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Summary

Two new test statistics were constructed to detect departures from the equilibrium neutral theory
that tend to produce genealogies with longer internal branches (e.g. population subdivision or
balancing selection). The new statistics are based on a measure of linkage disequilibrium between
adjacent pairs of segregating sites. Simulations were run to determine the power of these and
previously proposed test statistics to reject an island model of geographic subdivision. Unlike
previous power studies, this one uses a coalescent model with recombination. It is found that
recombination rates on the order of the mutation rate substantially reduce the power of most test
statistics, and that one of the new test statistics is generally more powerful than the others. Two
suggestions are made for increasing the power of the statistical tests examined here. First, they can
be made more powerful if critical values are obtained from simulations that condition on a lower
bound for the population recombination rate. Secondly, for the same total length sequenced,
power is increased if independent loci are considered instead of a single contiguous stretch.

1. Introduction

One of the fundamental goals of evolutionary genetics
is to determine what forces in the past have influenced
the genetic variation observed in the present. For
sequence data, some researchers have approached this
problem by developing statistical tests to detect
departures from a constant size, panmictic, no
recombination, neutral Wright–Fisher model (e.g.
Hudson et al., 1987, 1994; Tajima, 1989; McDonald
& Kreitman, 1991 ; Fu & Li, 1993; Fu, 1996, 1997;
McDonald, 1996). This null model is widely used
because it makes simple, testable predictions; it is one
way of modelling Kimura’s (1968, 1983) neutral
theory of molecular evolution. When one of these tests
rejects the null hypothesis, it is likely that at least one
of the assumptions of the equilibrium neutral model
has been violated. Possible alternatives include more
complex demographic histories (e.g. population struc-
ture, changes in population size), linkage to sites
under selection of some kind (e.g. balancing, fluctu-
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ating, directional or purifying selection), or selection
operating directly on the sites in question. Ideally one
would like to determine which alternatives are likely if
the null model is rejected; however, this is difficult to
do, partly because of our ignorance of the patterns of
genetic variability expected under many of the
alternative models, but also because multiple alterna-
tives can produce patterns that are similar and thus
difficult to distinguish. For polymorphism data from
a single species, Fu (1996) categorized alternative
models as those that tend to produce an excess of
‘new’ mutations (e.g. linkage to a recent selective
sweep, population growth) and those that tend to
produce an excess of ‘old’ mutations (e.g. population
subdivision, balancing selection). Alternative models
in the same class are expected to produce data sets
that differ from equilibrium neutral expectations in
similar ways.

The usefulness of these statistical tests depends on
how often they reject the null hypothesis when it is
actually false. This is often tested by simulating data
under some model other than the equilibrium neutral
model and documenting what power various statistical
tests have to reject the null model (e.g. Braverman et
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al., 1995; Simonsen et al., 1995; Fu, 1996, 1997). The
same approach is followed in this paper. We con-
centrate on ways of analysing sequence polymorphism
data from a single species, and on the effects of two
departures from the standard equilibrium neutral
model : recombination and geographic subdivision. In
particular, we find the power of several tests to reject
the null model when data are simulated using a
symmetrical island model of geographic subdivision
(Wright, 1931) with recombination. Although some
researchers note that most test statistics are con-
servative with respect to recombination (e.g. Tajima,
1989; Fu & Li, 1993; Fu, 1996), no one has
documented how strong the effect actually is. Deter-
mining the magnitude of this effect is one of the
primary aims of this paper. It is expected that models
of linkage to a site under balancing selection (Hudson
& Kaplan, 1988) and models of deterministically
decreasing population size (e.g. Griffiths & Tavare! ,
1994) would produce similar results, as might other
models of geographic subdivision (e.g. Whitlock &
McCauley, 1990). This work is presented in three
parts : first, two new test statistics B and Q are
developed (see Section 2). Then, their powers are
compared with the powers of previous test statistics to
detect geographic subdivision in the presence of
recombination. The other test statistics considered are
Tajima’s (1989) D (which hereafter is called T ), Fu &
Li’s (1993) D* (here called D), and Fu’s (1996) W and
Gη (here called G). Finally, an example from the
literature is analysed.

