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Abstract

Background: One of the main phenomena occurring in cellular membranes during virus infection is a change in

membrane permeability. It has been observed that numerous viral proteins can oligomerize and form structures

known as viroporins that alter the permeability of membranes. Previous findings have identified such proteins in

cells infected with Japanese encephalitis virus (JEV), a member of the same family that Dengue virus (DENV)

belongs to (Flaviviridae). In the present work, we investigated whether the small hydrophobic DENV protein NS2B

serves a viroporin function.

Methods: We cloned the DENV NS2B sequence and expressed it in a bacterial expression system. Subsequently, we

evaluated the effect of DENV NS2B on membranes when NS2B was overexpressed, measured bacterial growth

restriction, and evaluated changes of permeability to hygromycin. The NS2B protein was purified by affinity

chromatography, and crosslinking assays were performed to determine the presence of oligomers. Hemolysis assays

and transmission electron microscopy were performed to identify structures involved in permeability changes.

Results: The DENV-2 NS2B protein showed similitude with the JEV viroporin. The DENV-2 NS2B protein possessed

the ability to change the membrane permeability in bacteria, to restrict bacterial cell growth, and to enable

membrane permeability to hygromycin B. The NS2B protein formed trimers that could participate in cell lysis and

generate organized structures on eukaryotes membranes.

Conclusions: Our data suggest that the DENV-2 NS2B viral protein is capable of oligomerizing and organizing to

form pore-like structures in different lipid environments, thereby modifying the permeability of cell membranes.

Keywords: Dengue virus, NS2B, Membrane permeability, Virus, Viroporin, Oligomerize, Flavivirus

Background

Dengue viruses (DENVs) are enveloped (+) sense RNA

viruses belonging to the Flaviviridae family. The DENV

replication cycle initiates following receptor binding to

the host cell membrane, which is followed by internal-

ization via endocytosis and subsequent release into the

cytoplasm. The genome is then translated into a large

polyprotein, which is proteolytically processed to yield 3

structural proteins (envelope, membrane precursor, and

capsid) and 7 non-structural (NS) proteins (NS1, NS2A,

NS2B, NS3, NS4A, NS4B, and NS5) [1, 2].

Cells infected with DENV undergo a series of detrimen-

tal functional and structural changes, such as cell round-

ing, shrinkage, and dislodgment from the growth surface

[3]. In addition, the membranes of DENV-infected cells

are compromised during viral RNA replication, assembly,

and egress, which induce remodeling and redistribution of

distinct cell membrane structures [4, 5] including the

rough endoplasmic reticulum (ER) and Golgi apparatus

[6]. These phenomena result in dramatic cytopathic ef-

fects that compromise the viability of infected cells.
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Results from several studies have shown that in

addition to cytopathic effects, another common feature

of infected cells is the modification of host cell mem-

brane permeability resulting from the incorporation of

viral proteins into the infected cell membrane. This

group of viral proteins is collectively referred to as viro-

porins [7–9], which are small hydrophobic viral proteins

that oligomerize in the membranes of different intracel-

lular compartments and cause cell permeabilization [10].

All viroporins share structural motifs, such as hydro-

phobic domains that form an amphipathic α-helix, and a

cluster of basic residues, which can interact with nega-

tively charged lipids [11]. Viroporins may alter mem-

brane permeability to facilitate different replication

steps, such as viral entry and egress. While these mole-

cules may be nonessential for viral genome replication,

evidence suggests that they are required for the produc-

tion of infective particles [12, 13] In addition, viroporins

influence several cellular functions, including vesicular

trafficking [14], membrane remodeling [15], ion homeo-

stasis [16], apoptosis induction [17], and activation of

inflammatory mechanisms that may participate in

pathogenesis [18].

Viroporins have been identified in several RNA viruses

including Flaviviridae family members such as hepatitis

C and Japanese encephalitis virus (JEV). Results from a

study [19] showed that small hydrophobic nonstructural

JEV proteins can influence membrane permeability. In

that study, the JEV protein NS2B was found to have

membrane-destabilizing activity (MDA) in all assays

evaluated [19]. Furthermore, DENV also expresses the

NS2B protein, and the NS2B proteins of JEV and DENV

show conserved structural and functional characteristics.

