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When new advantageous alleles arise and spread within a population, deleterious alleles at neighboring loci can hitchhike alongside

them and spread to fixation in areas of low recombination, introducing a fixed mutation load. We use branching processes and

diffusion equations to calculate the probability that a deleterious allele hitchhikes and fixes alongside an advantageous mutant.

As expected, the probability of fixation of a deleterious hitchhiker rises with the selective advantage of the sweeping allele

and declines with the selective disadvantage of the deleterious hitchhiker. We then use computer simulations of a genome with

an infinite number of loci to investigate the increase in load after an advantageous mutant is introduced. We show that the

appearance of advantageous alleles on genetic backgrounds loaded with deleterious alleles has two potential effects: it can fix

deleterious alleles, and it can facilitate the persistence of recombinant lineages that happen to occur. The latter is expected to

reduce the signals of selection in the surrounding region. We consider these results in light of human genetic data to infer how

likely it is that such deleterious hitchhikers have occurred in our recent evolutionary past.
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The first generation of evolutionary models of advantageous al-

leles focused on the dynamics of single selected loci in isolation

from surrounding sites (Haldane, 1927; Fisher, 1930). Hill and

Robertson (1966) demonstrated, however, that selection acting

at one site in finite populations interferes with the efficacy of

selection at surrounding sites, hampering the spread of neighbor-

ing beneficial alleles, even in the absence of fitness interactions

among the sites. As pointed out by Hill and Robertson (1966),

Charlesworth et al. (1993), and generalized by Rice (1999), se-

lection on linked sites reduces the effective number of lineages

contributing to future generations to those lineages with the high-

est fitness. Such genetic bottlenecks increase the power of drift

relative to selection, such that advantageous alleles are less likely

to spread and they spread more slowly than predicted by their di-

rect effects on fitness. In a general analysis by Barton (1995), Hill–

Robertson interference was shown to reduce the fixation proba-

bility of beneficial alleles linked to other selected sites. Breaking

down interference among selected loci has also been shown to

favor increased rates of sex and recombination (Otto and Barton,

1997; Barton and Otto, 2005; Roze and Barton, 2006).

In addition to affecting neighboring loci under selection,

Maynard Smith and Haigh (1974) showed that the dynamics of

a single selected locus impacts surrounding neutral loci. In par-

ticular, an advantageous allele sweeping through a population

reduces, on average, the genetic variance around the site of a

sweep (see also Thomson 1977). This phenomenon provides a

mechanism for detecting regions experiencing selection, forming

the basis for the Hudson-Kreitman-Aguade (HKA) test (Hudson

et al., 1987), for example.

Relatively little attention has been paid, however, to the effect

that selection on neighboring sites might have on the net fitness

change associated with the fixation of a focal beneficial allele and
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on the patterns of variation at surrounding selected sites (see, e.g.,

Yu and Etheridge (2010) regarding beneficial alleles segregating

in the background, and Hadany and Feldman (2005) regarding

deleterious alleles in the background). In this article, we consider

a focal site carrying a new beneficial allele in the presence of

neighboring sites subject to deleterious mutations. We calculate

the chance that a linked deleterious allele hitchhikes to fixation

along with the beneficial allele, as a function of the rate of recom-

bination between them, and describe the implications for patterns

of variation expected within the region of a selective sweep. This

work builds upon a recent simulation study by Hadany and Feld-

man (2005), as well as complementary analytical work for asexual

organisms (Johnson and Barton, 2002; Bachtrog and Gordo, 2004;

Yu and Etheridge, 2008; Yu et al., 2010). Specifically, Hadany and

Feldman (2005) demonstrated that beneficial alleles sweeping to

fixation in a purely asexual population often carry along linked

deleterious alleles. The fixation of deleterious alleles by hitch-

hiking generates a fixed mutation load that must await a future

adaptive sweep by a back or compensatory mutation in order for

it to be erased. Our work provides an analytical prediction of the

probability of such undesirable hitchhikers, allowing for arbitrary

rates of recombination between the sites under selection.

Empirical Background—Recent studies of amino-acid sub-

stitution data suggest that advantageous mutants are present at

higher rates then previously assumed. Although precise values

remain a matter of debate (Eyre-Walker, 2006), Bierne and Eyre-

Walker (2004) estimated that approximately 45% of amino acid

substitutions are adaptive in Drosophila melanogaster, equating

to one substitution, on average, every 450 generations. Later stud-

ies have found that between 30 and 60% of substitutions in D.

melanogaster coding and noncoding regions are adaptive (An-

dolfatto, 2005; Obbard et al., 2009; Andolfatto, 2007; Shapiro

et al., 2007), highlighting the prevalence of beneficial mutation.

Similar values have been observed in the wild mouse Mus muscu-

lus castaneus (Halligan et al., 2010). In hominids this rate tends

to be lower; Boyko et al. (2008) and Eyre-Walker and Keightley

(2009) found that on average 5% of amino-acid substitutions were

adaptive if recent population bottlenecks were taken into account.

Another method to detect the presence of advantageous muta-

tions is through investigating the underlying distribution of fitness

effects among mutations. Using such a method Shaw et al. (2002)

suggested that half of all mutations in Arabidopsis thaliana in-

creased fitness (although see Keightley and Lynch (2003)). Even

in fairly laboratory-adapted strains of Saccharomyces cerevisiae,

Joseph and Hall (2004) estimated that around 6% of spontaneous

mutations were beneficial (see also Hall and Joseph, 2010).

The strength of selection acting on beneficial alleles is also

subject to much debate and is expected to depend on the nature

of past environmental changes, both biotic and abiotic (Elena and

Lenski, 2003). On the lower end, Jensen et al. (2008) estimated

that advantageous mutants have had a mean selection coefficient

of sa ≈ 10−4 in Drosophila. On the upper end, very large selection

coefficients have been detected in experimental evolution studies

with bacteria and viruses, with an average sa ≈ 2 found in Pseu-

domonas fluorescens exposed to a novel carbon source (Barrett

et al., 2006) and sa ranging between 6 and 14 in the bacteriophage

φX174 subjected to heat stress (Bull et al., 2000).

Although there is increasing evidence for the frequent spread

of advantageous alleles, it is an inescapable fact that most spon-

taneous mutations that affect fitness are deleterious (Crow, 1970)

and are maintained in populations at a low frequency by recurrent

mutation (Wright, 1931). These mutation rates can be substantial;

for example, the per-generation genomic deleterious mutation rate

Ud in Drosophila has been estimated at 1.2 (Haag-Liautard et al.,

2007; Keightley et al., 2009), with estimated rates of Ud of around

4.2 in hominids (Eöry et al., 2010). Deleterious mutation rates are

lower in microbes, however. In nonmutator strains of yeast, Hill

and Otto (2007) estimated Ud = 0.013 for mutations acting on

sporulation ability and Ud = 0.0003 for those affecting growth

rate.

If selection acts against deleterious mutations with a coeffi-

cient of sd, then we would expect a total of ∼Ud/sd mutations to

segregate within a population at mutation–selection balance (ig-

noring genetic associations among them). Even when Ud is less

than one, the expected number of deleterious mutations carried by

an individual may be much greater than one. Consequently, newly

arisen advantageous alleles may occur within chromosomes also

bearing deleterious alleles nearby. In the next section, we develop

a model that describes the fate of a deleterious mutation that oc-

curs in the genetic background of a novel beneficial allele. We

later return to estimates of mutation rates and selection coeffi-

cients to assess how likely it is that deleterious alleles hitchhike to

fixation, and how this depends on the mode of reproduction and

the effective rate of recombination within a species.