A different method of demographic inference
involves maximum likelihood (see, e.g., Griffiths &
Tavare! , 1995; Kuhner et al., 1995). If likelihoods can
be calculated for alternative models, then a likelihood-
ratio test may be used to discriminate between
hypotheses. Likelihood methods are appealing be-
cause they make full use of the available data, unlike
summary statistics. However, they are compu-
tationally intensive, and it is unclear how sensitive
they are to model assumptions. Algorithms for
calculating likelihoods exist for finite-island models
without recombination (e.g. Nath & Griffiths, 1996)
and for panmictic models with recombination
(Griffiths & Marjoram, 1996). Although in theory it
should be straightforward to calculate likelihoods for
a model with both geographic subdivision and
recombination, it is not yet computationally practical
to do so for data sets of reasonable size. A program
(recom58, provided by R. C. Griffiths) for calculating
likelihoods under a panmictic model with recom-
bination (which should be faster than a program that
calculates likelihoods for a finite-island model with
recombination) takes several weeks of computing time
on a 400 MHz Pentium II processor to calculate
maximum likelihood estimates for a single data set
with sample size n¯ 30, S¯ 20 segregating sites, and

recombination parameter 4Nr¯ 5 (results not shown).
Even then, the result would be hard to interpret ; for
single-locus data it is unclear how to obtain the critical
values of a likelihood-ratio test without extensive
simulation. The standard χ# approximation for the
distribution of 2 log (L

"
}L

!
) (where L

"
and L

!
are the

likelihoods under the alternative and null models) is
not necessarily applicable. Data sets considered for
this paper’s tests are this size or larger, so for them
summary statistics may be the only viable alternative.

Another approach to the problem of inferring
geographic structure from sequence data can be found
in the permutation tests of Hudson et al. (1992). When
adequate sample sizes are obtained from more than
one island, their tests are often much more powerful
than the tests surveyed in this paper (Hudson et al.,
1992; Fu, 1996). This is not surprising since Hudson
et al.’s tests explicitly use the information of where
each sequence was sampled whereas the other tests do
not. However, there are situations when their test
should not be used. For example, this permutation
test cannot be used whenever individuals are sampled
from only a single locality, and might be significantly
less effective if the population structure does not
correspond in a simple way to geographic location
(see, e.g., Hilton & Hey, 1996, 1997), since a sample
from multiple localities would not necessarily include
different putative islands. This lack of correspondence
between population structure and geographic location
might also apply to species such as Drosophila

melanogaster that are thought to have originated in a
particular area (e.g. Africa for D. melanogaster) and
recently expanded their range.

Most of the following simulations concentrate on
situations when only a single population has been
sampled. Some researchers have chosen to analyse
single-locality samples under the assumption that
local populations are in equilibrium, even if the
species as a whole shows evidence of geographic
structure. One of the conclusions of this study is that
the above assumption is not conservative: if there
actually is population structure, then assuming pan-
mixia for a sample from a single locality could lead to
false positive test results.

2. New test statistics

Under the standard Wright–Fisher neutral model,
genealogies of a sample can be simulated using the
coalescent (Kingman, 1982a, b ; Hudson, 1990), and
the genealogical relationships between different
members in the sample can be represented pictorially
by a tree (for a review see Hudson, 1990). Departures
from the standard neutral model can be thought of in
light of the effect they have on the shape of the
genealogical tree. For example, the presence of
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Fig. 1. An example of a coalescent tree that might arise
under geographic subdivision.

geographic subdivision might produce a genealogy
like the one shown in Fig. 1. This genealogy differs
from the neutral one in one branch (the oldest one)
being much longer than its standard neutral ex-
pectation. (For a detailed explanation see, e.g.,
Takahata, 1988.) It has been shown that linkage to a
site under balancing selection can produce similarly
shaped genealogies (Hudson & Kaplan, 1988).

