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Abstract: In deepwater-drilling engineering, it is necessary to disconnect the bottom equipment
of the lower marine-riser package from the blowout preventer when encountering multi-hazard
environmental factors. In order to reduce the impact of recoil on the drilling platform after the sudden
disconnection of the riser, in this paper, an optimal guaranteed cost H∞ recoil control problem is
considered for the drilling riser. First, a three-element mass-damper-spring deepwater-drilling riser
model subject to fluid discharge and heave motion of offshore platform is given. Then, an optimal
guaranteed cost H∞ controller (OGCHC) is designed to suppress the recoil response of the drilling
riser, and the sufficient conditions for the asymptotic stability of the closed-loop system are derived.
Third, it is found through simulation results that the designed OGCHC can reduce the recoil response
effectively. In order to further analyze the advantages of the OGCHC, the performance indices of the
riser without active-recoil control and with optimal control (OC) and OGCHC are compared. It is
shown that the average response amplitudes of three mass blocks of the riser are almost the same,
while the control cost by the OGCHC is less than that by the OC. Further, under the designed recoil
control, no riser compression occurs, thereby ensuring the safety of the riser system.

Keywords: multi-hazard; drilling riser; mud discharge; recoil control; guaranteed cost control;
vibration control

1. Introduction

Typhoon, surge, wave, and earthquake generally put forward strict requirements for
the safety of engineering structures [1–3]. For example, ocean current, wind, earthquake,
and wave act on the deep-sea-drilling equipment for a long time, potentially leading to
economic losses and pipe damage [4,5]; therefore, the drilling riser is a weak connecting
part for deepwater oil and gas exploration between the submarine wellhead and the drilling
ship [6–8]. The components of a deepwater-drilling riser system mainly include the drilling
platform, tensioner, split joint, single riser, buoyancy joint, filling valve, lower marine-riser
package (LMRP), blowout preventer (BOP), etc. In case of extreme harsh environments or
dynamic-positioning failure, emergency disconnection of the LMRP and BOP is required to
prevent damage to the drilling vessel [9,10].

During the disconnection operation, the deepwater-drilling riser will move upward
rapidly under the tension of the tensioner and the elastic potential energy, resulting in recoil
movements and endangering the safety of the drilling platform; therefore, many scholars
have conducted recoil analysis on the riser, see [11–17], and the references therein. It is
known that during riser emergency disconnection, the external load in the recoil process of
the deepwater-drilling riser mainly comes from viscous resistance caused by discharging
drilling fluid, and more and more research results concerning recoil response have been
reported. In [18], the auxiliary program is used to simulate the mud column discharging
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process without the filling valve. Simulation results show that the auxiliary program and
the RESTEN program achieve good agreement in mud kinematic applications. In [11],
an one-dimensional finite volume model is proposed to calculate the fluid pressure and
velocity. In [19], a slug fluid model is established for seawater injection by the refilled valve.
Based on this model, the drilling mud discharge model with a whole fluid column model
is developed, where seawater and mud are considered as a whole for force analysis [20].
In [21], the friction force calculation method is introduced for slug fluid model and whole
fluid column model. In particular, based on the whole fluid column model and the action
force of the fluid on the riser inner wall, the drilling fluid discharge is analyzed in [15],
where the drill pipe is also considered. In [22], by comparing the existing drilling mud
discharge models, a more accurate three-dimension computational fluid dynamics model
is developed. This shows that, to reflect practical response of drilling riser, a more accurate
model of the drilling mud discharge process is required.

In recent decades, much more research attention mainly focuses on riser recoil analysis,
while there are relatively few studies with regard to the riser recoil control of the drilling
riser. In [23], a recoil control model of the drilling riser is proposed first, and then the linear
quadratic optimal control method is proposed to control the riser recoil displacement. It is
found that, under the designed optimal controller, the recoil response of the drilling riser
has been reduced effectively. Note that, during the design of the optimal controller for the
drilling riser, the effects of the mud discharge on the riser are not considered specifically. In
fact, the classic linear quadratic optimal controller design is generally based on the known
exact dynamic model, and it is not always effective to cope with uncertain systems subject
to external disturbances. In other words, there still exists room for further reduction in the
recoil response of the riser, which motivates our study in this paper.