These characteristics include the hydrophilic segment,

which is required for the cofactor activity of viral prote-

ase NS3, and the 3 hydrophobic regions that are thought

to be responsible for membrane association and to gen-

erate the MDA. In addition, we previously demonstrated

that NS2B is localized in cellular membranes (particu-

larly in lipid rafts) due to the hydrophobic regions [20].

Data from a subsequent study suggested that the NS2B

protein contains alpha-helical transmembrane domains

that direct folds within micelles, indicating the ability of

this protein to associate with membranes [21]. These

lines of evidences suggest the possibility that NS2B of

DENV may exert a function that is analogous to NS2B

of JEV.

In the present study, we observed by in silico analysis

that the NS2B has a highly hydrophobic profile, similar

to that previously reported for the JEV NS2B protein.

Furthermore, comparative analysis between the DENV

and JEV NS2B sequences revealed striking similarities.

We also observed that the overexpression of recombin-

ant NS2B in bacteria affected bacteria cell growth and

enhanced bacterial membrane permeability to hygromy-

cin B (HygB). In addition, crosslinking tests showed the

ability to form oligomers; when recombinant NS2B was

incubated with erythrocyte membrane systems, it pro-

duced organized structures within the membranes,

which promoted the destabilization of the erythrocyte

membrane and cell lysis. Therefore, this study represents

the first investigation into the potential role of NS2B

in causing changes in membrane permeability during

DENV infection.

Results

In silico analysis of the DENV NS2B protein identified

similarity with the JEV NS2B protein

Results from a previous study demonstrated that the

NS2B protein from JEV could modify membrane perme-

ability in different systems [19]. In-silico analysis showed

a 32 % identity between the sequences of the JEV and

DENV NS2B proteins. In addition, this analysis identified

some amino acids within the transmembrane regions that

were identical or showed strong similarity, suggesting that

they maintained the biochemical proprieties (Fig. 1a).

Therefore, it is likely that the membrane-altering property

of both viral NS2B proteins may be conserved. Thus, we

generated hydropathy plots for the NS2B proteins using

the Kyte–Doolittle method. This analysis revealed 3 clear

hydrophobic domains located in the amino terminal and

carboxy terminus of NS2B, which may reflect the trans-

membrane regions present in this protein. The topology

of DENV NS2B is similar to that described for JEV NS2B

[19], for which 3 transmembrane regions were observed

in the same positions along the amino acid sequence. In

addition, aromatic and basic residues were identified in

both sequences, which is an important characteristic of

viral proteins with MDA (Fig. 1b). A topological represen-

tation of the NS2B protein was generated using the Socs

MEMSAT program. The orientation of the 3 transmem-

brane regions was determined, showing that the amino

and carboxyl-terminal domains were oriented towards the

cytoplasm (Fig. 1c); these findings corroborate a previous

report [34].

Bacterial expression and purification of the DENV NS2B

protein

To obtain sufficient recombinant DENV NS2B protein

for analyzing its membrane-altering activity, we cloned

and expressed the NS2B protein with an N-terminus V5

epitope and a 6× His tag to facilitate its purification

(Fig. 2a). This construct was used to transform E. coli

BL21 Star cells. A clone harboring the NS2B expression

vector was grown in culture and induced with IPTG 3,

6, and 9 h post-transformation (Fig. 2b). Thus, we de-

cided to overexpress the NS2B protein. This protein was

expressed in inclusion bodies, similarly to other viral
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proteins with viroporin activity [22, 23]. A 17-kDa band

was observed by western blotting at 3, 6, and 9 h post-

transformation, which was identified as the tagged NS2B

protein using an anti-V5 antibody (Fig. 2c). In addition,

we purified the NS2B protein using 2 strategies. The first

strategy involved the induction of NS2B expression after

9 h (Fig. 2d, lane 1), which was partially purified by elut-

ing a band of the appropriate mass (17 kDa) from a

Coomassie Blue-stained gel (Fig. 2d, Lanes 2 and 3).

