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2 Département de phytologie, CRH/INAF, Pavillon des Services (INAF), Université Laval, 2440 boul. Hochelaga, Québec (QC), Canada
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Abstract

Protease inhibitors are a promising complement to Bt toxins for the development of insect-resistant transgenic

crops, but their limited specificity against proteolytic enzymes and the ubiquity of protease-dependent processes in

living organisms raise questions about their eventual non-target effects in agroecosystems. After a brief overview of

the main factors driving the impacts of insect-resistant transgenic crops on non-target organisms, the possible

effects of protease inhibitors are discussed from a multitrophic perspective, taking into account not only the target

herbivore proteases but also the proteases of other organisms found along the trophic chain, including the plant
itself. Major progress has been achieved in recent years towards the design of highly potent broad-spectrum

inhibitors and the field deployment of protease inhibitor-expressing transgenic plants resistant to major herbivore

pests. A thorough assessment of the current literature suggests that, whereas the non-specific inhibitory effects of

recombinant protease inhibitors in plant food webs could often be negligible and their ‘unintended’ pleiotropic

effects in planta of potential agronomic value, the innocuity of these proteins might always remain an issue to be

assessed empirically, on a case-by-case basis.

Key words: Insect-resistant transgenic plants, non-target organisms, pleiotropic effects, protease–inhibitor interactions,

protease inhibitors.

Introduction

The intense media coverage of a short scientific communi-

cation reporting the detrimental effects of a Bt toxin

(Cry1Ab protein)-expressing corn (Zea mays L.) hybrid

against the lepidopteran monarch butterfly, Danaus plex-

ippus (L.) (Losey et al., 1999), has caused, ten years ago, an
unprecedented controversy on the large-scale deployment of

insect-resistant transgenic crops worldwide (Pimentel and

Raven, 2000; Shelton and Sears, 2001). The conclusions of

this laboratory study, then supported by feeding assays with

corn pollen collected on milkweed (Asclepias syriaca L.)

plants in a field experimental set-up (Hansen Jesse and

Obrycki, 2000), could be explained by the documented

toxicity of Cry1A proteins against different lepidopteran

herbivores, the abundance of Cry1Ab toxins in the pollen

tested, and the large quantities of pollen dusted on

milkweed leaves for larval bioassays (Pimentel and Raven,
2000; Hellmich et al., 2001). Although the agronomic

relevance of the two studies was seriously questioned and

their conclusions tempered by follow-up studies suggesting

a negligible impact of commercial Bt corn hybrids under

field conditions (Sears et al., 2001; Gatehouse et al., 2002;

Wolt et al., 2003; Dively et al., 2004), this new episode of
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the ongoing debate over genetically modified organisms had

the merit to put forward the ecologically relevant question

of non-target organisms in transgenic crop fields, and to

catalyze the funding of studies assessing the possible

unintended effects of transgenic crops in the environment.

After a brief overview of the main factors driving the

effects of insect-resistant transgenic crops on non-target

organisms, the issue is addressed here from a multitrophic
perspective using protease inhibitors as a model case. These

ubiquitous regulators of proteolytic enzymes have readily

been identified as potential candidates for the development of

insect-resistant transgenic crops (Hilder et al., 1987; Johnson

et al., 1989), and large-scale field trials are currently being

conducted with transgenic rice (Oryza sativa L.) lines

expressing serine protease inhibitors, before their eventual

release for lepidopteran insect control (Qiu, 2008; Deka and
Barthakur, 2010). This review discusses the possible impacts

of recombinant protease inhibitors on target and non-target

species including the host plant itself, keeping in mind the

limited functional specificity of these proteins compared

with the high specificity of currently used Bt toxins.

The impact of insect-resistant transgenic
plants on non-target organisms

Taking into account the different modes of action and

activity ranges of recombinant pesticidal proteins expressed

in transgenic crops, the striking complexity of biotic inter-
actions and food web relationships in agroecosystems, and

the random insertion of transgene sequences in recipient plant

genomes, three main factors generally determine the environ-

mental impact of a given pest- (or pathogen-) resistant

transgenic crop: (i) the overall efficiency of the introduced

resistance trait against the target herbivore (or pathogen);

(ii) the activity range—or functional specificity—of the

recombinant trait; and (iii) the (bio)chemical composition
and physiological status of the host plant following transgene

insertion and expression:

(i) Overall efficiency of the recombinant trait

Currently, most transgenic crops grown in agricultural fields

worldwide are used for weed or herbivorous insect control

(James, 2009). By definition, any pest control measure
adopted in the field, whether relying on transgenic crop

lines or not, may exert direct and indirect effects on

microbial, animal, and plant communities. Weed control

strategies involving herbicide-tolerant transgenic crops,

which also rely on broad-spectrum commercial pesticides,

have a direct negative impact on the number and abundance

of resident plant species, with an indirect negative impact

on the abundance and diversity of refuges and food sources
available to resident organisms (Firbank et al., 2003). By

comparison, the direct effects of insect-resistant (e.g. Bt

toxin-expressing) plants are limited essentially to target pest

populations, but the high pesticidal efficiency of these plants

may indirectly impact the fitness of non-target organisms

and the overall organization of non-target populations in

the field. A well-known example of this is the negative

impact of Bt toxin (Cry protein)-expressing plants on

arthropod parasitoids and predators provided with ‘poor

quality’ herbivore hosts or preys suffering recombinant

toxin ingestion (Naranjo et al., 2009). Another example is

the adjustment of secondary herbivore, auxiliary carnivore,

and soil detritivore arthropod populations in agricultural
fields due to the efficient repression of primary herbivore

pests with Bt toxin-expressing lines (Marvier et al., 2007;

Cloutier et al., 2008). The abundance of non-target

secondary pests such as aphids, for instance, can signifi-

cantly increase as a result of released direct competition

with the target herbivore, as notably observed with the

Bt toxin-expressing potato (Solanum tuberosum L.) line

Newleaf�, highly resistant to the Colorado potato beetle,
Leptinotarsa decemlineata (Say) (Cloutier et al., 2008).

(ii) Functional specificity of the recombinant trait

Herbivore pest resistance traits introduced into crop plant

genomes are usually selected for the control of a specific

pest, but direct unintended effects on non-target organisms
cannot be excluded de facto (Groot and Dicke, 2002). The

monarch butterfly controversy (see above) and the reported

toxicity of Cry1A and Cry2A toxins against different

lepidopteran insects (Sims, 1995, 1997; van Frankenhuyzen

and Nystrom, 2002) are examples of the preferential, but

non-exclusive action of pesticidal proteins against specific

target pests. Possible non-specific effects are also, if not

even more, likely to occur for those newly developed
pesticidal proteins, such as lectins and protease inhibitors,

which exert their effects in a poorly specific manner on

molecular targets found in most organisms in the environ-

ment (Malone and Burgess, 2000; O’Callaghan et al., 2005).

Despite some controversy on methodological and interpre-

tation issues (Andow et al., 2009; Lövei et al., 2009; Shelton

et al., 2009a, b), it is usually considered that the direct

unintended effects of Bt toxin-expressing plants on non-
target organisms are negligible owing to the intrinsic

functional specificity of Cry toxins, toxin concentrations in

plant tissues below the thresholds required for significant

side-effects, and a limited persistence of the recombinant

toxins in natural ecosystems (Zwahlen et al., 2003; Clark

et al., 2005; O’Callaghan et al., 2005; Romeis et al., 2006,

2008; Naef et al., 2006; Marvier et al., 2007; Prihoda and

Coats, 2008; Wolfenbarger et al., 2008; Naranjo, 2009). By
contrast, the question of direct unintended effects is of

particular relevance for proteins such as lectins, which

interact with the glycan moiety of many glycoproteins and

glycolipids in eukaryotes; or protease inhibitors, which

inhibit proteases from protease families widely distributed

among plant, animal, and microbial taxa (Malone and

Burgess, 2000; O’Callaghan et al., 2005).

(iii) Alteration of the host plant’s characteristics

The heterologous expression of metabolic regulators such

as protease inhibitors in transgenic crops also raises
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questions about their effects in planta and their resulting

impact on the composition and physiology of the host

plant, which represents a central element in the whole food

chain (Visal-Shah et al., 2000; Khalf et al., 2010). Unlike

Cry toxins acting on specific membrane protein receptors

in the digestive tract of target herbivores (Pigott and Ellar,

2007), protease inhibitors may interact with plant endog-

enous protease targets structurally and functionally re-
lated to herbivore digestive proteases (Goulet et al., 2008).

For recombinant Cry toxins, insertional mutagenesis

events altering the host plant phenotype may occur in

a plant line-specific manner as a result of transgene

position effects following random integration of the toxin-

encoding gene and/or transcription of regulatory sequen-

ces included in gene constructs (Gelvin, 2003; Miki et al.,

2009). Apart from a finite and limited fraction of the host
cell tRNA and amino acid pools allocated to biosynthesis,

Bt toxin expression is unlikely, however, to have a signifi-

cant impact on the host plant in the absence of target

receptors. In sharp contrast, non-specific ‘pleiotropic’

effects positively correlated with transgene expression

remain possible, even plausible, with recombinant pro-

tease inhibitors such as those currently considered for pest

control (Visal-Shah et al., 2000), which usually show
inhibitory activity towards widely distributed proteases

like trypsin-, chymotrypsin-, and cathepsin L-like enzymes

(Haq et al., 2004).

Together, the three factors identified above determine,

depending on their relative importance, the positive,

negative or negligible (non-significant) net impact of

a modified plant on the biotic component of its surrounding

environment. Given the strong influence of cultural practi-
ces in agricultural fields and the number of parameters

underlying biotic interactions in multitrophic systems, the

impact of transgenic crops on non-target organisms is

typically determined on a comparative basis, using as

comparators closely-related (e.g. isogenic or near-isogenic)

plant varieties, or, on a larger scale, realistic production

schemes with conventional plant lines and the usual cultural

practices (Firbank et al., 2003; Michaud, 2005). Several
studies have been carried out over the last ten years

assessing the impacts of protease inhibitor-expressing trans-

genic plants on the growth and development of non-target

organisms. The next paragraphs summarize the conclusions

of these studies, after a brief overview of recent data

documenting the potential of these plants for herbivorous

pest control.