Semi-Deterministic Model
We first present a semi-deterministic calculation of the fixation

probability of a haplotype carrying both an advantageous and a

deleterious allele using classic population genetics. In the next

section, we build a stochastic diffusion model of the appearance

and spread of this haplotype, but the calculations presented in this

section help to develop an understanding of the key forces at work

and so are a natural first step in investigating this problem.

We consider a finite population of N haploid chromosomes

with discrete generations, using a standard Wright–Fisher model

(Fisher, 1930; Wright, 1931). We are interested in the dynamics of

a newly arisen beneficial allele at a locus A. The genome in which

A first arises may carry one or more deleterious alleles. Deleterious

alleles that are only loosely linked to locus A are unlikely to rise
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Table 1. Table of haplotypes.

Haplotype Fitness, w Locus 1 Locus 2

A0 B0 1 Wild type Wild type
A1 B0 1 + sa Beneficial Wild type
A0 B1 1 − sd Wild type Deleterious
A1 B1 1 + sa − sd Beneficial Deleterious

substantially in frequency and are ignored. We focus only on

the single most closely linked of these deleterious mutations and

call this second locus B, with recombination between A and B

occurring at rate r. At locus A, the advantageous allele A1 has a

selective advantage sa over the wild-type allele A0. At locus B, the

deleterious allele B1 is selected against with selection coefficient

sd, relative to the wild-type allele B0. We assume sa > sd, so

that the advantageous-deleterious haplotype has a net beneficial

effect, snet = sa − sd. For clarity of presentation, we assume

additive selection, but all of our analytical results continue to

apply if sd is replaced by sa − snet, wherever it occurs.

For each haplotype, we write a 0 subscript if the wild-type al-

lele is present at the locus and a 1 subscript otherwise, in the order

AB. All possible haplotypes, along with their fitness, are given in

Table 1. In particular, the advantageous-deleterious haplotype is

denoted A1B1, and when this haplotype first appears, the remain-

der of the population is either A0B0 (wild type) or A0B1 (bearing

the deleterious allele). The latter haplotype (A0B1) is assumed to

be rare and is ignored in the following analysis to simplify the

calculations; simulations described in a later section indicate that

this assumption introduces little bias. We also assume that no

further mutation occurs at either of the loci during the course of

the sweep, although the model can be modified to take this into

account.

Let p(t) denote the frequency of the A1B1 haplotype, where t

is the number of generations since the beneficial allele arose and

p0 is its initial frequency (generally 1/N). When the A1B1 hap-

lotype first arises, it becomes established within the population

with a probability u that is approximately twice the net selec-

tion coefficient, 2snet (Haldane, 1927). It is further assumed that

snet � 1 and that the population size is large (see next section for

results that apply in smaller populations).

In the following derivation, we only consider those A1 alle-

les that survive stochastic loss while rare. Once established, the

frequency of A1B1 can be modeled by the standard deterministic

equation for haploid selection (Haldane, 1924):

p(t) = p0(1 + snet)t

p0(1 + snet)t + 1 − p0
. (1)

Among those alleles that succeed in fixing, the trajectory of the

A1B1 haplotype is slightly faster, on average, than given by equa-

tion (1) (Maynard Smith and Haigh, 1974; Barton, 1994). This

initial acceleration is taken into account in the diffusion model de-

veloped below; it turns out to have little effect, however, because

rare recombination events that break apart the A1B1 haplotype are

most likely to occur when the A1B1 haplotype is intermediate in

frequency and not when it initially occurs.

Our goal is to calculate the probability, P, that the A1B1

haplotype is not broken apart by recombination before the advan-

tageous A1 allele fixes within the population. If such a recombina-

tion event has not yet occurred, there are approximately p(t) of the

A1B1 haplotypes and 1 − p(t) of the A0B0 haplotypes (ignoring the

rare A0B1 individuals), so that matings between these two haplo-

types occur at frequency 2p(t)(1 − p(t)). Among the offspring of

these matings, r will be recombinant, half of which will carry the

most fit A1B0 haplotype and half of which will carry the least-fit

A0B1 haplotype. Even once produced, the most fit recombinant

may fail to establish itself within the population due to chance loss

while rare. In Appendix A, we use branching processes to show

that the probability that a single new A1B0 haplotype establishes

within the population if it appears at time t equals

�(t) = 2sasd

sa p(t) + sd (1 − p(t))
+ O(s2). (2)

The derivation of equation (2) accounts for the fact that the A1B0

haplotype has fitness 1 + sa relative to the population mean fit-

ness 1 + p(t)(sa − sd), which is changing over time according

to equation (1). As expected, if the A1B0 recombinant haplo-

type arises while p(t) ≈ 0, the recombinant lineage will establish

with probability nearly equal to 2sa, the fixation probability of

an advantageous A1 allele in an otherwise wild-type population.

Also as expected, if the A1B0 recombinant haplotype arises while

p(t) ≈ 1, the recombinant lineage will establish with probability

nearly equal to 2sd, the fixation probability of a haplotype that

has shed the deleterious allele B1 in a population that otherwise

carries both A1 and B1. We call A1B0 haplotypes that succeed in

establishing while rare “successful recombinants.”

Altogether, κ(t) = rp(t)(1 − p(t))�(t) is the probability that

an A1B0 recombinant haplotype appears at time t and goes on to

establish within the population. Note however that this calculation

does not specify whether the A1 or B0 allele will fix first; in many

cases, if a recombinant appears and fixes with probability �(t),

the actual fixation of the A1B0 haplotype would occur after A1 has

reached fixation.

To calculate the overall probability, P, that the A1B1 haplo-

type is never broken apart by recombination, we must calculate

the probability that in every generation, t, none of the N offspring

are successful recombinants. Assuming weak selection such that

both �(t) and κ(t) are small, the probability that a deleterious

hitchhiker will be carried to fixation by the spread of a linked
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beneficial allele is given by

P =
∞∏

t=0

(1 − κ(t))N

≈
∞∏

t=0

exp[−Nκ(t)]

= exp

[ ∞∑
t=0

−Nκ(t)

]

≈ exp

[∫ ∞

t=0
−Nκ(t)dt

]
. (3)

Overall, P gives the probability that a fitter recombinant never es-

tablishes, assuming that the A1B1 haplotype is not lost stochasti-

cally when it first appears. The probability that the A1B1 haplotype

succeeds in establishing initially and fixing within the population

is thus u ( = 2snet) times P. This equation is analogous to equa-

tion (16) in Yu and Etheridge (2010), who used a Moran model

to estimate the fixation probability of two competing beneficial

mutations, with recombination between the two loci.