NS2B was further purified with nickel resin via the N-

terminal 6× His tag on the recombinant NS2B protein

(Fig. 2d, lanes 5 and 6). Several 1 mL-aliquots were

eluted from the nickel resin, and Coomassie Blue stain-

ing revealed only the presence of the 17-kDa a band in

the last fraction recovered.

To demonstrate that the NS2B protein was associated

with bacterial membranes, additional experiments were

performed. We isolated membranes and then extracted

the membrane proteins using TDPC detergent to study

proteins contained in membrane fractions from inclu-

sion bodies. The transformed bacteria were grown as de-

scribed previously.

Next, a western blot was performed using an anti-V5

antibody to detect the NS2B protein (Fig. 3a). Subse-

quently, the membrane was washed, stripped and

assessed by re-probed with mouse polyclonal anti-

OMPF and anti-OMPC proteins (Fig. 3b and c). We

found 2 bands with the predicted molecular weights of

37 kDa and 40 kDa for the porins described above re-

spectively. This result confirmed that the NS2B protein

is found in the membrane fractions with OMPC and

OMPF.

Changes in bacterial membrane permeability following

expression of the NS2B protein

In silico analysis suggested that the DENV NS2B protein

is homologous to the JEV NS2B protein and possesses

the same MDA. If the NS2B protein causes membrane

destabilization, a widely known assay could be used to

confirm this possibility. E. coli BL21 (DE3) pLysS cells,

which express lysozyme, were transformed with a plas-

mid encoding NS2B. Disruptions in the inner bacterial

membrane cause the release of the bacteriophage T7

lysozyme, which in turn promotes cell lysis that can be

Fig. 1 In silico analysis of the NS2B sequence. a Alignment of the NS2B sequences of DENV and JEV, using Clustal W software. The 3 transmembrane

regions are indicated using blue and red boxes. Within these zones, identical (*), similar (.), and low-similarity (:) amino acids were

observed. b Hydropathy plot of the NS2B protein generated using the Kyte–Doolittle method with SOSUI software. The red boxes delimit the

transmembrane regions of the NS2B protein. c Proposed model of the NS2B topology, which was generated using SOCS MEMSAT software. In this

model, the transmembrane segments are shown in purple, and green coloration represents the NS2B cofactor domain
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quantified by measuring the optical density of bacterial

cultures. BL21(DE3) growth was not affected following

transformation with the NS2B vector, in the presence or

absence of IPTG (Fig. 4a). Bacterial growth was also un-

affected in BL1(DE3)pLysS cultures transformed with

the NS2B expression vector, or transformed with the

parental vector pProEX in the absence of IPTG (NS2B ex-

pression not induced), when compared to negative control

bacteria expressing the soluble polypyrimidine-tract-

binding (PTB) protein (Fig. 4b). However, when NS2B ex-

pression was induced, bacterial growth was markedly

inhibited compared to the PTB and pProEX controls

(Fig. 4c). We also investigated whether NS2B expression

altered the permeability of bacterial membranes, allowing

entry of the translation inhibitor HygB. Thus, bacterial

cultures were metabolically labeled with [S35]-methionine

after the addition of HygB, under NS2B-inducing condi-

tions. We observed that protein synthesis was completely

inhibited in a time-dependent manner, indicating that the

bacterial membranes became permeable to HygB follow-

ing NS2B induction (Fig. 5a). However, no effect was ob-

served with bacteria expressing an unrelated protein

(PTB) in the absence or presence of HygB (Fig. 5b). These

results strongly suggest that the NS2B protein associates

with membranes, destabilizes their architecture, and al-

lows the entrance of HygB.

Fig. 2 Expression and purification of NS2B protein from bacteria. a. Schematic representation of an expression construct with NS2B in frame with

the N-terminal V5 epitope and a 6° His tag. b Expression and purification of NS2B protein in bacteria. Cells were induced with 1 mM IPTG at zero

time and analyzed by SDS-PAGE at the indicated times post-induction. c Expression and identification of recombinant NS2B protein at

the indicated times post-IPTG induction by western blot analysis. The NS2B protein was detected using an anti-V5 antibody at a 1:5000

dilution. d Analysis of recombinant NS2B protein purification following different isolation steps by SDS-PAGE and Coomassie blue. Preparative gel

electrophoresis and affinity chromatography were used for purification. Lane 1: inclusion bodies purified from bacteria expressing the NS2B protein.