The new test statistics to be introduced use the
information in adjacent pairs of segregating sites.
Suppose each new mutation happens at a different
nucleotide site from all previous mutations (i.e. the
infinite-sites assumption). Call a pair of segregating
sites congruent if the subset of the data consisting of
the two sites contains only two different haplotypes. If
there has been no recombination between the two
segregating sites, they will be congruent if and only if
both mutations lie on the same branch of the unrooted
tree. Another way of thinking about this is to consider
each segregating site as an unordered partition of the
sample, where the subsets correspond to those
individuals that have the same allele at that particular
site. (A partition of the sample consists of two disjoint
subsets whose union is the set of individuals in the
sample.) Two segregating sites are congruent if and
only if their corresponding partitions are identical.

Label the branch lengths in the unrooted genealogy
l
"
, l

#
,…, l

x
. Then, for two segregating sites with the

same genealogical history (e.g. two segregating sites
with no recombination between them), the probability
that they are congruent is

P(congruent)¯
3
x

j="

l#
j

03x
j="

l
j1#

. (1)

For genealogies with one very long branch (such as
Fig. 1), this probability is higher than for most neutral
genealogies, because it is quite common for both
mutations to lie on the one very long branch. The
probability of congruence is much more complicated

when there is recombination between the two
segregating sites. However, since not all recombination
events affect the longest branch, it is expected that
compared with the neutral case, alternative models
that tend to produce genealogies that look like Fig. 1

will still have a higher probability of congruence of
segregating sites even when there is recombination
between the two sites. Set S as the number of
segregating sites in the sample. Then, define

B«¯ the number of pairs of adjacent segregating sites
that are congruent,

B¯B«}(S®1).

B has been scaled so that its minimum value is 0 and
its maximum is 1. It can be thought of as a measure of
linkage disequilibrium among the segregating sites.
For the reasons outlined above, E(B) (the expectation
of B) should be higher under a geographic subdivision
model than the standard neutral model with the same
level of recombination. Simulation results confirm
this for a finite-island model of geographic subdivision
(results not shown). Thus, B can be used as a one-
tailed test statistic where values that are too high
reject the standard neutral model ; such values are
suggestive of geographic subdivision, or some other
force that tends to distort genealogies into having one
or more branches that are much longer than the
others. Unfortunately, analytical results are difficult
to obtain even in the simplest cases. If there is no
recombination and S¯ 2, then finding E(B) (i.e.
finding the average of (1) over all possible genealogies)
would still require knowledge akin to the expectations
and variances of all the relative branch lengths in an
unrooted tree. Even for a sample size of n¯ 3, this
expectation may have to be found by numerical in-
tegration. The critical values of B are therefore found
by simulation instead.

As the recombination rate increases, E(B) is
expected to decrease ; it becomes less and less likely
that adjacent segregating sites share the same gen-
ealogy, and the probability of congruence is less for
those that do not than for those that do. In contrast,
one quantity that increases with increasing recom-
bination rate is the number of different partitions
defined by adjacent pairs of congruent segregating
sites. Although the absolute probability of congruence
decreases, those pairs that are congruent are more
likely to have a genealogy that is not shared by other
congruent pairs, and hence are more likely to induce
a unique partition. Let A¯ the set of all distinct
partitions induced by congruent pairs of segregating
sites. Then, define

Q¯ (B­rAr)}S,

where rAr is the size of the set A. Like B, Q is scaled to
be between 0 and 1, and is also expected to be larger
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Table 1. Data set used as an example (see text)

Segregating site

1 2 3 4 5 6 7 8 9 10

Seq1 a c c t a g a c t a
Seq2 g \ \ \ \ t \ \ c g
Seq3 g g t g c t \ \ c \
Seq4 g \ \ \ c \ \ \ \ \
Seq5 g g t g c t t g \ \

under a geographic subdivision model than under the
panmictic neutral model. It too can be used as one-
tailed test statistic with the critical values determined
by simulation. Although B should be conservative in
the presence of recombination, it is not as clear what
effect recombination has on the distribution of Q,
since Q is the sum of one term that is positively
correlated with the recombination rate and one that is
negatively correlated with the recombination rate.
Both Q and B are attempts to use some of the
information captured in the phylogeny besides the
number of descendants of each mutation. They are
both ad hoc, but are easy to calculate.