Recombinant protease inhibitors in plant
protection

Numerous papers have reported the potential of protease
inhibitors as effective antidigestive compounds to protect

crop plants from herbivory or pathogenic infection

(Michaud, 2000; Haq et al., 2004). Serine protease inhib-

itors, in particular, have been readily identified as potential

candidates for the development of insect-resistant trans-

genic crops (Hilder et al., 1987; Johnson et al., 1989; Duan

et al., 1996; Xu et al., 1996), and their usefulness to reduce

insecticide loads in the field has recently been documented

(Huang et al., 2005; Qiu, 2008). Most protease inhibitors in

plants are proteinaceous, competitive inhibitors acting as

pseudo-substrates to enter the active site of proteases (Birk,

2003). Following inhibition, the target proteases can no

longer cleave peptide bonds, which causes a detrimental
disruption of dietary protein assimilation in herbivorous

pests leading to significant growth and development delays

(Haq et al., 2004).

Despite promising developments in recent years (Table 1),

the pesticidal effects of protease inhibitors in plant pro-

tection are still to be improved in many cases. Insect

herbivores have developed, over evolutionary time, effective

strategies to cope with dietary protease inhibitors (Jongsma
and Bolter, 1997; Broadway, 2000), such as the use of

complex digestive protease complements with proteases

from different functional classes acting on dietary proteins

in a complementary manner (Brunelle et al., 1999; Hernan-

dez et al., 2003; Gruden et al., 2003; Vinokurov et al., 2006,

2009; Prabhakar et al., 2007; Kiggundu et al., 2010); the

over-expression of target proteases to outnumber the in-

hibitory proteins (Cloutier et al., 2000; Ahn et al., 2004);
and the constitutive or diet-induced expression of proteases

weakly sensitive to the ingested inhibitors (Michaud et al.,

1993, 1995a, b; Jongsma et al., 1995a; Bown et al., 1997;

Girard et al., 1998a; Cloutier et al., 1999, 2000; Mazumdar-

Leighton and Broadway, 2001a, b; Zhu-Salzman et al.,

2003a; Brunelle et al., 2004; Gruden et al., 2004; Liu et al.,

2004; Koo et al., 2008). Other strategies involve the over-

expression of proteases from alternative functional classes
(Zhu-Salzman et al., 2003a; Brunelle et al., 2004; Rivard

et al., 2004; Oppert et al., 2005; Vila et al., 2005); the

degradation of protease inhibitors with non-target, insensi-

tive proteases (Michaud et al., 1995b; Michaud, 1997;

Girard et al., 1998b; Giri et al., 1998; Gruden et al., 2003;

Zhu-Salzman et al., 2003a; Yang et al., 2009); and

a transcriptionally regulated reallocation of cellular resour-

ces towards protease inhibitor-induced compensatory pro-
cesses (Liu et al., 2004; Chi et al., 2009). It is now well

recognized that protease–inhibitor interactions in plant–

insect systems are the result of a long, co-evolutionary

process triggering the continuous diversification of (insect)

proteolytic and (plant) protease inhibitory functions (Lopes

et al., 2004; Christeller, 2005; Kiggundu et al., 2006; Girard

et al., 2007), with the practical implication that the ectopic

expression of protease inhibitors in planta leads not only to
the inhibition of constitutive target proteases in naive

herbivores, but also to the induction of specific protease-

encoding genes and a significant remodelling of the digestive

proteome complement.

In this context, the development of recombinant protease

inhibitors with strong inhibitory activity against specific

herbivores is a worthwhile, but challenging task. Protein

engineering approaches based on structure/function models
have been used to improve the inhibitory potency of

protease inhibitors against herbivore pest and parasitic

Unintended effects of protease inhibitor-expressing crops | 4171
D

ow
nloaded from

 https://academ
ic.oup.com

/jxb/article/61/15/4169/425771 by guest on 21 August 2022



nematode digestive proteases, including site-directed muta-

genesis of key amino acids (Urwin et al., 1995; Kiggundu

et al., 2006; Goulet et al., 2008) and molecular phage

display procedures involving random mutagenesis in func-
tionally significant regions of the inhibitor sequence

(Jongsma et al., 1995b; Koiwa et al., 2001; Ceci et al., 2003;

Melo et al., 2003). Fusion proteins integrating complete or

partial inhibitor sequences have also been designed to

broaden the activity range and improve the overall effi-

ciency of protease inhibitors against target herbivores

(Urwin et al., 1998; Inanaga et al., 2001; Zhu-Salzman

et al., 2003b; Outchkourov et al., 2004a; Brunelle et al.,
2005; Benchabane et al., 2008). Such protein engineering

strategies, together with ‘transgene stacking’ (or gene

pyramiding) in planta involving protease inhibitor combina-

tions (Abdeen et al., 2005; Senthilkumar et al., 2010) or

protease inhibitors combined with other pesticidal proteins

(Boulter et al., 1990; Tang et al., 1999; Maqbool et al., 2001;

Han et al., 2007), have clearly confirmed the practical

potential of these proteins in plant protection. From an

ecological perspective, these advances underlined, on the

other hand, the relevance of assessing their inhibitory effects
against the proteases of non-target organisms, including the

host plant’s own proteases.