Lane 2: fraction obtained from preparative gels, in the molecular-weight region for of a 17-kDa protein. Lane 3: proteins not bound to the resin. Lane

4: fraction washes from the resin. Lanes 5–6: fraction containing the eluted and purified NS2B protein
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NS2B forms homo-oligomers involved in lytic effects

A conserved characteristic of viroporins is the presence

of hydrophobic domains that interact with lipid mem-

branes. Another property shared by viroporins is their

ability to oligomerize once inserted into cell membranes.

Previous reports demonstrated that several viroporins

could oligomerize in the presence of glutaraldehyde

[24, 25]. To determine whether NS2B acts as a viroporin,

we evaluated its ability to form homo-oligomers in vitro

by chemical cross-linking. After the NS2B protein was in-

cubated with increasing glutaraldehyde concentrations,

western blots revealed the presence of 2 or 3 bands

(Fig. 6a, lanes 1–3), which migrated at the expected pos-

ition of monomers (17 kDa), dimers (34 kDa), and trimers

(51 kDa). We hypothesized that upon membrane associ-

ation of the NS2B protein, it oligomerizes to form struc-

tures similar to channel or pores that facilitate changes in

membrane permeability. For this the hemolytic activity of

NS2B was assayed in human erythrocytes, which are an

efficient model for studying protein-membrane inter-

actions, as well as changes in membrane permeability

[26, 27] Erythrocytes were incubated at 37 °C for 1 h

with various concentrations of NS2B or the negative-

control PTB protein, and hemolysis levels were mea-

sured in supernatants following centrifugation. The

NS2B protein showed hemolytic activity in a dose-

dependent manner (Fig. 6b). Approximately 20 % of

the erythrocytes were lysed when exposed to 100 μg

of purified NS2B protein, while at lower quantities,

the lytic activity was reduced. In contrast, hemolysis

did not occur following incubation with the same

concentrations of the control protein. These results

suggested that the NS2B protein associated with

erythrocyte membranes to form structured oligomers

and caused cell lysis in a concentration-dependent

manner.

Confirmation of an organized NS2B protein structure on

eukaryotic membranes

The above results showed that NS2B formed at least tri-

meric structures that induced hemolytic activity. Base on

this finding, we analyzed the presence of the NS2B pro-

tein in erythrocyte ghost membranes by transmission

electron microscopy (TEM). This analysis revealed the

presence of ring-shaped structures, the number of which

was dependent on the NS2B concentration used (Fig. 7).

Ring-shaped structures were not identified in erythro-

cytes ghosts maintained in PBS or in the presence of al-

bumin (Fig. 7a). Analysis of these structures showed

circular ring structures were also commonly associated

with the membranes. These structures were similar to

those observed with other viral proteins with viroporin

activity. [28]. Rings with sizes between 30 and 40 nm in

diameter were most frequently found, although larger

structures were detected using a higher NS2B quantity

(100 μg), as shown in Fig. 7b. The number of ring-

shaped structures per square micron increased according

the amount of NS2B used (Fig. 7c). Finally, it was con-

firmed that the increase in the number of ring-shaped

structures at the higher NS2B quantity correlated with

increased lytic activity observed in the hemolysis assays

(Fig. 7c). Our results provide the first direct evidence

that the NS2B protein can oligomerize in mammalian

membranes and that it possesses pore-forming activity

that modifies membrane permeability with lytic effects on

the target membrane, as reported for other viroporins.