Equation (3) can be solved by integrating over the allele fre-

quency dynamics rather than over time and replacing the integral

with ∫ 1

p=p0

− N κ(p)

dp/dt
dp. (4)

In this haploid model with weak selection, dp/dt = (sa − sd)

p(1 − p). Carrying out the integration, the probability that a fitter

recombinant never establishes is given by

P ≈ exp

[
−2 N r sa sd ln(sa/sd )

(sa − sd )2

]
,

where p0 was assumed negligible relative to terms on the order

of one. At this point, we can eliminate the population size from

the result by measuring the net selection and recombination rates

within the population, defined as Sd = Nsd, Sa = Nsa, Snet =
N(sa − sd), and ρ = Nr, yielding

P ≈
(

Sa

Sd

)−ω

, (5)

where ω is the compound parameter defined by

ω = 2 ρ
Sa Sd

S2
net

. (6)

The hitchhiking process thus depends primarily on these scaled

parameters and not separately on the population size and se-

lection or recombination parameters. The above equations show

that the probability of hitchhiking to fixation declines exponen-

tially with the recombination rate between the loci and with

the number of individuals within the population. The probabil-

ity of hitchhiking is especially small when the strength of se-

lection for the beneficial allele and against the deleterious al-

lele is similar (Snet small), as this will cause the sweep of the

A1B1 haplotype to take longer and allow for more recombination

events.

To determine how small the recombination rate must be in

order for hitchhiking to occur with a particular probability of

interest, c, we set P = c and solve for ρ:

ρcrit = Snet

Sd

[
ln

(
1
c

)
2
(
1 + Sd

Snet

)
ln

(
1 + Snet

Sd

)
]

. (7)

This gives us the recombination rate below which hitchhiking to

fixation will occur with frequency greater than c, as a function

only of the scaled selection coefficients Sd and Snet. At this point,

we hold off discussing these results further until the next section,

where we derive a stochastic solution.

Stochastic Model
The above analysis assumes that the population is very large,

allowing us to combine stochastic results for the establishment of

particular haplotypes while rare, with deterministic equations for

the spread of these haplotypes. The above does not, however, take

into account chance fluctuations in haplotype frequencies or the

initial acceleration caused by considering only those trajectories

where the beneficial allele becomes established (Maynard Smith

and Haigh, 1974; Barton, 1994; Otto and Barton, 1997; Desai

and Fisher, 2007). To account for these effects, we now derive a

stochastic solution for this problem.

Again ignoring the rare deleterious-only lineage, we model

the change in frequency, p(t), of the A1B1 haplotype using a dif-

fusion approximation. If a successful recombinant appears, how-

ever, the diffusion process is killed. As described by Karlin and

Taylor (1981), the probability that the process is not ultimately

killed, P(p), given that A1B1 is currently at frequency p, satisfies

1

2
V (p)

d2 P(p)

dp2
+ M(p)

d P(p)

dp
− K (p)P(p) = 0, (8)

where M(p) is the mean change in p over a time step measured

in N generations; V(p) is the variance in change of p; and K(p) is

the killing function, which denotes the probability of the process

being “killed” while the A1B1 haplotype is at frequency p. In this

model, killing occurs if recombination forms a fitter haplotype

(i.e., A1B0) that succeeds in establishing within the population.

To solve equation (8), we use the boundary conditions P(0) =
P(1) = 1; that is, the system cannot be killed if the A1B1 or

A0B0 haplotype is fixed. Further descriptions of similar diffusion

models with killing are available in Karlin et al. (1967) and section

15.10 of Karlin and Taylor (1981); in particular, a related model

is described where the diffusion process is killed whenever any

recombinant is formed (A1B0 or A0B1), regardless of whether the

recombinant succeeds in establishing.
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As with standard diffusion models investigating an allele

under weak directional selection in a haploid population (Kimura,

1970; Ewens, 2004), we obtain the values M(p) = Snet p(1 − p)

and V(p) = p(1 − p), where Snet = N(sa − sd) (see section

2 of Appendix S3). The killing term is obtained by taking the

probability that the process is killed in a particular generation,

1 − (1 − κ)N ≈ Nκ = N r p(1 − p) �, and scaling in such a

way that the killing term remains finite over the time step of N

generations, as N → ∞ (Karlin and Taylor, 1981). By doing so,

we obtain the killing function K(p) = ρ p(1 − p) π(p), where ρ =
Nr and π(p) is the scaled version of the establishment probability

of the A1B0 recombinant, � (eq. 2)

π(p) = 2 Sd (Snet + Sd )

p Snet + Sd
. (9)

The diffusion approximation assumes that Snet, Sd, and ρ remain

finite as N → ∞.

Plugging these diffusion coefficients into equation (8) and

dividing by p(1 − p), the probability that the process is not killed,

P(p), given the current frequency p satisfies

1

2

d2 P(p)

dp2
+ Snet

d P(p)

dp
− ρ π(p) P(p) = 0. (10)

If the process is not killed, there are two potential outcomes:

fixation of A0B0 or fixation of A1B1. If we wish to know the

probability that a particular advantageous allele that succeeds in

fixing carries along with it a deleterious allele, we must rederive

the diffusion model conditional on A1 establishing within the

population. In Appendix B, we show that the conditional prob-

ability P∗(p) that the process is not killed (i.e., the deleterious

allele B1 fixes) among those cases where A1 sweeps to fixation

satisfies:

1

2

d2 P∗(p)

dp2
+ Snet

1 + e−2pSnet

1 − e−2pSnet

d P∗(p)

dp
− ρ π(p) P∗(p) = 0.

(11)

The differential equations (10) and (11) were solved in

Mathematica 6.0 (Supporting information), yielding the some-

what cumbersome equations (B5) and equation (B6), respectively.

These can be solved numerically for the probability that the pro-

cess is not ultimately killed (i.e., the probability that a successful

recombinant never appears).

P∗(p0) as given by (B6) is the main quantity of interest in

this article. It describes the probability that an A1 allele that fixes

within a population carries along with it a linked deleterious allele

B1, given that the initial frequency of the A1B1 haplotype is p0.

Although equations (B5) and (B6) should be used in any numerical

analysis, further insight is provided by approximating P∗(p0) as

an exponentially decreasing function of the recombination rate

(as inferred in the semi-deterministic analysis). Assuming that

selection is strong relative to drift (Sd, Snet 	 1), that the frequency

of the A1B1 haplotype when the A1 allele first appears is negligibly

small (p0 � 1), and that recombination is not too frequent (ρ �
Sd, Snet), we obtain:

P∗(p) ≈
(

e−1/Sd
Sa

Sd

)−ω

(12)

(see details in section 3 of Appendix S3). Again, this can

be used to calculate a critical value of recombination above

which hitchhiking is unlikely to occur. Specifically, we solve

equation (12) for the rate of recombination necessary for

the deleterious B1 allele to fix with probability c, given that

the beneficial allele A1 initially appears with B1 and ultimately

fixes

ρcrit = Snet

Sd

[
ln

(
1
c

)
2
(
1 + Sd

Snet

)(
ln

(
1 + Snet

Sd

) − 1/Sd
)
]

. (13)

For example, when c = 1/2, the term in square brackets is ap-

proximately 1/4 as long as neither Sd nor Snet is too small (see

the figure in section 3 of the Appendix S3). Thus, as a rough rule

of thumb (using unscaled parameters), the recombination rate r

must be less that 1/4 of snet/(Nsd) for there to be at least a 50%

chance that the deleterious allele hitchhikes to fixation.