Unintended protease–inhibitor interactions
in non-target arthropods

Several laboratory studies have assessed the effects of

recombinant protease inhibitors on non-target arthropods
interacting with, or likely to interact with, the modified

plant (Table 2). Protease inhibitors may impact non-target

organisms either directly by the establishment of a formal

trophic interaction, or indirectly through an intermediate

herbivore ingesting the recombinant material (Malone and

Table 1. Protease inhibitor-expressing transgenic plants resistant to herbivore pests and pathogens: a summary of recent successful

examples

Plant Recombinant inhibitor Target proteases Target herbivore(s) Reference

Herbivorous insects

Alfalfa Oryzacystatin II Cysteine Phytodecta fornicata Ninkovic et al., 2007

Apple Nicotiana alata proteinase inhibitor Serine Epiphyas postvittana Maheswaran et al., 2007

Arabidopsis Mustard trypsin inhibitor 2 Serine Plutella xylostella De Leo et al., 2001

Oilseed rape Mustard trypsin inhibitor 2 Serine P. xylostella De Leo et al., 2001

Potato Multidomain cystatin fusions Cysteine+Aspartate Frankliniella occidentalis Outchkourov et al., 2004a

Various animal and plant cystatins Cysteine (+Aspartate) F. occidentalis Outchkourov et al., 2004b

Barley cystatin HvCPI-1 C68 Cysteine Leptinotarsa decemlineata Alvarez-Alfageme et al., 2007

Locust serine proteinase inhibitors Serine L. decemlineata Kondrak et al., 2005

Rice Barley trypsin inhibitor Serine Sitophilus oryzae Alfonso-Rubi et al., 2003

Soybean trypsin inhibitor (+lectin) Serine Nilaparvata lugens Li et al., 2005

Cnaphalocrocis medinalis Li et al., 2005

Maize proteinase inhibitor (mpi) Serine Chilo suppresssalis Vila et al., 2005

Cowpea trypsin inhibitor (+Bt toxin Cry1Ac) Serine C. medinalis Han et al., 2007

Sugarcane Bovine pancreatic trypsin inhibitor (aprotinin) Serine Scirpophaga excerptalis Christy et al., 2009

Tobacco Bovine spleen trypsin inhibitor Serine Helicoverpa armigera Christeller et al., 2002

Brassica juncea trypsin inhibitor Serine Spodoptera litura Mandal et al., 2002

Mustard trypsin inhibitor 2 Serine Spodoptera littoralis De Leo and Gallerani, 2002

Tobacco trypsin protease inhibitor Serine S. litura Srinivasan et al., 2009

H. armigera Srinivasan et al., 2009

Sporamin+Taro cystatin Serine+Cysteine H. armigera Senthilkumar et al., 2010

Buckwheat serine proteinase inhibitor Serine Trialeurodes vaporariorum Khadeeva et al., 2009

Root parasitic nematodes

Alfalfa Oryzacystatin I Cysteine Pratylenchus penetrans Samac and Smigocki, 2003

Potato Oryzacystatin I Cysteine Meloidogyne incognita Lilley et al., 2004

Globodera pallida Lilley et al., 2004

Tomato Taro cystatin Cysteine M. incognita Chan et al., 2010

Wheat Potato proteinase inhibitor 2 Serine Heterodera avenae Vishnudasan et al., 2005

Pathogens

Potato Buckwheat serine proteinase inhibitor Serine Pseudomonas syringae Khadeeva et al., 2009

Clavibacter michiganensis Khadeeva et al., 2009

Rice Potato carboxypeptidase inhibitor Carboxypeptidases A Magnaporthe oryzae Quilis et al., 2007

Fusarium verticillioides Quilis et al., 2007

Tobacco Buckwheat serine proteinase inhibitor Serine P. syringae Khadeeva et al., 2009