Discussion

Numerous studies using different positive-strand RNA

viruses have demonstrated that reorganization of the

intracellular membrane can create a scaffold for the rep-

lication machinery of different viruses [29, 30]. During

the dengue viral cycle, cell membranes are critical ele-

ments for the entrance, translation, replication, and as-

sembly of viruses. As infection progresses, several viral

proteins can disturb cell membrane structures. According

Fig. 3 Association of the NS2B protein with bacterial membranes. a

Western blot analysis of NS2B protein expression in E. coli using an

anti-V5 antibody. Lane 1: NS2B clone, uninduced. Lane 2: bacteria

transformed with the parental vector. Lane 3: NS2B clone, induced

with IPTG. Lane 4: Inclusion bodies of bacteria transformed with

NS2B. Lane 5: purified NS2B protein. Lane 6: purified bacterial

membranes. b and c western blot analysis of bacterial membrane

fractions using a mouse polyclonal antibodies specific to-OmpCF

(resident bacterial membrane protein) and α-V5. Lanes 1 and 2:

purified protein NS2B. Lane 3: bacterial membrane fraction
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to previous reports, DENV proteins promote cellular

membranes reorganization, although the functions of their

small hydrophobic proteins have not been studied enough

in this regard. Different reports have identified a potential

role that these proteins may exert on several membrane

systems, such as identifying membranotropic regions, or

its association with artificial membranes [31, 32]. How-

ever, it has not been determined if any of these proteins

can promote changes in membrane permeability. Thus,

the aim of this study was to determine if the hydrophobic

NS2B protein possesses viroporin activity, considering that

this protein was expressed in membranes. We and others

previously showed that this protein is present in cell mem-

branes, particularly lipid rafts [20]. A bioinformatics study

performed with the NS2B sequence revealed a high degree

of homology with a previously reported viroporin for

a member of the Flaviviridae family [19]. Previous

in vitro results using microsomal membranes also

showed that the cleavage products NS2B and NS3

(Pro) were membrane-associated. Furthermore, this

membrane requirement was due to the presence of

hydrophobic regions predicted in NS2B and found in

lipid rafts in the ER [20, 21].

One of more distinctive characteristics of viroporins is

their ability of induce changes in membrane permeabil-

ity. In this study, we provide the first evidence that pore-

forming activity occurs when the NS2B protein is

expressed in a bacterial system, as widely shown with

other viral proteins with viroporin activity [33]. In pro-

karyotic systems such as E. coli, the NS2B protein was

effective in inducing sensitivity to HygB under the con-

ditions used. In addition, changes in permeability to

HygB and alterations of bacterial growth may exert a

direct effect on the incorporation of NS2B within

bacterial membranes, leading to lost membrane integ-

rity. This data are consistent with those obtained with

viroporin NS2B of JEV, suggesting that the activity

could be conserved.

Fig. 4 NS2B protein expression arrests E. coli growth and affects the permeability of bacterial membranes. a Grow courve of E.coli BL21 DE3

transformed with pProEX/NS2B (toxicity control). Growth curves of engineered E. coli BL21pLys transformed with NS2B, pProEX, and PTB

constructs in the absence b or presence c of IPTG. The cellular density of bacterial cultures was determined every 30 min after induction by

measuring optical densities at 660 nm
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Another important feature of viroporins is that they

can oligomerize; therefore, great efforts have been taken

to understand the architecture of these proteins [34, 35].

In silico analysis of the NS2B sequence showed the

presence of 3 transmembrane regions, which may be

important for membrane insertion or oligomerization.

Chemical cross-linking experiments performed with

glutaraldehyde revealed that NS2B could oligomerize

into trimeric species under reducing conditions; how-

ever, in the absence of glutaraldehyde, dimers were

also observed. The above data strongly suggest that

the intermolecular associations observed do not de-

pend on disulfide bridges. Instead, NS2B dimer and

trimer formation may depend upon and hydrophobic

interactions, as observed with other viroporins [24, 36].