Due to the existence of external disturbances and parameter perturbations, the quadratic
performance index of the system with an optimal controller may generally not be mini-
mized. In this case, one of the feasible ways is to resort to the guaranteed cost optimal
control, by which a minimum upper bound of the performance index of the system may be
possible. As a result, the guaranteed cost optimal control H∞ has attracted much attention
and applied in many practical applications, see references [24–30], and therein. Inspired by
the above studies, in this paper, an optimal guaranteed cost H∞ control scheme is designed
to control the recoil displacement of the riser subject to friction force of fluid discharge and
heave motion of the offshore platform.

The main contributions of this study are given as follows:

(i) An optimal guaranteed cost H∞ recoil control scheme is proposed for the drilling riser
system in the event of emergency disconnection. Based on this scheme, the minimum
upper bound of the performance index of the riser subject to friction force of drilling
fluid discharge as well as heave motion of platform can be achieved.

(ii) The existence conditions of the optimal guaranteed cost H∞ recoil controller are
derived, and the design algorithm of the recoil controller of the riser is presented. The
effectiveness and advantages of the proposed active-recoil control scheme are verified
through simulation results.

2. Problem Formulation

In this section, the whole fluid column model [20,23] of fluid discharge is introduced
to compute the friction force of the fluid discharge on the riser. In the two cases of constant
and time-varying friction coefficients, the friction force of the fluid discharge is analyzed
briefly. Then, a three-element mass-damper-spring recoil control system of the drilling riser
system subject to platform heave motion and fluid discharge is given. Third, an optimal
guaranteed cost H∞ recoil control problem of the drilling riser is formulated.

2.1. Whole Fluid Column Model of Fluid Discharge and Heave Motion Model of Platform

It is known that the viscous resistance of fluid discharge and the heave motion of
platform have obvious effects on the recoil response of the riser. In this paper, the whole
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fluid column model of fluid discharge is utilized to analyze the influence on the recoil
response of the drilling riser. As stated in [20,23], the characteristics of the fluid discharge
process can be described by

ρwgAs(Lr − Lm) + ρmgAsLm − ρwgAsLr − Fm − Fw − Fd

= [ρw As(Lr − Lm) + ρm AsLm]a (1)

where 
Fm =

fm Asρmv2Lm

2Ds
, Fd =

ρm Asv2

2

Fw =
fw Asρwv2(Lr − Lm)

2Ds

(2)

where ρw and ρm are the densities of seawater and drilling mud, respectively, kg/m3; Lm is
the length of drilling mud, m; Fm is the friction force of drilling mud, N; fm is the friction
coefficient of drilling mud; As is the flow area of the riser, m2; Ds and Lr are the hydraulic
diameter and the length of the riser, respectively, m; Fd is the frontal force, N; Fw is the
friction force of seawater, N; fw is the friction coefficient of seawater; v is the discharge
velocity of fluid at time t, m/s; a is the acceleration of fluid at time t, m/s2.

The drilling platform is connected to the deepwater-drilling riser by the tensioners;
the heave motion of the drilling platform can be approximated as the superposition of the
sine functions:

w(t) =
n

∑
i=1

αisin(ωit + ϕi) (3)

where αi is the random amplitude of heave motion, ωi is the random frequency of heave
motion, ϕi is the random phase of heave motion, and n is a given positive integer.