C. michiganensis Khadeeva et al., 2009

Sporamin+Taro cystatin Serine+Cysteine Pythium aphanidermatum Senthilkumar et al., 2010
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Burgess, 2000) (Fig. 1). Along with their pesticidal effects

against target herbivores, recombinant protease inhibitors

might, in the field, influence digestive protease processes in
pollinators, symbionts, detritivores, or non-target phytoph-

ages, and eventually alter the fitness or behaviour of these

organisms establishing a physical relationship with the

modified plant. They might also impact the proteases and

compromise the ecological functions of insect natural

predators, parasitoids, or pathogens by a two-step route,

via their herbivore prey or host ingesting the modified plant

tissues.
Similar to Bt toxin-expressing plants, negligible effects

have been observed in several instances for protease

inhibitor-expressing plants against diverse non-target arthro-

pods including herbivore predators, parasitoids, secondary

phytophages, and soil detritivores (Cowgill et al., 2002,

2004; Graham et al., 2002; Cowgill and Atkinson, 2003; Bell

et al., 2003; Bouchard et al., 2003a, b; Ferry et al., 2003,

2005; Mulligan et al., 2006; Simoes et al., 2008; Burgess
et al., 2008; Konrad et al., 2008, 2009). By contrast,

negative (Bell et al., 2001; Ferry et al., 2005) or positive

(Ashouri et al., 2001a, b) effects were recorded in other

cases, as has also been observed for a number of lectin-

expressing plants (Birch et al., 1999; Bell et al., 2003; Down

et al., 2003; Tomov et al., 2003). Whereas the detection of

positive effects in some instances remains surprising given

the metabolic interference effects expected for protease

inhibitors, the negative effects of these proteins could be
explained, as noted for Bt toxins, by a poor quality of the

herbivore preys or hosts ingesting transgenic plant tissues

(Bell et al., 2001).

Protease inhibitory effects and midgut compensatory

responses observed in some predators following ingestion

of herbivore preys fed transgenic material also suggest a

direct interfering effect at superior trophic levels. Articles

describing the impact of L. decemlineata larvae fed
oryzacystatin-expressing potato leaves on the hemipteran

two-spotted stinkbug Perillus bioculatus (F.), for instance,

reported a strong inhibition of this predator’s midgut

proteases, readily compensated by the secretion of proteases

from alternative functional classes insensitive to the

recombinant inhibitor (Bouchard et al., 2003a, b). In a

similar way, oryzacystatin and MTI-2, a trypsin inhibitor

from mustard, were shown to induce compensatory
responses in the coleopteran predators Pterostichus madidus

(F.) and P. melanarius (Illiger) via their herbivorous prey

fed oryzacystatin- or MTI-2-expressing rapeseed lines

(Ferry et al., 2005; Mulligan et al., 2006). Interestingly,

transient negative effects observed for MTI-2 on growth

rates of P. madidus were overcome gradually, along with the

Table 2. Overall impact of transgenic plants expressing protease inhibitors on predatory, parasitoid and herbivorous non-target

arthropods: a summary of recent studies

Plant Recombinant inhibitor Target herbivore Non-target organism(s) a Overall
impactb

Reference

Predators

Canola Oryzacystatin I Plutella xylostella Harmonia axyridis None Ferry et al., 2003

P. xylostella Pterostichus madidus Negative Ferry et al., 2005

Deroceras reticulatum Pterostichus melanarius None Mulligan et al., 2006

Strawberry Cowpea trypsin inhibitor Otiorynchus sulcatus Carabids None Graham et al., 2002

Potato Cowpea trypsin inhibitor Lacanobia oleracea Podisus maculiventris None Bell et al., 2003

Oryzacystatin I Leptinotarsa decemlineata Perillus bioculatus None Bouchard et al., 2003a, b

Barley cystatin HvCPI-1 C68 L. decemlineata P. maculiventris None Alvarez-Alfageme et al., 2007

Tobacco Bovine spleen trypsin inhibitor Spodoptera litura Ctenoghathus novaezelandiae None Burgess et al., 2008

Parasitoids

Canola Oryzacystatin I Myzus persicae Diaeretiella rapae None Schuler et al., 2001

Potato Cowpea trypsin inhibitor L. oleracea Eulophus pennicornis Negative Bell et al., 2001

Oryzacystatin I L. decemlineata Aphidius nigripes Positive Ashouri et al. 2001a

Globodera pallida Aphidius ervi None Cowgill et al., 2004

G. pallida Aspahes vulgaris None Cowgill et al., 2004

Non-target herbivores

Canola Oryzacystatin I – Osmia bicornis None Konrad et al., 2008, 2009

Potato Chicken egg white cystatin G. pallida Myzus persicae None Cowgill et al., 2002

G. pallida Eupteryx aurata None Cowgill and Atkinson, 2003

Oryzacystatin I G. pallida M. persicae None Cowgill et al., 2002

G. pallida E. aurata None Cowgill and Atkinson, 2003

L. decemlineata Macrosiphum euphorbiae Positive Ashouri et al., 2001b

Sugarcane Soybean Bowman-Birk inhibitor Diatraea saccharalis Scheloribates praeincisus None Simoes et al., 2008

Soybean Kunitz inhibitor D. saccharalis S. praeincisus None Simoes et al., 2008

a Plant material ingested indirectly via herbivorous preys (predators) or hosts (parasitoids), or directly from host plant tissues (non-target
herbivores).

b Significant positive (Positive), adverse (Negative) or null (None) impact on mortality, fecundity, weight gain and/or food consumption (usually
at P¼0.05).
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secretion of inhibitor-insensitive proteases in the midgut

(Ferry et al., 2005). These observations, while illustrating

the remarkable adaptability of digestive protease comple-

ments at superior trophic levels of plant ecosystems, were

also underlining the vectorial movement of protease inhib-

itors along food chains and the relevance of additional

empirical studies assessing the spatio-temporal dynamics of

protease–inhibitor interactions. The unexpected positive
effects observed for oryzacystatin on secondary phytoph-

ages and associated parasitoids (Ashouri et al., 2001a, b)

were also adding to the complexity of the whole picture,

and perhaps pointing to a possible role for inhibitor-

induced pleiotropic effects in planta altering some composi-

tional or physiological characteristics of the transformed

host plant.