As an example, consider the sample of sequences
shown in Table 1. There are 10 segregating sites, so
nine pairs of adjacent segregating sites to consider.
Three of these pairs are congruent: sites 2 and 3, sites
3 and 4, and sites 7 and 8. Of these, the first two induce
the same partition while the last one induces a
separate partition. Thus, for this data set, S¯10,
B«¯ 3, rAr¯ 2, B¯ 0±333 and Q¯ 0±5.

3. Simulations

Random sequence samples were generated using a
modification of a coalescent program with recom-
bination and geographic subdivision kindly provided
by R. R. Hudson. This program assumes an infinite-
sites model, so all segregating sites are biallelic. The
values of different test statistics were then calculated
using these simulated samples. A summary of the test
statistics considered can be found in Table 2. (The
notation differs from that of some authors.) The
powers of these eight statistics were then compared
under various scenarios. All simulations were run
conditional on the number of segregating sites, not
θ¯ 4Nµ. (θ is the population mutation rate, N is the
diploid effective population size and µ is the total
mutation rate per generation.) The rationale for this is
that we can observe the number of segregating sites in
a sample but we must estimate θ. Power simulations
conditional on θ are problematic since there is no way
of constructing an appropriate null distribution
without knowing the true value of θ. A more thorough

Table 2. Summary of the statistical tests considered

Test statistic Source

W Fu (1996)a

B See Section 2
Q See Section 2
G Gη, from Fu (1996)
D(1) D*, from Fu & Li (1993)b

D(2) D*, from Fu & Li (1993)c

T(1) D, from Tajima (1989)d

T(2) D, from Tajima (1989)c

a See also Strobeck (1987), Depaulis & Veuille (1998).
b One-tailed test of when D* is significantly positive.
c Two-tailed test.
d One-tailed test of when D is significantly positive.

argument can be found in Hudson (1993). When the
number of segregating sites is fixed, D is equivalent to
counting the total number of singletons, and W is
equivalent to counting the number of haplotypes.

Critical values for the test statistics were estimated
from 100000 simulations of a panmictic, no re-
combination model with the sample size and the
number of segregating sites fixed, and significance
defined at the 5% level. (Critical values for Q often
conditioned on low levels of recombination instead of
no recombination to be conservative. This is discussed
in Section 4.) The power was determined by counting
how often the null model was rejected out of 100000
replicates of an alternative model. These latter models
conditioned on the same sample size and number of
segregating sites, and specified a particular sym-
metrical island model (fixing the number of islands
and the migration rate between them) and a re-
combination rate. The scale migration and recom-
bination rates are defined as 4Nm and 4Nr respectively,
where m is the proportion of migrants per generation
between each pair of islands and r is the recombination
rate per generation. Since there are at least six free
variables (sample size, recombination rate, number of
segregating sites, number of islands, migration rate
between islands, and distribution of sampled indi-
vidualswithin islands), it is computationally unfeasible
to test power across all the parameter space. There
was no attempt to be exhaustive ; instead, examples
are shown that are thought to be indicative of general
patterns. These often involve changing one or two
variables while holding the others constant. Many
more simulations were run than can be described in
this paper; the details and results of these additional
simulations, as well as all computer programs used,
are available from the author on request.

Conditioning on the number of segregating sites
makes most of the variables examined (W, D, Q and
B) have few possible values. In order to compare
powers more accurately, a randomized test was used
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(see, e.g., Lehmann, 1986, p. 71). Suppose, for
example, 100000 replicates are run, resulting in 2000
trials with W! 5, 5000 trials with W¯ 5, and 93000
trials with W" 5. What P value should then be
assigned to those trials having W¯ 5? The con-
servative approach would assign P¯ 0±07. A draw-
back of this approach is that a one-tailed test would
reject only 2000 trials at the 5% level ; furthermore,
the P values would not be uniformly distributed on
(0, 1) under the null hypothesis. The approach taken
here is to choose the P value for a given trial with
W¯ 5 uniformly from (0±02, 0±07). This way, exactly
5% of the trials under the null hypothesis will be re-
jected at the 5% level, making it easier to compare
powers. In practice, the conservative approach would
be used, leading to a loss of power of W, D, Q and B.
This loss of power decreases as the sample size and
number of segregating sites increase, and is an inherent
problem of simulating conditional on the number of
segregating sites (see Section 6). As mentioned before,
simulating conditional on θ has its own problems.