Hitchhiking events are thus likely to occur over larger re-

gions of the genome if the net selection coefficient acting on

the A1B1 haplotype, snet, is stronger because sweeps occur faster.

Conversely, the stronger the disadvantage of the deleterious allele,

sd, the less likely a hitchhiker will fix because recombinant A1B0

haplotypes are so much more fit. Finally, the larger the population

size, the less likely that a hitchhiker will fix, simply because there

are more individual chances for recombination to occur while the

population remains polymorphic.

These patterns are illustrated in Figure 1, which gives the

probability that the deleterious B1 allele hitchhikes to fixation

given that the beneficial A1 allele fixes, with darker shading cor-

responding to higher probabilities. These contour plots are based

on the exact solution (B6) to the diffusion equation for P∗(p). The

thick dashed curves show the approximate equation (13) for the

critical value of the recombination rate, ρ, below which we ex-

pect deleterious alleles to hitchhike to fixation more than c of the

time (c = 10%, 50%, or 90%) when they occur on the haplotype

bearing a new beneficial allele; these curves accurately follow

the appropriate contour lines as long as selection is not too weak

(roughly, Snet, Sd ≥ 2).

COMPARISON TO THE CASE OF A LINKED NEUTRAL ALLELE

The dynamics of neutral loci are likely to be affected by the spread

nearby of a beneficial allele whenever r is approximately less than

sa (Maynard Smith and Haigh, 1974). This rule cannot be used to

compare to equation (13) directly, however, because our criteria

for being “affected” is now quite strict: the linked B1 allele must

fix due to the sweep. We thus briefly describe a corresponding
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Figure 1. Contour plots of the fixation probability of the deleterious B1 allele, given that the A1B1 haplotype appears initially at

frequency of 1/N and that the A1 allele is not lost stochastically (10% contour intervals based on equation B6). The graphs are shown for

N = 10,000, although the results are not very sensitive to N, as long as the scaled parameters are held constant. In each case, ρ is plotted

along the y-axis versus Sd along the x-axis (left panels) with Snet = 20 (top) or 50 (bottom) or versus Snet along the x-axis (right panels)

with Sd = 20 (top) or 50 (bottom). The dashed curves show the predicted thresholds below which there is a greater than c = 10%, 50%,

and 90% probability of hitchhiking, based on equation 13; in each case this threshold coincides closely with the appropriate contours.

model for the case when B is neutral (full details are provided in

the section 4 of Appendix S3).

The diffusion equations remain essentially the same, except

that the killing term must be revised now that the recombinant

A1B0 haplotype is no more fit than the A1B1 haplotype that is

spreading through the population. We assume that, whenever a

recombinant A1B0 haplotype appears, the probability that this

haplotype becomes the ancestor of the population at some distant

future point in time is very nearly 1/(Np). This assumes that

any individual carrying the A1 allele alive at that time is equally

likely to be the lucky one to ultimately fix and give rise to the

entire descendant population. Using 1/(Np) instead of � for the

fixation probability of the recombinant A1B0 haplotype, we obtain

the revised killing function, K(p) = ρ p(1 − p) 1/p, for use in

the diffusion equation (8), assuming that allele A1 fixes. The

conditional probability of the process not being killed was then

obtained using Mathematica 6.0.

Focusing on the conditional probability that the process

reaches fixation on A1 before being killed by the appearance of

a successful recombinant, we again obtained an approximation

assuming that selection is strong relative to drift

P∗(p0) = (2 eγ Snet)
−ρ/Snet , (14)

where γ = 0.577 is Euler’s constant. We have persisted in referring

to the net selection on the A1B1 haplotype as Snet despite the fact

that now Snet = Sa for ease of comparison with the previous

case.
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Figure 2. The critical value of the recombination rate, ρcrit , be-

low which there is a greater than c = 50% probability that the

deleterious B1 allele will hitchhike to fixation along with the ad-

vantageous allele, as a result of their initial association based on

the approximate equations (13) and (15). In each case, ρcrit is plot-

ted along the y-axis versus Snet along the x-axis, for varying values

of Sd . The case of a neutral linked allele at the B locus is given by

the thick top curve. (The upturns in some of the curves near the

origin as well as crossing of some of the curves are caused by inac-

curacies in these approximations when selection is weak relative

to drift.)

Again, solving this equation for the critical value of ρ below

which hitchhiking to fixation occurs more than a proportion c of

the time, we get

ρneutral
crit = Snet

[
ln

(
1
c

)
γ + ln(2 Snet)

]
. (15)

For c = 1/2, the term in square brackets is approximately 1/4

when Snet = 5, and it continues to decline (but slowly) as Snet

increases. Thus, as a rough rule of thumb, r must be less than

≈1/4 of snet for there to be a 50% chance that a neutral allele

hitchhikes to fixation. Again, such hitchhiking events are likely

to occur over larger regions of the genome when the sweeps

are faster (snet large). The key difference, however, from the

case with a deleterious hitchhiker is the absence of Nsd in the

denominator of this rule, which makes it easier to satisfy than

the case of a deleterious hitchhiker (assuming selection is strong

relative to drift). Figure 2 shows just how much more likely it

is for alleles at locus B to hitchhike to fixation along with al-

lele A when the B locus is neutral (thick top curve) than when

it is subject to selection against deleterious mutations (dashed

curves).

The fact that neutral alleles are much more likely to hitchhike

to fixation than linked deleterious alleles has another important

implication. Namely, the presence of a linked deleterious allele

increases the chance that surrounding genetic variation will be

rescued by recombination. Had there been no linked sites under

selection, we would expect a region surrounding a sweep to be

entirely fixed when ρ < ρneutral
crit in the majority of cases (eq. 15).

If a beneficial allele first occurs on a chromosome containing a

deleterious allele, however, this region is greatly reduced to ρ <

ρcrit (eq. 13), as illustrated in Figure 2. Consequently, linkage to

sites carrying deleterious alleles reduces the impact of selective

sweeps, making it less likely that surrounding genetic variation

will be lost.

Turning this argument around, a recently fixed beneficial

allele might have been strongly selected but appear to have

been weakly selected based on the amount of genetic variation

remaining in the region. This is because recombinants were

favored that untied the beneficial allele from the deleterious

genetic baggage with which it arose. Furthermore, we would

expect that genetic variation should more often be rescued by the

appearance of more fit recombinants on the side of a selective

sweep that bears a higher density of other sites under selection.

In Supporting information, we simulate a three-locus model with

one locus subject to advantageous mutation, one locus being a

neutral marker, and one locus subject to recurrent deleterious

mutation, with the beneficial mutant placed on a randomly

selected genetic background. As confirmed in Figure S1 the

sweep of neutral diversity is less severe in cases where selection

acts on the locus subject to deleterious mutations.

TWO COMPETING BENEFICIAL MUTATIONS

The above analyses can also be used to solve a related problem

of beneficial mutations competing for fixation in the presence of

recombination, as considered by Yu and Etheridge (2010). If a

beneficial allele is rising in frequency when a second beneficial

allele appears at a linked site, then it is possible for the first

beneficial allele to be lost if the second allele is more strongly

favored if it appears with the wildtype allele at the first locus, and

if a recombinant that brings together both alleles onto the same

haplotype fails to establish in time.