NS2B oligomers may organize into pore structures in

cell membranes, which would account for the mem-

brane permeability alterations observed. Various sys-

tems have been employed to study these phenomena,

such as dye-loaded liposomes, Xenopus oocytes, and

unilamellar membranes. We employed 2 strategies to

characterize these structures. In hemolysis assays, we

showed that the NS2B protein in contact with human

erythrocytes modified the membrane permeability,

promoting the release of hemoglobin. To further ad-

dress this issue, we performed TEM studies to determine

whether the NS2B protein integrates into biological mem-

branes and forms pores in the target membrane (erythro-

cyte ghosts). Electron micrographs showed a distribution

of ring-shaped structures of variable sizes that were simi-

lar those observed for other viroporins. These ring-shaped

structures increased in a dose-dependent manner with the

quantity of NS2B protein added. In addition, they were

absent in membrane controls maintained in PBS or in

Fig. 5 E. coli BL21 pLysS transformed with NS2B a and PTB b

expression plasmids. Both transformant groups were induced with

IPTG in the absence (−) or presence (+) of HygB. Aliquots of these

cultures were subjected to metabolic labeling with [35S] Met-Cys at

the indicated time points. The samples were resolved by SDS-PAGE

and analyzed by autoradiography

Fig. 6 Analysis of NS2B protein to perform oligomerization. a The NS2B protein was incubated with different glutaraldehyde concentrations. The

samples were resolved by SDS-PAGE under reducing conditions, and protein expression was analyzed by western blotting. Then, the oligomeric

structures (dimers and trimers) were detected using a polyclonal antibody against the NS2B protein at a 1:3000 dilution. b Hemolysis assay results using

human erythrocytes incubated with different concentrations of the NS2B or PTB proteins (5, 20, or 100 μg). The amount of hemoglobin released was

analyzed by spectrophotometry. The percentage of lysis was calculated as indicated in the Materials and Methods section

León-Juárez et al. Virology Journal  (2016) 13:1 Page 7 of 11



presence of albumin. These data strongly suggest that

NS2B directly contacts and modifies the membrane

structure.

This work provides the first direct evidence that the

NS2B protein is capable of oligomerizing, producing

pore-like structures in different environments, and

Fig. 7 Characterization of the oligomeric structure of the NS2B protein by TEM. a TEM of the NS2B protein in erythrocyte ghosts. Erythrocyte

membranes were purified and subsequently incubated with PBS (upper panel), albumin (middle panel or NS2B (bottom panel) protein (100 μg),

or PBS. Structures with ring- or pore-like morphologies were observed in membranes incubated with the NS2B protein and were micrographed.

b Frequency of pore size on the surface of erythrocyte ghosts using the purify NS2B protein at 10, 20 and 100 μg. c Quantification of number of

pores on the surface of the erythrocyte ghosts at different concentrations of NS2B protein
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modifying the permeability of the membrane. Future

studies are necessary to assess whether the effect of the

protein NS2B in these model membranes occur in the

context of infection with DENV. However, it is import-

ant to mention that the protein NS2B, similar to other

small hydrophobic viral proteins, is actively transported

to vesicles where replication complexes are formed. The

presence of pores in these vesicles has been reported

[37] to facilitate the process of viral-genome packing.

The origin of these pores is unknown, although it is

likely that NS2B could participate in these processes.

Conclusions

This study demonstrated the ability of the NS2B protein

to function as a viroporin. Our results showed that the

NS2B protein can alter the permeability of different

models of membranes and that organized structures

were observed in ghost erythrocyte membranes. These

results suggested that NS2B potentially has MDA, a

function that could be critical for steps during the

DENV replication cycle.

Methods

DENV stock production

The stock preparation and titration of DENV-2 New

Guinea strain AF0136 were performed as described

previously [38]. The virus was tittered by performing

standard plaque-forming assays in BHK-21 cells, as

described previously. After 5 days, the resulting pla-

ques were stained with naphthol blue-black solution

and quantified [3, 39].

Cloning of the NS2B DENV protein

The DENV-2 NS2B gene was cloned in the plasmid

pET151/D-TOPO (Invitrogen). Briefly, total RNA was

extracted from DENV-2-infected C6/36 cells using the

Trizol reagent (Gibco, USA), according to the manufac-

turer’s instructions. The NS2B sequence from DENV-2

(New Guinea) was amplified by reverse transcription-

PCR, using the primer pair: 5′-ctaggatccatgagctggccacta-3′

(forward) and 5′-ccggaattctcaccgttgtttcttcac-3′ (reverse).