Unintended protease–inhibitor interactions
in planta

Proteolytic enzymes are ubiquitous biochemical effectors in

plant cells, involved in the regulation of numerous meta-

bolic processes ranging from housekeeping functions such
as protein turnover and the elimination of misfolded

proteins, to the processing of polypeptide pre- and pro-

regions on maturing proteins (Sullivan et al., 2003; Schaller,

2004; Faye et al., 2005; van den Hoorn, 2008). At the

cellular level, proteases are involved in virtually all bio-

chemical processes, which raises questions about the

possible impacts of ectopically expressed protease inhibitors

on proteolytic processes and protease/inhibitor balances in

the plant. Studies have reported negligible phenotypic

effects for protease inhibitors in transgenic plants based on

the assessment of macroscopic indicators such as growth

rate, stem diameter or leaf number (Masoud et al., 1993;

Brunelle et al., 2004; Rivard et al., 2006; Badri et al., 2009),
but recent reports suggest significant effects at the metabolic

level. Several papers documented, for instance, the pestici-

dal effects of recombinant cystatins in transgenic plants

(Atkinson et al., 2004a; Outchkourov et al., 2004a, b;

Ninkovic et al., 2007; Chan et al., 2010), but the constitutive

accumulation of these proteins in planta could also be

associated with an alteration of flower development

(Gutiérrez-Campos et al., 2001), an inhibition of the
pathogen-inducible hypersensitive response (Belenghi et al.,

2003), an improved stability of the photosynthetic appara-

tus under low temperature regimes (Van der Vyver et al.,

2003), or an increased protein content in leaves (Prins et al.,

2008). In a similar way, the potential of serine protease

inhibitors for herbivorous insect control has been exten-

sively discussed (see above), but significant metabolic in-

terference effects impacting leaf protein levels were observed
recently for the serine-type inhibitors bovine aprotinin and

tomato Kunitz-type cathepsin D inhibitor expressed in

potato (Badri et al., 2009; Goulet et al., 2010).

Fig. 1. Intended and unintended effects of protease inhibitor-expressing plants on non-target organisms. The main intended effect for

a recombinant protease inhibitor usually is to provide resistance against an insect herbivore (horizontal plain arrow), but a number of

unintended effects may be observed as a result of pleiotropic effects in planta changing the host plant’s phenotype or composition

(dashed arrows), or as a result of non-specific protease inhibitory effects due to a limited specificity of the recombinant inhibitor against

extracellular (digestive) proteolytic enzymes in the ecosystem (vertical plain arrows). Direct unintended effects may be observed on

different organisms interacting with or ingesting tissues from the host plant (grey boxes). Indirect unintended effects may also be

observed at higher trophic levels, via target and non-target phytophages ingesting transgenic tissues (white box). rPI, recombinant

protease inhibitor.
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Subcellular targeting of the recombinant inhibitors using

appropriate peptide targeting signals may represent an

effective way to elude unintended inhibitory effects in

planta. Organelles play specific, complementary roles in

plant cells and harbour a specific protease complement, well

adapted to their particular metabolic needs and physico-

chemical environment (Callis, 1995). Not surprisingly, a re-

cent study assessing the possible effects of bovine aprotinin
targeted to the secretory pathway of transgenic potato leaf

cells using an N-terminal signal peptide confirmed the onset

of organelle-dependent pleiotropy (Badri et al., 2009).

Whereas retaining this inhibitor of serine proteases in the

endoplasmic reticulum with a ‘KDEL’ retention signal

negatively altered protein content in leaves via a proteome-

wide negative feedback on protein biosynthesis, the same

protein allowed to migrate further along the secretory
pathway had a negligible impact on both the leaf proteome

and total protein content. In agreement with the absence of

aprotinin in the cytosol, no particular phenotype was

observed at the proteome level in potato clones expressing

aprotinin in this cell compartment (Badri et al., 2009), in

sharp contrast with cytosol-targeted forms of corn cystatin

II and tomato cathepsin D inhibitor both inducing impor-

tant changes (Goulet et al., 2010; Munger et al., 2010). The
latter inhibitor, a broad-spectrum inhibitor of serine and

aspartate proteases, was shown to alter the overall protein

biosynthesis/degradation balance in leaves positively, with

a resulting positive impact on leaf protein content (Goulet

et al., 2010). The corn cystatin had no impact on general

protein content (Vaillancourt, 2005), but triggered the

constitutive expression of several naturally inducible stress-

and pathogenesis-related proteins (Munger et al., 2010), in
line with earlier studies reporting modified responses to

abiotic and biotic stress cues in plants expressing cystatins

in the cytosol (Van der Vyver et al., 2003; Belenghi et al.,

2003; Prins et al., 2008).