2.2. Dynamic Model of a Riser-Tension System

Notice that the tension system uses the hydraulic cylinder to drive the riser directly,
and provides the required tension force for the riser. The tension force generated by a single
tensioner can be calculated by [23]

Nt(t) = ft − k1xp − u(t) (4)

where

ft = PH0 Ar − PL0 Ap, k1 =
εPH0 A2

r
VH0

+
εPL0 A2

p

VL0

(5)

with ft representing the top tension force of the initial disconnection moment, N; PH0 and
PL0 are the pressure of the high pressure air vessel and low pressure nitrogen vessel at the
initial time, respectively, Pa; Ar and Ap are the area of piston rod side and piston rod-less
side, respectively, m2; k1 is the spring stiffness of tensioner, N/m; ε is the gas constant,
ε ∈ [1.0, 1.4]; VH0 and VL0 are the volume of the high pressure gas and low pressure
nitrogen vessel at the initial time, respectively, m3; xp is the displacement of piston relative
to hydraulic cylinder at time t, m; u(t) is the pressure drop.

Now, we aim to present a dynamic model of the riser-tension recoil control system.
Similar to [15,23], the system can be simplified as a three-element mass-damper-spring
model as seen in Figure 1, where m1, m2, and m3 are the masses of three blocks of the whole
riser, x1, x2, and x3 are displacements of three mass blocks of the riser, c1, c2, and c3 are the
damping on the three mass blocks, k2 and k3 are equivalent spring stiffness of riser system
with k2 = k3 = EAe/L. E is the elastic modulus of riser, Ae is the cross-sectional area of
riser, and L is the effective length of the riser.
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Figure 1. A riser-tension recoil control system model. Adapted with permission from [23,31]. 2020,
2021, Elsevier.

To present dynamic equations of the riser, the following assumptions are required [15,23].

Assumption 1. The upward direction of force and displacement is positive, and the coordinate
origin of riser system is located at the position of respective initial disconnection moment.

Assumption 2. The influence of buoyancy modules on the riser stiffness is ignored, the drilling
pipe and the riser are supposed to be concentric. The viscous resistance of drilling mud discharge is
evenly distributed along the axial direction of the riser.

Based on the Assumptions aforesaid, by Newton’s second law, the dynamic equation
of riser-tension control system can be expressed as

m1 ẍ1 = −k2(x1 − x2)− c1 ẋ1 − c2(ẋ1 − ẋ2) + Nt − F1
m2 ẍ2 = k2(x1 − x2) + c2(ẋ1 − ẋ2)− c3(ẋ2 − ẋ3)− k3(x2 + x0 − x3)− F2
m3 ẍ3 = k3(x2 + x0 − x3) + c3(ẋ2 − ẋ3)− F3

(6)

where x0 = ( ft −m1g + Fb1)/k2, and
F1 = Fw1 + Fm1 − Fb1 + m1g
F2 = Fw2 + Fm2 − Fb2 + m2g
F3 = Fw3 + Fm3 − Fb3 + m3g

(7)

with Fwi = Fw/3, Fmi = Fm/3, i = 1, 2, 3, and Fb1 , Fb2 , Fb3 representing the buoyancy during
recoil of the riser.

The mass of the three blocks can be computed as
m1 = Mriser/3 + Mslip
m2 = Mriser/3
m3 = Mriser/3 + MLMRP

(8)

where Mriser = Nb Mbuoyancy is the dry weight of the riser, kg; Nb is the number of buoyancy
joint; Mbuoyancy is the dry weight of the buoyancy joint, kg; Mslip is the dry weight of slip
joint outer cylinder, kg; MLMRP is the dry weight of LMRP, kg.
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The damping of the three blocks can be calculated by

c1 = 0.5
√

k1m1, c2 = 2ζ
√

k2m2, c3 = 2ζ
√

k3m3 (9)

where the damping ratio ζ is 0.01.