4. Results

I first tested the effect of recombination alone on
statistics, when panmixia is assumed. The purpose of
this was to examine how conservative the test statistics
are with respect to recombination. The rejection
probabilities of each test statistic as a function of the
recombination rate are shown in Fig. 2. Here, the x-
axis is 4Nr for the entire simulated region and the y-
axis is the rejection probability in per cent. The sample
size is n¯ 30 and the number of segregating sites is
S¯ 40. Note that when 4Nr& θ

W
, recombination
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Fig. 2. The decrease in rejection probability due to the presence of recombination. Critical values are obtained from
100000 panmictic, no recombination, infinite-sites stimulations with sample size n¯ 30 and the number of segregating
sites S¯ 40. The eight test statistics examined are listed in Table 2.

reduces the rejection probability of most tests by more
than half.

θ
W

¯S53
n−"

j="

j−"

is the estimate of θ based on the number of segregating
sites (Watterson, 1975). For example, when 4NrE θ

W
(i.e. 4Nr¯10 in Fig. 2), the actual rejection prob-
ability is ! 4±1% for Q, ! 3% for D(1), and is
!1±7% for the other six statistics. The decrease in
rejection probability due to recombination is mono-
tonic for all variables except Q, which contains a
quantity that positively correlates with the recom-
bination rate.

The same decrease due to recombination can be
seen when population structure is simulated instead of
panmixia. Fig. 3 shows the power under a two-island
model with 4Nm¯ 0±5, n¯ 30, S¯ 40, and all
individuals sampled from the same island. Critical
values are determined from 100000 panmictic simu-
lations with n¯ 30 and S¯ 40. Since Q does not
decrease monotonically with increasing 4Nr in Fig. 2,
it would not be conservative to obtain critical values
for Q using no recombination simulations. The
recombination rates for the null simulations were
therefore set at the values for which the rejection
probabilities in Fig. 2 were maximal (i.e. 4Nr¯ 2 for
Q, and 4Nr¯ 0 for the other test statistics). That way,
if the null model were true, the rejection probabilities
would all be % 5% regardless of the actual re-
combination rate. Further geographic subdivision
simulations with different sample sizes and number of
segregating sites (many of which are described below)
suggest that some patterns in Fig. 3 are quite robust.
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Fig. 3. The effect of recombination on the power to reject the standard neutral model when simulations are run using a
symmetrical island model of geographic subdivision. One hundred thousand replicates were run for each value of 4Nr.
A two-island model is used, with 4Nm¯ 0±5, n¯ 30, S¯ 40, and all individuals sampled from the same island. Critical
values are obtained from the panmictic, infinite-sites simulations shown in Fig. 2 using the recombination rate that is the
most conservative (see text). The eight test statistics examined are listed in Table 2.

First, it should be noted that all measures have
relatively low power for almost all sets of parameter
values tested; also, most tests show a monotonic
decrease in power with increasing recombination rate.
When 4Nr" 0, the most powerful statistic is Q, except
when there are few segregating sites and the re-
combination rate is very high, in which case D(1) is
more powerful. In most simulations, W is the most
powerful statistic when 4Nr¯ 0; however, W and G

are the weakest statistics as soon as 4Nr is not
extremely small. This implies that Fu’s (1997) F

S
(which is equivalent to the other tail of W ) is strongly
non-conservative in areas where recombination is
present.