The PCR product was ligated into the pET151/D-TOPO

cloning vector in frame with cDNA encoding a V5 epitope

and a 6× His tag (V5H6NS2B). Finally, the plasmid from

the resultant colonies was purified the next day using

an EndoFree Plasmid Purification Kit (Qiagen, Inc.,

Chatsworth, CA). Construction was verified by automated

DNA sequencing.

Expression and purification of the NS2B protein

Bacterial cultures were transformed with V5H6NS2B,

and the NS2B protein was induced for 24 h by the

addition of IPTG. The bacterial lysates were then soni-

cated, centrifuged, and resuspended in 50 mM Tris and

10 mM EDTA. These steps were performed to pellet the

inclusion bodies containing the NS2B protein, which

were then analyzed by Coomassie Blue staining and

western blotting with a monoclonal antibody against the

V5 epitope (Invitrogen). The V5H6NS2B protein was

purified by 2 methods. First, inclusion bodies were re-

solved by electrophoresis on a 17 % SDS-PAGE gel, and

the V5H6NS2B protein was eluted from an excised gel

piece in 1 % PBS overnight at 4 °C. The V5H6NS2B pro-

tein was further purified using the ProBond Purification

System (Invitrogen). Briefly, nickel-coupled resin was re-

suspended in native-binding buffer (250 mM NaH2PO4,

pH 8.0, 2.5 M NaCl) and the V5H6NS2B protein was

allowed to bind the resin overnight at 4 °C. Next, the

resin was washed several times with native buffer, after

which the V5H6NS2B protein was eluted in elution

buffer (250 mM NaHPO4, pH 8.0; 2.5 M NaCl; and 3 M

imidazole, pH 6.0; final pH is 8.0) in 1 mL aliquots. The

resulting fractions were then precipitated with boric

acid, resuspended in HEPES buffer (pH 8.0), resolved by

SDS-PAGE, and visualized by Coomassie Blue staining

to evaluate the purity.

Permeability assays in E. coli pLysS bacteria

E. coli BL21 (DE3) pLysS bacteria were transformed with

V5H62B or pProEX-PTB and grown at 37 °C in LB

medium in presence of 100 μg/ml ampicillin and 34 μg/ml

chloramphenicol. When cultures reached an absorbance of

0.4, at 600 nm they bacteria cultures were induced by the

addition of 1 mM isopropyl-B-D thiogalactopyranoside

(IPTG). Subsequently, the optical densities were measured,

and culture aliquots were taken at intervals of 30–190 min.

In addition, the original cultures were diluted 100-fold in

M9 medium supplemented with 0.2 % glucose and antibi-

otics. When the cultures reached an absorbance of 0.4,

they were induced by the addition of 1 mM IPTG. Next,

1 ml aliquots of cultures were taken at the indicated times

and treated with 1 mM HygB for 10 min at 37 °C. Fi-

nally, the bacteria cultures were metabolically labeled

with 2 μCi/ml of [S35]-Met-Cys for 10 min at 37 °C,

pelleted at 13,000 rpm, and resuspended in Laemmli

buffer. Protein lysates were separated on a 10 % SDS

polyacrylamide electrophoresis (SDS-PAGE) gel and

visualized by autoradiography.

Protein cross-linking assays

Seven micrograms of purified V5H6NS2B protein in

HEPES buffer was incubated with increasing concentra-

tion (0.1–0.5 %) of glutaraldehyde (Sigma). These reac-

tions were incubated in the dark for 2 min at 25 °C and

subsequently quenched with 50 mM Tris–HCl, pH 8.0

for 15–20 min. Cross-linked proteins was separated on a

12 % SDS-PAGE gel under reducing conditions, and

complexes were detected in western blots with a
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polyclonal anti-NS2B antibody and a secondary anti-

body coupled to horseradish peroxidase.