2.3. State Space Model of the Riser System and Active-Recoil Control Problem

Let {
z1(t) = x1(t), z2(t) = ẋ1(t), z3(t) = x2(t)
z4(t) = ẋ2(t), z5(t) = x3(t), z6(t) = ẋ3(t)

(10)

and denote z(t) := [z1(t) z2(t) z3(t) z4(t) z5(t) z6(t)]
T . Then, the dynamic Equation (6) can

be written as
ż(t) = Az(t) + Bu(t) + D1w(t) + D̃2h1(t), z(0) = z0 (11)

where z0 is the system initial value as

z0 = [0 0 − x0 0 − xı 0]T (12)

with xı = ( ft −m1g−m2g + Fb1 + Fb2)/k3, and

A =



0 1 0 0 0 0
− k1+k2

m1
− c1+c2

m1

k2
m1

c2
m1

0 0
0 0 0 1 0 0
k2
m2

c2
m2

− k2+k3
m2

− c2+c3
m2

k3
m2

c3
m2

0 0 0 0 0 1
0 0 k3

m3

c3
m3

− k3
m3
− c3

m3


, B =



0
− 1

m1
0
0
0
0



D1 =



0
k1
m1
0
0
0
0


, D̃2 =



0 0 0
− 1

m1
0 0

0 0 0
0 − 1

m2
0

0 0 0
0 0 − 1

m3


, h1(t) =

 F1 − ft
F2 + k3x0
F3 − k3x0



Note that the equilibrium state of the system is given by

ze1 =
κ

k1

ze3 =
κ

k1
−

m2g + m3g− Fb2 − Fb3

k2

ze5 =
κ

k1
+

κ

k2
−

m3g− Fb3

k3
ze2 = ze4 = ze6 = 0

(13)

where κ = ft −m1g−m2g−m3g + Fb1 + Fb2 + Fb3 .
Let

z̃i(t) = zi(t)− zei , i = 1, 2, · · · , 6. (14)

Then from (10)–(14), one yields an incremental equation of the system as

˙̃z(t) = Az̃(t) + Bu(t) + D1w(t) + D2h(t), z̃(0) = z̃0 (15)

where

D2 =

[
0 −

1
m1

0 −
1

m2
0 −

1
m3

]T

, h(t) =
Fw + Fm

3
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Let
ĥ(t) = [wT(t), hT(t)]T , D = [D1 D2] (16)

Then, the system Equation (15) can be written as

˙̃z(t) = Az̃(t) + Bu(t) + Dĥ(t), z̃(0) = z̃0 (17)

The output equation of the system is given as

η(t) = C1z̃(t) + E1ĥ(t) (18)

where C1 and E1 = [Ew Eh] are given matrices with appropriate dimensions.
Introducing the following quadratic performance index as

J =
∫ ∞

0

[
z̃T(t)Qz̃(t) + uT(t)Ru(t)

]
dt (19)

where the weight matrices Q = QT ≥ 0 and R = RT > 0.
A state feedback control law is designed as

u(t) = Kz̃(t) (20)

where K is a 1× 6 gain matrix to be designed.
From (17) and (20), one yields the closed-loop system as

˙̃z(t) = (A + BK)z̃(t) + Dĥ(t), z̃(0) = z̃0 (21)

The aim of this paper is to design the optimal guaranteed cost H∞ recoil controller (20)
such that

• The closed-loop system (21) with w(t) = 0 and h(t) = 0 is asymptotically stable, and
J ≤ J∗, J∗ is the upper bounds of the performance;

• The H∞ performance index
‖η(t)‖ ≤ γ‖ĥ(t)‖ (22)

of the closed-loop system can be guaranteed for a given γ > 0.

3. Design of Optimal Guaranteed Cost H∞ Recoil Controller

In this section, to control the recoil responses of the riser system, an optimal guaranteed
cost H∞ control scheme is designed for the system. The existence condition and design
algorithm of an optimal guaranteed cost H∞ controller are presented for the riser recoil
control system.