One interesting facet of the data is the large contrast
between 4Nr¯ 0 and 4Nr" 0. D(2) and T(2) are
more powerful than D(1) and T(1) respectively when
4Nr¯ 0, but the situation is reversed as 4Nr increases.
A possible explanation is as follows: for the par-
ameters in Fig. 3, it is common for there to be more
than two migration events in the history of a particular
site. When this happens, a positive shift is expected in
both D and T. When 4Nr is small, the increased
variance leads to both tails being large, but as 4Nr

increases, the expected variance of D and T decreases,
leading to substantial weight at only one of the tails.
Even more striking is the extreme sensitivity of both
W and G to recombination. Though both perform
well when 4Nr¯ 0 in Fig. 3, they are consistently the
worst two measures for medium and high levels of
recombination. This result is not surprising. Re-
combination leads to multiple trees for the segregating
sites, and mutations on different genealogies lead to

new haplotypes. Low W values are thus quite rare
when there is appreciable recombination. Also, a
significant G test requires an extreme distortion in the
frequency spectrum, such as a majority of mutations
occurring in a certain type class. (The type of a
mutation, as defined by Fu (1996), is the number of
sampled individuals in the smaller of the two allelic
classes.) This is very unlikely to occur if the whole
sequence does not share the same genealogy.

The change in power is explored under a variety of
different scenarios, displayed in Fig. 4–9. Critical
values are determined from 100000 panmictic simu-
lations conditional on the same sample size and
number of segregating sites. Fig. 4–8 condition on the
most conservative recombination rate for each test
statistic as was done for Fig. 3; in Fig. 9, critical
values are obtained instead from simulations that
condition on the actual recombination rate.

(i) Different migration rates

Fig. 4 shows how power is affected by changes in the
migration rate. Fig. 4a has a low migration rate
(4Nm¯ 0±1), while Fig. 4b displays a high migration
rate (4Nm¯ 2±0). All other variables are the same as in
Fig. 3. All test statistics are more powerful when the
migration rate is low, and Q is the most powerful
except when 4Nr! 2 or when both 4Nr and 4Nm are
large. Increasing the migration rate causes the power
of both Q and B to decrease more quickly as 4Nr

increases, while both T and D seem much less sensitive
to recombination (regardless of the migration rate).
As before, both W and G are almost powerless for

https://doi.org/10.1017/S0016672399003870 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672399003870


Power of tests of neutrality 71

50

25

5

10

4Nr

P
o
w

er
 (

%
)

W

B

Q

G

D (1)

D (2)

T (1)

T (2)

45

40

35

30

20

15

0
0 10 20 30 40

(a)

(b)

4Nr

0 10 20 30

25

20

15

10

5

0

P
o
w

er
 (

%
)

Fig. 4. The recombination rate versus power for different levels of migration. One hundred thousand replicates were run
for each value of 4Nr. A two-island model is used, with n¯ 30 and S¯ 40. All individuals are sampled from the same
island. The migration parameters are : (a) 4Nm¯ 0±1 (low migration) ; (b) 4Nm¯ 2±0 (high migration). Critical values are
the same as in Fig. 3. The eight test statistics examined are listed in Table 2.

medium or high levels of recombination. When all
individuals are sampled from the same island (as they
are in Fig. 4), there is a rather narrow range of
migration parameter values that lead to a reasonable
chance of detecting the structure using any of the test
statistics. When migration is too high (e.g. 4Nm" 5),
migrants are so common that the population behaves
similar to a panmictic one. When the migration rate is
low, many samples have no migrants in their history
(which is also close to the panmictic case). As a result,
the power of most test statistics starts decreasing when
the migration rate is too low (e.g. 4Nm! 0±1) (results
not shown).

(ii) Different sample configurations

Fig. 5a shows the effect of having five islands instead
of two. The sample size, number of segregating sites

and migration rate are the same as in Fig. 3, and all
individuals are sampled from the same island.
Increasing the number of islands from two to five
makes all the statistical tests substantially more
powerful ; for 4Nr"1, Q is the most powerful test,
and it is more than twice as powerful as it is in Fig. 3.
Population structure is often easier to detect because
those trials with at least one migration event often have
very deep (thus distorted relative to neutral expec-
tations) genealogies ; it takes longer for two individuals
in different islands to coalesce because most migration
events move one individual to a third island instead of
to the same island as the other individual. Also, in Fig.
5a, all test statistics (except W and G) retain most of
their power even when the recombination rate is quite
high.