From a scientific viewpoint, the so-called pleiotropic

effects of recombinant protease inhibitors in planta are

typically considered as unintended metabolic interference,

but they might simply illustrate a lack of knowledge on
plant proteolytic processes and eventually represent useful

traits for crop improvement (Table 3). Whereas pleiotropic

effects such as a delayed development of floral organs

(Gutierrez-Campos et al., 2001) or an inhibition of the

hypersensitive response (Belenghi et al., 2003) may hardly

be seen as positive or neutral phenotypes, the up-

regulation of stress-related proteins in leaves (Munger

et al., 2010) might, in contrast, represent an agronomically

useful trait and account, at least in part, for the increased

tolerance of protease inhibitor-expressing plants to abiotic
stress conditions such as drought, salinity or chilling

(Van der Vyver et al., 2003; Huang et al., 2007; Shan

et al., 2008; Srinivasan et al., 2009). Likewise, the

constitutive expression of pathogenesis-related proteins

such as chitinases and b-glucanases in cystatin-expressing

leaves (Munger et al., 2010), along with the repression of

the hypersensitive response by recombinant cystatins

(Belenghi et al., 2003), could explain the recently observed
resistance of cystatin-expressing potato clones to the

fungal necrotroph Botrytis cinerea (A Munger et al.,

unpublished data), which is both sensitive to chitinases

(Vellicce et al., 2006; Distefano et al., 2008) and de-

pendent on the hypersensitive response during infection

(van Baarlen et al., 2007; Imani et al., 2006). Together,

these findings suggesting eventual ‘beneficial pleiotropic

effects’ for protease inhibitors in transgenic plants open
new avenues for the use of these proteins in plant

protection, but they also raise a number of new questions

about the impact of such recombinant metabolic effectors

in plant ecosystems. Could, for instance, the non-target

effects of cystatin-expressing potato plants on predatory

arthropods be related not only to a direct protease

inhibitory interaction at the third trophic level (Bouchard

et al., 2003a, b), but also to the constitutive expression of
stress-related proteins in leaf tissues altering to some

extent the chemical composition of the herbivore prey?

Fourth instars of the coleopteran herbivore L. decemli-

neata are known to adjust the composition of their

digestive protease complement to different sets of endog-

enous defence proteins induced in potato leaves with

antagonistic defence elicitors (Rivard et al., 2004), which

supports the idea of protease inhibitor-mediated pleiotro-
pic effects having an impact on the (bio)chemical compo-

sition of insect herbivores.

Table 3. Pleiotropic effects in transgenic plants expressing recombinant protease inhibitors

Plant Recombinant inhibitor Target
proteases

Induced phenotype Reference

Arabidopsis Wheat Bowman-Birk inhibitor (WRSI5) Serine Salt tolerance Shan et al., 2008

A. thaliana AtCYSa and AtCYSb Cysteine Drought, salt, cold, and oxidation tolerance Zhang et al., 2008

A. thaliana cystatin 1 (AtCYS1) Cysteine Inhibition of the hypersensitive response Belenghi et al., 2003

Potato Corn cystatin II (CC-II) Cysteine Up-regulation of PR-/stress-related proteins Munger et al., 2010

Tomato cathepsin D inhibitor Serine/Aspartate Increased leaf protein content Goulet et al., 2010

Bovine aprotinin Serine Decreased leaf protein content Badri et al., 2009

Rice Rice chymotrypsin inhibitor-like 1 (OCPII) Serine Drought tolerance Huang et al., 2007

Tobacco Nicotiana tabacum trypsin inhibitor (NtPI) Serine Salt tolerance Srinivasan et al., 2009

Oryzacystatin I (OC-I) Cysteine Increased leaf protein content Prins et al., 2008

Chilling tolerance Van der Vyver et al., 2003

Altered flowering Gutierrez-Campos et al., 2001
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Recombinant protease inhibitors in
a multitrophic context