Although technically there are three chromosome types to

be considered before the recombinant appears (00, 10, and the

new 01, where the “1” now indicates a beneficial mutation at

the first and second sites), we can approximate this scenario as

did Yu and Etheridge (2010) by assuming that the 00 wild type

is rapidly eliminated, so that the frequencies of 01 and 10 sum

roughly to one. This approximation performs surprisingly well

for this problem because rare recombination events do not occur

until the 10 and 01 haplotypes are both common.

Equation (1) then describes the spread of the more fit 01

haplotype, whose frequency is ≈ p(t) (frequency of 10 ≈1 −
p(t)), with snet equal to the difference in fitness between 10 and

01 individuals. Equation (2) describes the fixation probability of

a recombinant double mutant, with sa and sd giving the selective

advantage of the double mutant when it appears in a population
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predominantly composed of 10 and 01 individuals, respectively.

All of the subsequent results described above then follow. Fig-

ure S4 shows that equations (5) and (12) provide an excellent

estimate of the probability that recombination successfully res-

cues both beneficial mutations. Although similar in spirit to the

work of Yu and Etheridge (2010), our analyses have the advantage

of providing closed-form solutions that appear to accurately cap-

ture the stochastic nature of recombination rescuing combinations

of beneficial alleles at two selected loci.

Two-locus simulations
To investigate the accuracy of the above results, we compare both

the semi-determinstic and stochastic models to Monte Carlo sim-

ulations. Simulations start with a population of N haploid chro-

mosomes, each consisting of two linked loci. Fitness is assumed

to be additive.

An initial proportion p0 = 1/N of the population is assigned

the advantageous-deleterious A1B1 haplotype. The rest of the pop-

ulation bears the A0B0 haplotype. It is assumed that the A0B1 hap-

lotype is present at a negligibly small frequency, and while it is

not considered in the initial population it is tracked if it appears

by recombination.

A new generation is formed by selecting two parents with

probability proportional to their fitness. Recombination between

the two parental loci then occurs with Poisson probability r. This

is repeated until N new offspring are created. A new generation

is created in this way until the A1B1 genotype is either fixed or is

lost from the population. This entire process is repeated 20,000

times to build up an overall probability of fixation along with 95%

confidence intervals. We focus attention on the processes where

the advantageous allele fixes.

Results are plotted in Figure 3. Simulation data match up

very well to all three solutions for the probability of hitchhiking

P∗(p): semi-deterministic equation (5), diffusion equation (B6),

and the approximation to the diffusion equation (12). All three

solutions offer similar results when we changed the population

size, as long as ρ, Sd, Sa are held constant. Differences be-

tween the solutions only become apparent when selection be-

comes weak. Stochastic effects then play more of a role, es-

pecially where the A1B1 haplotype is oversampled and rises to

fixation faster than expected, so that the diffusion with killing

(B6) provides a slightly more accurate solution. Additional fig-

ures presented in section 3 of the Appendix S3 show that the

analytical solutions perform less well as selection strengthens in

very small populations (e.g., sd = 0.1 with N = 100 or 1000); in

these cases, the diffusion approximation assuming weak selection

breaks down and the fixation probability of the deleterious allele is

underestimated.

Figure 3. Fixation probability of the deleterious B1 allele, given that the A1B1 haplotype appears initially at frequency of 1/N and that

the A1 allele is not lost when rare, for different recombination rates ρ = Nr. Plots compare the solution to the semi-deterministic model

(5) (thin solid), the full solution to the diffusion (B6) (thick solid), the approximation to the diffusion (12) (thick dashed), and simulation

results based on the Wright–Fisher model (points). Bars indicate 95% confidence intervals here and throughout. Parameters are N = 1000

(A and B) and N = 10, 000 (C and D), with Sd = 2 (A and C) and Sd = 10 (B and D).
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Multilocus simulations
Although the above two-locus models offer tractable results, novel

advantageous alleles may arise in genomes with multiple mutant

alleles. Therefore, we switch to using multilocus computer sim-

ulations to investigate the mutation load generated by the rise

to fixation of an advantageous allele, given that such mutations

arise at rate U in a genome with total map length R, where each

new deleterious mutations is assigned a random position between

0 and R. The methods used for these simulations are based on

Hartfield et al. (2010) and detailed in Supporting information.

We then determined the mean number of deleterious alleles

that fix along with each beneficial mutation, assuming multiplica-

tive selection. Simulations with different Sa values are compared

to the control case, Sa = 0, in Figures 4 and S2. These results

corroborate the two-locus model; the mean number of deleterious

mutants that fix declines with the rate of recombination and rises

with the strength of selection on the advantageous mutant, Sa. The

mean number of fixed deleterious alleles also stays approximately

the same as N increases, if the compound parameters Sa, Sd, NR,

and NU are held constant.

Increasing the recombination rate also raises the fixation

probability of the advantageous mutant (Fig. S3), which is a well-

known result (Peck, 1994; Barton, 1995). Thus recombination

is doubly advantageous, as it reduces the number of deleterious

alleles that fix in a population following a selective sweep and

it increases the likelihood that such an advantageous mutant can

establish when rare. This is the likeliest cause of strong selection

acting on a modifier for increased recombination in the presence

of advantageous and deleterious mutations (Hartfield et al., 2010).

APPLYING RESULTS TO HUMAN GENETIC DATA

How likely is deleterious hitchhiking to occur in nature? To an-

swer this, we use human data as an example. Deleterious mutants

are maintained at a mutation–selection balance frequency of q =
μ/sd (Wright, 1931), where sd measures selection against the dele-

terious allele in heterozygotes. Thus an estimate for the number

of deleterious mutants segregating throughout a genome is U/sd,

for U the diploid per-genome deleterious mutation rate, which has

been recently estimated as U = 4.2 (Eöry et al., 2010).

U measures deleterious mutations arising across the entire

genome, with the majority appearing in noncoding regions (Eöry

et al., 2010). Thus we assume all deleterious mutations have a

fixed, weak value of sd. This will slightly overestimate the num-

ber of deleterious mutants segregating, as we do not consider

stronger deleterious mutations that can arise in coding regions

(Eyre-Walker et al., 2006; Boyko et al., 2008).

A deleterious allele must have Nesd ≥ 1 in order for se-

lection to overcome the effects of genetic drift (Kimura, 1983).

Therefore, assuming deleterious alleles are very weakly selected
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Figure 4. The increase in the number of deleterious alleles that

fix genome-wide for a given Sa, subtracting off the number that

fix in the Sa = 0 case, as a function of the total map length NR

(see Fig. S2 for the raw data). Only cases where the advantageous

allele has fixed are considered. Sa = 20 (black line), 40 (dark gray

line), or 80 (light gray line). Sd = 10, NU = 50, and (a) N = 500 or

(b) N = 1000.