3.1. The Existence Condition of the Optimal Guaranteed Cost H∞ Recoil Controller

To analyze the asymptotic stability of the closed-loop system (21), consider the follow-
ing Lyapunov function as

V(z̃(t)) = z̃T(t)Pz̃(t) (23)

where P is a 6× 6 positive definite matrix. Then, the time derivative of V(z̃(t)) along
system (21) is given as

V̇(z̃(t)) = z̃T(t)Πz̃(t) + 2z̃T(t)PDĥ(t) (24)

where
Π = AT P + KT BT P + PA + PBK (25)
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To prove asymptotic stability of the closed-loop system (21), set ĥ(t) = 0. Then
from (24), one obtains

V̇(z̃(t)) = z̃T(t)(Y−Q− KT RK)z̃(t) (26)

where Y = Π + Q + KT RK.
Note that

V̇(z̃(t)) ≤ z̃T(t)Yz̃(t)− λmin(Q + KT RK)‖z̃(t)‖2 (27)

where λmin represents the minimum eigenvalue of the matrix.
To guarantee the asymptotic stability of the system, we require Y < 0. In fact, by the

Schur Complement, it is equivalent to the following matrix inequality as Π KT R Q
∗ −R 0
∗ ∗ −Q

 < 0 (28)

If the matrix inequality (28) holds, then there exists a sufficiently small positive scalar
c such that V̇(z̃(t)) < −c‖z̃(t)‖2, z̃(t) 6= 0, which indicates that riser system (17) is asymp-
totically stable.

Integrating both sides of (26) from 0 to ∞, one obtains∫ ∞

0
z̃T(t)(Q + KT RK)z̃(t)dt < V(0) (29)

That is to say, the quadratic performance index J satisfies J < z̃T(0)Pz̃(0).
Then, we try to find the condition guaranteeing the H∞ performance index (22) of the

riser system. Denote
β(t) = [z̃T(t) ĥT(t)]T (30)

Then, it follows from (24) and (18) that

V̇(z̃(t)) + ηT(t)η(t)− γ2ĥT(t)ĥ(t) ≤ βT(t)Ψβ(t) (31)

where

Ψ =

[
Y + CT

1 C1 PD + CT
1 E1

∗ −γ2 I + ET
1 E1

]
(32)

Note that Ψ < 0 is equivalent to the following matrix inequality as
Π PD KT R Q CT

1
∗ −γ2 I 0 0 ET

1
∗ ∗ −R 0 0
∗ ∗ ∗ −Q 0
∗ ∗ ∗ ∗ −I

 < 0 (33)

If the above inequality holds, then from (31), one yields

V̇(z̃(t)) + ηT(t)η(t)− γ2ĥT(t)ĥ(t) < 0 (34)

Further, integrating both sides of (34) and noticing the zero initial state condition of
the system yields the H∞ performance index inequality (22) directly.

Note that the inequality (33) implies that (28) holds, which indicates if the inequal-
ity (33) holds, then the closed-loop system (21) with ĥ(t) = 0 is asymptotically stable, the
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quadratic performance index (19) is bounded, and the H∞ performance (22) is guaranteed
for the friction force ĥ(t).

To obtain the minimum upper bound of the quadratic performance index J, introduc-
ing an upper bound µ > 0, i.e., z̃T(0)Pz̃(0) < µ, which is equivalent to the one as[

−µ z̃T(0)
∗ −P−1

]
< 0 (35)

Now, we state a proposition which provides the existence of the optimal guaranteed
cost H∞ recoil controller for the riser system.

Proposition 1. For a given scalar γ > 0, matrices Q ≥ 0, R > 0, and the initial state value z̃(0),
if there exist 6× 6 matrix P > 0 and 1× 6 matrix K such that the inequalities (33) and (35) hold,
then the optimal guaranteed cost H∞ recoil controller (20) for the riser system (6) can be designed,
and the gain matrix K of the controller is solvable.