Overall, the recent literature on recombinant protease

inhibitors clearly highlights the eventual impacts of these

proteins in plant ecosystems, and the obvious relevance of

additional studies on protease–inhibitor interactions in non-

target species likely to interact, directly or not, with the

modified host plant. Several conclusive papers have de-

scribed protease inhibitory effects for native inhibitors such

as cowpea trypsin inhibitor or oryzacystatin on non-target

phytophages and auxiliary arthropods, but few studies

addressed the effects of novel-generation inhibitors exhibit-

ing improved potency against herbivorous pest proteases, or

those of multifunctional (e.g. fusion) hybrid inhibitors

active against proteases from different functional classes. In

a similar way, most protein engineering attempts to improve

the efficiency of pesticidal protease inhibitors—and to

confirm their potential in plant protection—have put the

focus on target herbivore proteases, but little attention has

been paid to the activity of the improved inhibitors against

non-target proteases. Although the net impacts of protease

inhibitor-expressing plants might often be limited compared

with pest control strategies relying on commercial chemical

pesticides (Cowgill et al., 2002; Mulligan et al., 2006),

significant impacts, either negative or positive, could be

observed more frequently in future years, along with the

design of highly potent inhibitors and the fine-tuning of

strategies for the high-level expression of heterologous

proteins in transgenic plants (Streatfield, 2007). The chal-

lenge, then, will be to approach the molecular improvement

of protease inhibitors in a multitrophic perspective, looking

for inhibitor variants with lower Kd (or Ki) dissociation

constants for (and increased activity against) the target

herbivore proteases, but with higher Kd values for (and

weaker activity against) proteases of the same functional

class in the host plant and non-target arthropods of the

biological system considered.

A straightforward strategy to achieve this goal will be the

adoption of a two-step approach first involving the

generation and identification of inhibitor variants with

increased potency against the herbivore target proteases,

followed by the selection of candidate inhibitors among

these variants also showing decreased potency against

a number of selected non-target proteases. Rational design

based on 3-D models for protease:inhibitor complexes has

been instrumental over the years to decipher protease

inhibitory mechanisms and to identify relevant target sites

for site-directed mutagenesis (Urwin et al., 1995; Qasim

et al., 1997; Mason et al., 1998; Ogawa et al., 2002; Pavlova

and Björk, 2003), but this approach could be of limited

value for engineering attempts requiring the analysis of

multiple protease–inhibitor interactions. By comparison, in

vitro molecular evolution schemes involving recombination

or random mutagenesis in functionally relevant regions of

the gene (protein) sequence, combined with high throughput

screening approaches such as molecular phage display for

the selection of improved inhibitor variants (Koiwa et al.,

2001; Laboissiere et al., 2002; Ceci et al., 2003; Melo et al.,

2003; Stoop and Craik, 2003; Yuan et al., 2005), probably

represent an effective way to generate functionally diverse

inhibitor populations. Site-directed mutagenesis of inhibi-

tor-encoding DNA sequences at positively selected, hyper-

variable codon (amino acid) sites may also be useful to

induce significant functional diversity among a relatively

small number of single mutants, as illustrated with the
tomato cystatin SlCYS8 interacting with papain-like cyste-

ine proteases (Kiggundu et al., 2006). This latter strategy

has recently proved useful to isolate SlCYS8 variants with

stronger inhibitory activity against digestive cysteine pro-

teases of the potato pest L. decemlineata but with weaker

activity against the digestive proteases of its natural

predator, P. bioculatus (Goulet et al., 2008).

Some of the SlCYS8 variants in this study also exhibited
positively or negatively altered inhibitory activity against

potato leaf cysteine proteases, thereby providing a prelimi-

nary proof-of concept for the feasibility to develop potent

pesticidal inhibitors with the option of amplifying or

minimizing protease inhibitory effects in planta (Goulet

et al., 2008). Recombinant protease inhibitors may exhibit

agronomically useful pleiotropic effects in the host plant

(see Table 3), but a minimal monitoring of these effects
should remain an important piece of the puzzle for any

realistic account of protease inhibitor interfering effects in

plant ecosystems. In practice, rationally controlling the

specificity of recombinant protease inhibitors should allow

useful traits to be amplified intentionally, or, on the

contrary, metabolic interference to be avoided along the

plant food chain. Successfully modulating the onset of

in planta pleiotropic effects and the inhibitory specificity of
recombinant inhibitors could also be of interest, finally, to

preserve the nutritional quality of food products derived

from transgenic crops expressing these proteins. Recent

studies established ‘substantial equivalence’ between food

products derived from protease inhibitor-expressing lines

and conventional or transgenic comparator lines (Li et al.,

2007; Khalf et al., 2010), but the increasing amount of data

showing pleiotropic effects in vegetative organs raises
questions about the occurrence of similar effects in storage

organs (Zhou et al., 2009). In a similar way, the ectopic

accumulation of cysteine protease inhibitors such as cysta-

tins in food products may be of little concern given the

absence of target proteases in the human gut (Atkinson

et al., 2004b), but the expression of highly potent, broad-

spectrum inhibitors of serine and aspartate proteases will

raise a number of questions in future years. Despite serious
doubts about their actual potential in plant protection,

recombinant protease inhibitors have proved to be of

particular value over the last 20 years as powerful models

for studying the ecological impacts of insect-resistant trans-

genic plants, co-evolutionary processes in plant–insect

systems, and recombinant protein-mediated pleiotropic

effects in transgenic plants. Recent developments towards

the successful implementation of inhibitor-expressing plant
lines in agricultural fields, along with the numerous and

complex questions raised by such promising developments,
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should ensure the status of these metabolic effectors as

useful working models for several more years.
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