(Nesd = 1, with human Ne = 10,000; Jorde et al. 1998), we expect

U/sd = 4.2/0.0001 = 42,000 such deleterious alleles segregating

at any time, roughly half of which lie in each haploid set of 3 Gb

in the human genome. Including the site of the beneficial muta-

tion, the average distance between two selected sites is thus 142.9

kb. Assuming that selected sites are randomly distributed across
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the genome (i.e., ignoring clustering), this distance would be ap-

proximately exponentially distributed. In this case, the closest of

the deleterious alleles lying to either side of the beneficial allele

would also be exponentially distributed with mean 71.4 kb. As

a rough guide, the average recombination rate is 1 cM/Mb in a

human genome (Broman et al., 1998), thus the closest deleterious

allele lies, on average, at a distance of Ner = 7.14. The fixation

probability of the deleterious allele with the advantageous mutant

would then be 18.8% for Nesa = 5, 37.1% for Nesa = 25, and

62.1% for Nesa = 100, obtained by integrating the hitchhiking

probability (B6) over an exponentially distributed distance with

mean Ner = 7.14. These calculations are explained in more detail

in section 5 of the Appendix S3. If we assumed Nesd = 10, then

by following a similar logic we calculate that the mean distance

to the nearest deleterious allele is Ner = 71.4, and the estimated

fixation probability of a deleterious allele is 0.8% for Nesa = 25

and 2.5% for Nesa = 100.

Overall, these calculations suggest that in humans, delete-

rious mutants will hitchhike at appreciable frequencies only if

they are very weakly selected (Nesd < 10). However, this is only

an initial calculation that deserves to be revised to take into ac-

count fine-scale recombination rates (McVean et al., 2004) and

clustering of mutations around coding regions. For now we note

that if clustering causes the average recombination distance to a

deleterious allele to drop tenfold, then the hitchhiking probabil-

ities calculated above increase substantially, rising for Nesd = 1

to 68%, 85%, 94% with Nesa = 5, 25, 100, respectively, and for

Nesd = 10 to 7%, 20% with Nesa = 25 and 100.

Discussion
As long as genetic variance in fitness is present within a popula-

tion, new beneficial alleles can arise in genomes that, by chance,

carry deleterious alleles at linked sites. Consequently, if they re-

main associated, deleterious alleles can hitchhike to fixation as

an advantageous allele sweeps through the population. Even if re-

combination occurs between the two loci, there can still be a good

chance of both alleles fixing, if either the recombinant fails to ap-

pear in time or is lost by chance when it does appear. Williamson

et al. (2007) found possible evidence of such hitchhiking causing

the high prevalence of the hereditary hemochromatosis mutation

C282Y, due to a selective sweep occurring 150 kb away from the

HFE gene where the deleterious C282Y allele is located.

To our knowledge, this article represents the first theoreti-

cal study on how recombination affects the hitchhiking to fixa-

tion of deleterious alleles. Using both a semi-deterministic and a

diffusion approach, we show that in regions of low recombina-

tion there is a high probability that a deleterious mutant would

be swept to fixation if linked to an advantageous mutant (Fig. 1).

This probability approaches one as the deleterious effect sd tends

towards zero and the overall advantage of the A1B1 haplotype snet

is larger. Outside this parameter range, we find that hitchhiking is

likely (greater then 50% chance) if r � snet/(4Nsd) (more precisely,

equation 13). A promising empirical approach would be to inves-

tigate areas around the genome that show high dN /dS values. Such

regions are assumed to be subject to recurrent sweeps (Nielsen,

2005). If deleterious alleles do hitchhike, then around these sites

there should be signs of increased load, such as increased indel

frequency, or lower frequency of optimal codon usage. Such a

negative relationship between dN and optimal codon usage was

found in Drosophila by Betancourt and Presgraves (2002).

Furthermore, we determined that the hitchhiking of tightly

linked deleterious alleles reduces the region in which the sweep

is likely to fix surrounding sites (compare eq. 15 to eq. 13). This

is important as it implies that deleterious hitchhiking can alter ex-

perimental estimates of the strength of such sweeps. A potential

example of these effects was reported by Clegg et al. (1980), who

found that linkage disequilibrium in D. melanogaster broke down

more quickly than expected (geometric decay at a ratio 1 − r),

based on the surrounding markers being neutral and on measured

recombination rates between the selected and neutral markers.

This observation could be explained by recombination untan-

gling advantageous alleles from deleterious backgrounds (see also

Fig. S1). Further work is warranted to explore the impact of neigh-

boring selected sites on patterns of neutral sequence variability

in a fully multilocus framework. In particular, a full treatment re-

quires an exploration not only of the primary effects of a selective

sweep at a focal site, but also of how hitchhiking of deleterious al-

leles can cause secondary sweeps as wild-type alleles reestablish

themselves at surrounding sites.

Our work also sheds light on the results found by Hartfield

et al. (2010), who showed that a modifier gene for increased re-

combination is more likely to fix in a population that is subject

to both deleterious and advantageous mutation, compared to the

deleterious-only mutation case (Keightley and Otto, 2006). The

increased selection acting on a recombination modifier when both

deleterious and advantageous mutants are present together, com-

pared to when just deleterious or just advantageous mutations

are present, suggests that uncoupling advantageous mutants from

deleterious backgrounds provides a substantial amount of selec-

tion on a recombination modifier (Peck, 1994; Hartfield et al.,

2010).

Our preliminary calculations suggest that in obligately sex-

ual species with long genetic map lengths (such as the human

genome), recombination is frequent enough to prevent all but

weakly deleterious mutants from hitchhiking with advantageous

mutants. Our calculations assumed, however, that mutations af-

fecting fitness arise at equal rates throughout the genome, which

ignores the clustering of fitness-impacting sites near genic re-

gions. If recombination rates between selected sites are low, either

2 4 3 0 EVOLUTION SEPTEMBER 2011



RECOMBINATION AND THE UNDESIRABLE HITCHHIKER

because of this clustering or because of cold spots in recombina-

tion, the probability that deleterious alleles hitchhike to fixation

rises substantially. Similarly, in species that frequently inbreed

(e.g., selfing) or reproduce asexually, the effective amount of

recombination may be much lower, substantially increasing the

probability of deleterious alleles hitchhiking to fixation. In asexu-

als with no recombination, the subsequent mutation accumulation

can be extremely detrimental (Hadany and Feldman, 2005).

In conclusion, sex and recombination both enhance the prob-

ability of beneficial alleles establishing and hinder the fixation of

deleterious alleles within a lineage. If this can be shown empiri-

cally to be a potent selective force on recombination rates, then

this would provide key insight into why sex and recombination

are prevalent, which remains an open question in evolutionary

genetics (Otto, 2009).
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Appendix A
DERIVATION OF �(t), THE PROBABILITY OF

ESTABLISHMENT OF A RECOMBINANT HAPLOTYPE

When the recombinant A1B0 haplotype is produced, it appears

within a population that is already changing due to the spread of

the A1B1 haplotype. Thus, we cannot calculate the probability of

fixation of the recombinant A1B0 haplotype based solely on its

fitness 1 + sa relative to the current population mean 1 + p(t)

(sa − sd). Rather, we must also account for future changes in the

population mean fitness as the A1B1 haplotype rises in frequency.

To do so, we develop a time-inhomogeneous branching process

that explicitly follows the dynamics of p(t) (given by eq. 1) that

occur after the appearance of the recombinant A1B0 haplotype.

A previous diffusion analysis by Kimura and Ohta (1970) also

calculated the fixation probability for a favorable allele whose

benefit declined over time, but the focus of their analysis was on

a case where selection declines linearly over time, whereas here

the selection coefficient favoring A1B0 declines according to a

logistic function of time, given by s(t) = sa − p(t)(sa − sd).