3.2. Computation of the Gain Matrix K of the Controller

To solve the gain matrix K of the optimal guaranteed cost H∞ recoil controller, let

Φ = diag
{

P−1, I, I, I, I
}

and pre- and post-multiply both sides of (33) by Φ and its transpose, respectively; denote
P̄ = P−1 and K̄ = KP−1. Then, from (33) and (35), one obtains the following linear matrix
inequalities as: 

Π̄ D K̄T R P̄Q P̄CT
1

∗ −γ2 I 0 0 ET
1

∗ ∗ −R 0 0
∗ ∗ ∗ −Q 0
∗ ∗ ∗ ∗ −I

 < 0 (36)

[
−µ z̃T(0)
∗ −P̄

]
< 0 (37)

where Π̄ = P̄AT + K̄T BT + AP̄ + BK̄.
Further, the computation of the gain matrix K can be formulated as the following

optimization problem:

Minimize µ

s.t. (36) and (37). (38)

Now, we have the following proposition.

Proposition 2. For a given scalar γ > 0, matrices Q ≥ 0, R > 0, and the initial state value z̃(0),
if there exist 6× 6 matrix P̄ > 0 and 1× 6 matrix K̄ such that there exists the feasible solution
to the optimization problem (38), then the gain matrix K of the optimal guaranteed cost H∞ recoil
controller can be solved by K = K̄P̄−1.

Remark 1. Proposition 2 provides a method to solve the optimal guaranteed cost H∞ recoil con-
troller for the riser system. Compared with the classic linear quadratic optimal controller designed
in [23], where the external disturbance, i.e., the characteristics of friction force of discharging fluid
on the riser are not used to design the controller, while in this paper, based on the introduced H∞
performance index, the characteristics the friction force are used to design the recoil controller. In this
sense, the designed optimal guaranteed cost H∞ controller may be better than the optimal controller
to reduce the recoil response of the riser, which was verified by simulation results, and presented in
the next section.
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Remark 2. Note that there always exists physical limitations of the controller from the application
point of view. By adjusting the opening λ(t) of the recoil control valve, the flow of hydraulic oil in
the tensioner can be controlled. The opening of recoil control valve λ(t) can be written as [23]:

λ(t) =

√
ρd q̄A3

r ẋ2
p(t)

2S2|u(t)| , u(t) 6= 0 (39)

where the density of the hydraulic oil is represented by ρd, kg/m3; q̄ is the flow resistance coefficient;
S is the maximum flow area of recoil control valve port, m2. In the next section, during the recoil
controller design and application, the above relation of the control valve opening λ(t) and the control
input u(t) is considered.

4. Simulation Results

In this section, in the two cases of constant and time-varying friction coefficients, the
friction force of the fluid discharge is computed, respectively, and the corresponding dis-
charge length, velocity and total friction of fluid are analyzed. Then, an optimal guaranteed
cost H∞ controller and an optimal controller adopted in [23] are designed and used to
control the recoil response of the riser.

4.1. Parameters of Deepwater-Drilling Riser System

A drilling riser with a length of 1000 m and six tensioners is applied to simulation
study in what follows. The system parameters of the riser are taken from [23], and the main
values are given by Table 1. Based on the settings, one yields the system matrices in (17) as

A =



0 1 0 0 0 0
−47.7777 −0.5794 46.9756 0.1315 0 0

0 0 0 1 0 0
51.0082 0.1428 −102.0164 −0.3116 51.0082 0.1688

0 0 0 0 0 1
0 0 36.5424 0.1209 −36.5424 −0.1209



B = 10−6 ×



0
−2.8153

0
0
0
0

, D1 =



0
0.8021

0
0
0
0

, D2 = 10−6 ×



0
−2.8153

0
−3.0569

0
−2.1900


Table 1. Parameters of riser system.

