-

ious gestures and tended to err in favor of a particular ges-

ture. When incorrect, LDA tended to report the “screw”

gesture. Similarly, the HMMs tended to report “grinding”

or “drilling.” Comparing the classification of the LDA and

the HMMs help eliminate the false positives and improve

the performance of the system. The data shows that the

comparison method performed better than the HMMs and

the LDA in many cases and improved the accuracy of the

system.

Although the accuracy of the system in general is not

perfect, it is important to note that the combined HMM +

LDA method results in no insertions or substitutions. This

result implies that when the system returns a gesture, that

gesture, in fact, did occur. While the system still misses

some gestures, a user interface designer can know that the

system did not return a false positive and be confident in

his use of context. This attribute is especially important

in the ubiquitous computing and wearable fields which are

sensitive to such errors.

6 Conclusion

We have shown a system capable of segmenting and rec-

ognizing typical user gestures in a workshop environment.

The system uses wrist and chest worn microphones and

accelerometers and leverages the feature attributes of each

modality to improve the system’s performance. The system

demonstrated perfect performance in isolated gesture test-

ing and a zero false positive rate in the continuous case. In

the future, we hope to apply these promising techniques for

recognizing everyday gestures in more general scenarios.
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