Let �(t) be the fixation probability of the recombinant A1B0

haplotype at generation t, given that the current frequency of the

A1B1 haplotype is p(t). In a population of constant size, the av-

erage parent has one surviving offspring, but we assume that the

A1B0 haplotype is more fit and so has an average of 1 + s(t)

offspring. Using branching process logic (Haldane, 1927), the re-

combinant A1B0 haplotype will ultimately be lost (with probability

1 − �(t)) if and only if all j offspring inheriting the haplotype also

fail to leave any descendants over the long run (with probability

(1 − �(t + 1))j). Assuming a Poisson distribution for the number

of offspring j and summing over this distribution, we obtain a

recursion for �(t):

1 − �(t) =
∞∑
j=0

e−(1+s(t)) (1 + s(t)) j

j!
(1 − �(t + 1)) j

= exp[−(1 + s(t)) �(t + 1)].

(A1)

Solving for �(t + 1) and subtracting �(t), we obtain the

change in fixation probability over time, which we assume is

slow enough that it can be well approximated by the differential
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equation

d�

dt
= − ln[1 − �(t)]

1 + s(t)
− �(t). (A2)

With weak selection (s(t) � 1), �(t) is of the same order as s(t)

and the above simplifies to

d�

dt
= −1

2
�(t)2 + s(t) �(t) + O(s2) (A3)

(Barton, 1995). This differential equation can be solved when

selection on the recombinant haplotype varies according to s(t)

= sa − p(t)(sa − sd) by first replacing the variable t with the

variable p using the chain rule and dp/dt = snetp(1 − p) (section 1

of Appendix S3). To leading order in the selection coefficients, the

resulting solution for the fixation probability of the recombinant

A1B0 haplotype is given by equation (2).

Appendix B
DERIVING THE DIFFUSION PROCESS WITH KILLING

CONDITIONAL ON FIXATION OF THE A1 ALLELE

Conditioning on the fixation of A1 implies that either the A1B1

haplotype fixes (if the process is not killed) or the recombinant

successfully establishes and leads to the fixation of the A1B0 hap-

lotype (if the process is killed). Either way, the A1B1 haplotype

cannot be lost while it is rare. We must thus adjust the drift term

in the diffusion, M(p), to account for the fact that the A1B1 hap-

lotype will, on average, rise more rapidly when rare among those

processes where the A1B1 haplotype is not lost. The variance term

V(p) and the killing term K(p) are unchanged in the conditioned

model, as these terms depend only on the current frequency of the

A1B1 haplotype and not on its ultimate fate. From equation (9.5)

in chapter 15 of Karlin and Taylor (1981), the conditional drift

term M∗(p) is given by.

M∗(p) = Snet p(1 − p) + s(p)

S(p)
p(1 − p), (B1)

where

s(p) = exp

[
−

∫ p

0

2M(η)

V (η)
dη

]
(B2)

S(p) =
∫ p

0
s(ξ) dξ. (B3)

Here, the values of M(p) and V(p) are for the unconditional

diffusion process as outlined in the main part of the article. Plug-

ging these terms into equations (B2) and (B3) and evaluating the

integrals, we obtain the conditional drift term:

M∗(p) = Snet p(1 − p)
1 + e−2pSnet

1 − e−2pSnet
. (B4)

This revised drift term is then placed in equation (8), along with

the variance and killing terms, which remain unchanged. Dividing

the result by p(1 − p) yields equation (11) in the main text.

The conditional diffusion process requires some care, how-

ever, with the boundary conditions. The probability that the pro-

cess is not killed given that the A1B1 haplotype is fixed remains

one, P∗(1) = 1, as before. Conditioning assumes, however, that

the p = 0 boundary is never reached. Rather than assigning P∗(0),

we instead assume that P∗(p) varies little over very small values

of p, given that the process will ultimately reach p = 1 if it is

not killed. Thus, we use dP∗(0)/dp = 0 as a second boundary

condition.

Solving equation (10), we find that the probability that the

process is never killed, regardless of whether A0 or A1 ultimately

fixes is

P(p) = (
U 0

−ω[−2(pSnet + Sd )]
(
L−1

ω [−2Sd ]

− L−1
ω [−2(Snet + Sd )]

) − L−1
ω [−2(pSnet + Sd )]

× (
U 0

−ω[−2Sd ] − U 0
−ω[−2(Snet + Sd )]

))
/
(
U 0

−ω[−2(Snet + Sd )] L−1
ω [−2Sd ]

− U 0
−ω[−2Sd ] L−1

ω [−2(Snet + Sd )]
)
, (B5)

whereas the solution to equation (11), conditioned on the fix-

ation of the beneficial A1 allele, given by B6 (below). Here,

U b
a [z] = U [a, b, z] is the Tricomi confluent hypergeometric func-

tion, Lα
n[x] the generalized Laguerre polynomial (Abramowitz

and Stegun, 1970), and ω is the compound parameter given by

equation (6) in the main text. Additional details regarding the

derivation and solutions for these equations are provided in a

Mathematica 6.0 file (Supporting information, section 2).

P∗(p) =
(

1 − e−2Snet

1 − e−2pSnet

)
× U 0

−ω[−2(pSnet + Sd )] L−1
ω [−2Sd ] − U 0

−ω[−2Sd ] L−1
ω [−2(pSnet + Sd )]

U 0−ω[−2(Snet + Sd )] L−1
ω [−2Sd ] − U 0−ω[−2Sd ] L−1

ω [−2(Snet + Sd )]
(B6)

EVOLUTION SEPTEMBER 2011 2 4 3 3



M. HARTFIELD AND S. P. OTTO

Supporting Information
The following supporting information is available for this article:

Appendix S1. Testing the effect of recombination on the fixation of a linked, neutral allele.

Appendix S2. Methods used for multilocus simulations.

Appendix S3. Derivations in mathematica (HartfieldOttoSM.nb file available for download).

Figure S1. The mean frequency of a linked neutral allele following a successful selective sweep, given as a function of the
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S.1 Testing the effect of recombination on the

fixation of a linked, neutral allele

We investigate the effect of deleterious hitchhiking on neutral sequence, and how

recombination affects this, by extending the two-locus simulations. In these new

simulations, there are three linked loci; the deleterious site, a neutral locus and a

third locus where the sweep is present, all separated by a recombination distance r.

Additionally, there is now recurrent mutation occurring at rate µ at the deleterious

locus, with no back-mutation.

The initial set-up is different as well: initially the deleterious allele is present

at a fixed mutation-selection balance frequency of µ/sd (Wright 1931), or 50% if

sd = 0. When the advantageous allele is introduced in a single copy, it is placed

within a random individual that does not necessarily carry a deleterious allele.

This is because we want to measure the difference in diversity due to background

selection, averaged over all possible initial backgrounds. A neutral allele is also

introduced in the individual in which the sweep first arises. This neutral marker

allows us to measure the extent to which the initial neutral diversity is reduced to

the singly allele that happens to be adjacent to the new mutation.

The population then undergoes the same cycle of selection, recombination, then

mutation at the deleterious locus. The sweep is tracked until it is fixed or lost. If

fixed, the frequency of the neutral allele is noted. The sweep is then reintroduced

1,000,000 times, and the mean final frequency of the neutral allele is measured.