Parameters Value Parameters Value Parameters Value

PL0 150,000 VL0 2.25 Nb 42
PH0 3,050,000 VH0 4.28 Ds 0.4826

Mslip 28,082 Ap 0.2463 ε 5× 10−5

MLMRP 129,496 Ar 0.2048 νw
1 10−4

Mbuoyancy 23,366 Ae 0.0405 νm
2 1.15× 10−6

1 νw is the viscosity of seawater. 2 νm is the viscosity of mud.

In the output Equation (18), the matrices C1 and E1 are set as

C1 =

 0.01 0 0 0 0 0
0 0 0.01 0 0 0
0 0 0 0 0.01 0

, E1 =

 0.01 0.01 0 0
0.01 0 0.01 0
0.01 0 0 0.01


In (3), set n = 6. Then, the response of heave motion of the platform is depicted in

Figure 2.
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Figure 2. Response of heave motion of platform.

4.2. Analyses of the Fluid Discharge Model

Now, we compare the whole fluid column model from the length, velocity, and total
friction. The two cases of constant and time-varying friction coefficients are considered,
respectively.

Case I: The friction coefficients, fw and fm of the seawater and drilling mud, are
constant. In (2), set fw = 0.002 and fm = 0.004; the values are taken from [23].

Case II: The fluid friction coefficients fw and fm are time-varying, and satisfy the
Haaland formula as [21]:

1√
fw

= −1.8log

 6.9
Rew

+

(
ε

3.7Ds

)1.11
 (40)

1√
fm

= −1.8log

 6.9
Rem

+

(
ε

3.7Ds

)1.11
 (41)

where ε is the roughness parameter of the riser; Rew and Rem are the Reynolds numbers of
the seawater and drilling mud, respectively.

In the above two cases, the friction force of seawater and mud discharge is computed,
and the corresponding discharging time, velocity, and the total friction force of the fluid
given by Table 2. It can be observed that the discharge velocity of the fluid for the time-
varying friction coefficients case is slower than that for the constant case. Consequently, the
overall discharge time of the fluid becomes large.

Table 2. Discharging time, velocity, and friction force of the fluid discharge under two different cases.

Case Discharging Time (s) Velocity (m/s2) Friction Force (105 N)

Case I 51.13 24.3094 5.6475
Case II 114.29 11.9815 8.0178

In next subsection, based on the obtained data regarding the different friction force,
we investigate the anti-recoil effectiveness of the proposed optimal guaranteed cost H∞
control scheme.
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4.3. Effectiveness of the Optimal Guaranteed Cost H∞ Controller

To design an optimal guaranteed cost H∞ controller (OGCHC), the H∞ performance
index level γ is set as 0.55, and the weight matrices Q and R in (19) are set as

Q = diag{0.01, 0.25, 0.01, 0.25, 0.01, 0.25}, R = 2.5× 10−12

Then, by Proposition 2, solving the optimization problem (38) yields an OGCHC with
gain matrix K as

KOGCHC = 105 ×
[

1.0510 4.0249 −1.1883 1.1332 −0.1114 1.4368
]

(42)

For comparison purposes, a classic optimal controller (OC) developed in [23] was
designed. Set weight matrices Q and R of the linear quadratic performance index as:

Q = 104 × diag{1, 1, 1, 1, 1, 1}, R = 10−7

Then the gain matrix of an OC is computed as

KOC = 105 ×
[
−3.6435 −4.4226 0.9550 −1.8504 −0.6362 −2.6558

]
(43)

As the OGCHC and OC are applied to the riser system, and the controller con-
straint (39) is considered at the same time, the curves of the displacement responses of
the three mass blocks of the riser and control force are depicted—see Figures 3–6 for the
case of constant friction coefficients, and Figures 7–10 for the case of time-varying friction
coefficients, respectively.