Membrane purification

E. coli were harvested by centrifuging at 11,000 g for

10 min at 4 °C, the cell pellets were re-suspended in lysis

buffer (20 mM Tris–HCl, pH 7.8, 300 mM NaCl, and

2 mM β-mercaptoethanol) and were then broken up by

sonication on ice. The cell lysate was cleared by centrifu-

gation at 5000 g for 20 min to remove cell debris. Then

supernatant was transferred to an ultra-centrifuge tube

with 4 ml of 30 % and 4 ml of 60 % sucrose solution.

Cell membrane was collected from the interface after

ultracentrifugation at 125,000 g for 1 h. The cell mem-

brane fraction was collected from the interface to per-

form western blot experiments. [21]. A hyperimmune

mouse antibody specific for OMPC and OMPF was used

to re probed the membranes were NS2B protein was

detected.

Determination of hemolysis effect by NS2B protein

The hemolytic property of the V5H6NS2B protein was

measured in human erythrocytes. Hemolysis assays were

performed as described previously [24], with modifica-

tions. Briefly, 4 ml of whole blood was washed with PBS

(pH 7.0) and centrifuged at 1500 rpm for 5 min. Next,

2 × 107 blood cells were added to 3 individual tubes, to

which the V5H6NS2B protein (purify by affinity chroma-

tography as mentioned above) was added at different

concentrations (5, 20, or 100 μg). Negative control

experiments were performed by adding the soluble

protein PTB to blood cells. In addition, 10 mL of 1 %

Triton X-100 was added to blood cells as a positive

control for cell lysis. The tubes were incubated at

37 °C for 1 h, centrifuged at 700 × g for 10 min, and

the supernatants were placed in 96-well plates. The

release of hemoglobin was measured spectrophoto-

metrically at 540 nm. Specific lysis was calculated by

the following formula: Specific lysis = (A540 lysis in

the sample – A540 basal lysis)/(A540 total lysis – A540

basal lysis) × 100.

Erythrocyte ghost preparation and electron microscopy

experiments

To determine the organization of the V5H6NS2B pro-

tein in biological membranes, erythrocyte ghosts were

prepared from blood cells. Red cells were purified from

blood samples in the presence of anticoagulant and by

centrifugation at 1500 rpm for 10 min, and the plasma

was removed by aspiration. This procedure was per-

formed 3 times, using 0.17 M NaCl buffer to re-suspend

cells following each centrifugation step. After the third

centrifugation step, the pelleted cells were resuspended

in 0.17 M NaCl buffer to the original sample volume.

Next, 1 mL samples were hemolyzed by incubation with

6 mL of buffer (1 mM EDTA, 9.64 mM NaCl, 3.61 mM

Na2HPO4, and KH2PO4 and KH2PO4 at 1.20 mM;

pH 7.2) on ice for 20 min. The lysates were then centri-

fuged at 17,900 × g at 4 °C for 10 min, the supernatants

were removed, and the pellet was washed sequentially in

9.6 mm Tris–HCl and 4 mM NaCl (pH 7.2) and a buffer

containing 4.8 mm Tris–HCl, 10 mM NaCl, and

100 mM KCl (pH 7.2). Finally, the erythrocyte ghost pel-

lets were washed twice in water and re-suspended in

1 mL of HEPES buffer. For microscopic analysis of in-

corporation of NS2B protein into membranes, 15 μl of

V5H6NS2B protein (100 μg/mL) or bovine serum albu-

min (negative control) were diluted in HEPES buffer

(pH 7.0). The diluted V5H6NS2B or bovine serum albu-

min proteins were mixed with 100 μl of erythrocyte

ghosts and incubated for 1 h at 37 °C. Following the in-

cubation period, the samples were washed in HEPES

buffer and centrifuged at 1376 × g for 5 min. Twenty-

microliter samples were then applied to copper grids

previously coated with a thin layer of poly[vinyformval]

(Polysciences, Inc., Warrington, PA). Excess sample was

drained with a filter paper and negatively stained with a

solution of 2 % uranyl acetate for 30 s. Grids containing

the erythrocyte ghosts were drained with a filter paper

and dried at room temperature. Samples were analyzed

in a JEOL 1400X transmission electron microscope at 80

ke (JEOL, Ltd., Japan).
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