If the mean frequency is near one, this implies that little recombination has

taken place between the neutral and selectively favoured allele over the course of

the sweep. A lower value implies that a higher level of recombination has taken
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place, resulting in the advantageous allele becoming separated from the neutral

allele that it was originally linked to. The results of the main text predict that

recombination must be even tighter (lower ρcrit, see Figure 2) for hitchhiking to

fix nearby deleterious alleles, compared to the case of nearby neutral alleles, sug-

gesting that those recombination events that do occur in the presence of surround-

ing selected sites are more likely to establish themselves, on average, within the

population during a selective sweep. The increased establishment of recombinant

chromosomes should result in reduced effects on linked neutral diversity as well. In

particular, in these simulations, we predict that a beneficial allele will not drag a

neighboring neutral allele to as high a frequency in the presence of another selected

site in the surrounding region.

Figure S.1 plots the results of these simulations. In all cases tested we verify

the prediction that if Sd > 0, the initially linked neutral allele does not sweep to

as high a frequency on average, compared to the Sd = 0 case. This indicates that

the diversity present at linked sites is more likely to be preserved by recombination

when beneficial alleles arise at sites surrounded by others subject to selection. The

reductions observed in our simulations are modest; this is due to there being only

one linked deleterious site, with a low mutation rate (µ = 0.0005). A larger effect

would be observed if the mutation rate was higher or more linked deleterious loci

were present.

In summary, we argue that linked selected sites should reduce the impact that

a selective sweep has on surrounding neutral diversity. Our reasoning focuses on

the increased probability that recombinant chromosomes will establish within the

population during the sweep, because they uncouple a beneficial allele from any

deleterious alleles within its genetic background (main text, Barton (1995)). Veri-
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fying that this is indeed the case in a multi-locus framework deserves future work.

In particular, our simulations have not accounted for the variation in fitness among

recombinant chromosomes due to additional selected sites throughout the genome,

beyond the one neighboring selected site. Furthermore, we have not accounted for

the cascade of secondary sweeps that occur whenever fitter recombinants arise and

drag along with them their own suite of alleles.
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Figure S.1: The mean frequency of a linked neutral allele following a successful
selective sweep, given as a function of the recombination rate Nr between differ-
ent sites. The left- and right-hand panels report the same simulations, with the
left-hand panels zoomed into the region (tighter linkage) where the impact of a
neighboring selected site on the patterns of neutral diversity was greatest. Sd = 0
(black line), 5 (dark gray line) or 10 (light gray line). N = 1000, µ = 0.0005, with
(a) Sa = 20, (b) Sa = 40, or (c) Sa = 80.
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S.2 Methods used for Multilocus Simulations

Initially there is a haploid population of N chromosomes with an infinite number

of loci per chromosome. Each locus has a wildtype allele or a deleterious allele with

selection sd acting against it. Fitness is multiplicative, so initially in the absence

of the advantageous allele the fitness of an individual is (1− sd)k, where k is the

number of deleterious mutants present in an individual chromosome.

New generations are created by selection, recombination, then mutation. Two

parents are chosen with replacement from the population, with probability propor-

tional to their fitness. Recombination then occurs, with the number of crossovers

across the chromosome selected from a Poisson distribution with mean R. One of

these parents is selected to be the template for the offspring genome. Each mutant

has a map position assigned to it as it appears, which is drawn from a uniform [0, 1]

distribution. For each crossover event, the position of the recombination event is

also drawn from a [0, 1] uniform distribution. The allelic states are then swapped

at sites whose map distances exceed the recombination distance. If two crossovers

are chosen, locus states are swapped at sites whose map distances lie between the

two recombination distances. The number of crossovers is capped at two for ease

of computing, which leads to little loss of accuracy if R is small (Hartfield et al.

2010).

For each offspring, the number of new deleterious mutants is chosen from a

Poisson distribution with mean U . Each new mutant is assigned to a new locus.

Back mutation also occurs at a deleterious allele with probability µ = 10−8. Over-

all, the whole cycle is repeated N times to repopulate the gene pool.

There is an initial burn-in of 2N generations, so that the population reaches
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a mutational steady-state. A ‘garbage collection’ routine is executed every 50

generations during the burn-in; mutants that are lost from the population are

cleared to free memory, as well as deleterious mutants that have fixed, so that

we do not consider deleterious mutants that accumulate through Muller’s Ratchet

before the advantageous allele is introduced. Following the burn-in, the state

of the population is saved and mutation is turned off, so deleterious mutants

that do fix tend to be driven to fixation by hitchhiking, rather than an on-going

ratchet mechanism. An advantageous allele is then added to a random chromosome

at a random site. This allele increases the fitness of the host chromosome to

(1 + sa)(1− sd)k.

The advantageous allele is then tracked until it is fixed or lost from the pop-

ulation. During this time a different garbage collection routine is run every 50

generations, which only clears mutants lost from the population in order to free

memory. Fixed deleterious alleles are not cleared at this stage, so the mean num-

ber that fix with the sweep can be measured. If the advantageous mutant reaches

fixation, then all remaining deleterious mutants are tracked until they are fixed or

lost, to determine how many deleterious mutants fix. The advantageous mutant is

reintroduced from the burn-in population 3,000 times, and its fixation probability

is calculated, along with the average number of fixed deleterious mutants. This is

repeated for 4,000 burn-ins to build a probability distribution for these statistics.
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Figure S.2: The mean number of deleterious alleles that fix genome-wide following
the completion of a successful selection sweep, given as a function of the recombin-
ation rate NR (see Figure 4 for data presented relative to Sa = 0). Sa = 0 (black
dashed line), 20 (black solid line), 40 (dark gray) or 80 (light gray). Sd = 10,
NU = 50, and (a) N = 500 or (b) N = 1000.
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Figure S.3: Fixation probability of the advantageous mutant in multilocus simu-
lations, as a function of the recombination rate NR. Sa = 0 (black dashed line)
20 (black solid line), 40 (dark gray) or 80 (light gray). Sd = 10, NU = 50, and (a)
N = 500 or (b) N = 1000.
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Figure S.4: Fixation probability of a recombinant carrying two beneficial muta-
tions. Using the notation of Yu and Etheridge (2010), sγ is the selective advant-
age of the first beneficial mutation to occur, s is the selective advantage of the
second beneficial allele, and s(1 + γ) is the selective advantage of the recombinant
double mutant. The semi-deterministic solution 5 (solid curve) and the diffu-
sion solution 12 (dashed curve) are presented alongside simulation results (dots)
for the parameters considered in Figure 4a of Yu and Etheridge (2010), where
snet = s(1 − γ) equals the difference in fitness between 10 and 01 individuals,
and where sa = s and sd = sγ give the selective advantage of the double mutant
when it appears in a population predominantly composed of 10 and 01 individu-
als, respectively. These curves are multiplied by the establishment probability
of the second beneficial allele, given by equation 2 with the selection coefficients
now reflecting the advantage of 10 spreading within a population of 00 individuals
(snet = sγ), within which a 01 mutant appears with advantage sa = s over the
00 wildtype. Parameters as in Figure 4a of Yu and Etheridge (2010): s = 0.02,
γ = 0.8, r = 0.00001, with a starting frequency of haplotype 10 of 0.2 at the time
that the second beneficial mutation appears in a 01 haplotype.
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