To further compare the two controllers quantitatively, the quadratic performance
index of the riser system with OGCHC and OC are computed. Note that the performance
index (19) are weight-matrix-dependent, and the designed OGCHC and OC are based
on a different weight matrix pair, (Q, R). In this situation, the performance index (19) is
modified as two weight-matrix-independent performance indices:

Jz̃ =

√
1
t f

∫ t f

0
z̃T(t)z̃(t)dt (44)

Ju =

√
1
t f

∫ t f

0
u2(t)dt (45)

Clearly, Jz̃ and Ju are state-related and control-related root mean square values of the
riser system, respectively. Denote the average displacement peak value of three mass blocks
of the riser by d̂. Then, the above indices of the riser system without control, with OC and
OGCHC in the two cases of constant and time-varying friction coefficients are computed
and listed in Table 3.

It can be found from Figures 3–10, and Table 3, that the controllers OGCHC and OC
can reduce the recoil response of the riser system efficiently; however, the OGCHC is more
economical than the OC. In fact, the average displacement amplitudes of the three mass
blocks of the riser are almost the same, while the control cost by the OGCHC is less than
that by the OC. In addition, the reduction in the average displacement peak value of the
riser under OGCHC is larger than that under OC.
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Table 3. Performance indices of the riser without control, with OC and OGCHC.

Cases Controllers Jz̃ (m) d̂ (m) Ju(104 N)

I
No control 0.2362 6.2985 −

OC [23] 0.1888 4.3066 1.0859
OGCHC 0.1912 3.8065 1.0625

II
No control 0.3302 4.9055 −

OC [23] 0.3001 3.6741 0.9758
OGCHC 0.3049 2.8722 0.8956
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Figure 3. Displacement 1 of the riser without control, with OC and OGCHC under case I.
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Figure 4. Displacement 2 of the riser without control, with OC and OGCHC under case I.
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Figure 5. Displacement 3 of the riser without control, with OC and OGCHC under case I.
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Figure 6. Control force with OC and OGCHC under case I.
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Figure 7. Displacement 1 of the riser without control, with OC and OGCHC under case II.
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Figure 8. Displacement 2 of the riser without control, with OC and OGCHC under case II.
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Figure 9. Displacement 3 of the riser without control, with OC and OGCHC under case II.
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Figure 10. Control force with OC and OGCHC under case II.
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Note that if the riser is compressed in the recoil process, the riser system may be
collapsed. To further verify the safety of the riser under the designed recoil controller in
this paper, the elongations of springs of the riser are computed. The elongation curves of
the springs under the above two cases are shown in Figures 11 and 12, respectively. It can
be found that the spring elongations are both greater than zero, which means that the riser
is not compressed during the recoil process thereby ensuring the safety of the riser system.
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Figure 11. The elongation of springs under case I.
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Figure 12. The elongation of springs under case II.

5. Conclusions

The recoil control issue of the deepwater-drilling riser system has been studied in this
paper. First, an incremental model of the riser system has been established by considering
the heave motion, linear tension force, and drilling mud discharge model. Then, an
optimal guaranteed cost H∞ recoil control scheme has been presented for the riser system,
and the sufficient conditions for the asymptotic stability of the closed-loop system have
been derived based on Lyapunov stability theory. In addition, under the designed recoil
controller, the H∞ performance index and the minimum upper bound of the quadratic
performance index of the riser can be guaranteed.

Simulation results show that the designed optimal guaranteed cost H∞ recoil controller
is more efficient than the exiting quadratic optimal recoil controller to refrain the recoil
movements of the riser. In fact, the quadratic performance index of the riser with the former
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is smaller than that with the latter. It is also found that under the designed recoil controller,
the compression of the riser has been avoided, and the safety of the riser has been ensured.

This paper provides an active recoil control scheme for the riser system in the event of
emergency disconnection; however, there are still important issues regarding recoil analysis
and control topics to be investigated in the future. It is important to further explore and
understand the recoil mechanism of the riser, to provide an in-depth development potential
and reasonable active-recoil control schemes.
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