Fig. 5b shows how sampling equally from two
islands (instead of sampling all individuals from the
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Fig. 5. The recombination rate versus power for two different sample configurations. One hundred thousand replicates
were run for each value of 4Nr. For both graphs, 4Nm¯ 0±5, n¯ 30 and S¯ 40. In (a) there are five islands, and all
individuals are sampled from the same island. For (b), there are two islands, and 15 individuals are sampled from each
island. Critical values are the same as in Fig. 3. The eight test statistics examined are listed in Table 2.

same island) affects the power of the different statistics.
The total sample size, number of segregating sites,
number of islands and migration rate are as in Fig. 3.
All statistics except for T(1) show a decrease in power
when multiple islands are sampled. Equal sampling
leads to proportionally longer external branches, since
fewer pairs of individuals are in the same island (a
necessary prerequisite for coalescence). This leads to
more expected singletons and a smaller expected
probability of congruence. T(1) fares well only because
both islands were sampled equally, leading to a rise in
intermediate frequency polymorphisms. If the islands
are sampled unequally, there is no increase in power
(results not shown).

(iii) Power �ersus the number of segregating sites

The effect of the number of segregating sites on the
power of the different test statistics is shown in Fig. 6.
Under the assumption that the mutation rate and the

recombination rate do not vary between nucleotide
sites, Fig. 6 can also be interpreted as showing power
versus increasing length sequenced (since then the
number of segregating sites will be proportional to the
length in base pairs). The three graphs are for no
(4Nr¯ 0), medium (4Nr¯ 0±25 n S ) and high (4Nr¯

0±75 n S ) levels of recombination. The latter two
correspond to 4NrE θ

W
and 4NrE 3θ

W
. Again, all

other variables have the same value as in Fig. 3. The
most powerful measures are W (Fig. 6a) and Q (Fig.
6b, c). An ideal test statistic would become more
powerful when more information (i.e. more
segregating sites) is available. In Fig. 6a, all eight test
statistics have this property. However, this is under
the assumption of no recombination, which is un-
reasonable for most nuclear gene sequences. For
medium and high levels of recombination (Fig. 6b, c),
only Q becomes more powerful as the number of
segregating sites increases. The others start losing
power after an intermediate peak. This observation is
somewhat surprising (see Section 6).
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Fig. 6. The number of segregating sites (S ) versus power. Each data point is based on 100000 replicates. A two-island
model is used, with 4Nm¯ 0±5, n¯ 30, and all individuals sampled from the same island. The recombination rates are:
(a) no recombination; (b) 4Nr¯ 0±25 nS (i.e. 4NrE θ

W
) ; (c) 4Nr¯ 0±75 nS (i.e. 4NrE 3θ

W
). Critical values are obtained

from 100000 panmictic, infinite-sites simulations that condition on the same sample size and number of segregating sites,
and use the recombination rate that is the most conservative (see text). The eight test statistics examined are listed in
Table 2.
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Fig. 7. The sample size (n) versus power for different values of 4Nr. Each data point is based on 100000 replicates. A
two-island model of geographic subdivision is used, with 4Nm¯ 0±5 and all individuals sampled from the same island.
The number of segregating sites was chosen to keep θ

W
as close to constant as possible over a fixed length of simulated

sequence. The sets of parameters are : n¯10 and S¯ 21 ; n¯ 20 and S¯ 27; n¯ 30 and S¯ 30; n¯ 40 and S¯ 32;
n¯ 50 and S¯ 34. The total recombination rates are: (a) 4Nr¯ 0; (b) 4Nr¯ 7±5 (i.e. 4NrE θ

W
). Critical values are

obtained from 100000 panmictic, infinite-sites simulations that condition on the same sample size and number of
segregating sites, and use the recombination rate that is the most conservative (see text). The eight test statistics
examined are listed in Table 2.

(iv) Power �ersus sample size

Fig. 7 shows what effect a change in the sample size
has on the powers of the different test statistics. The
model of subdivision is the same as in Fig. 3, and the
number of segregating sites is chosen to keep θ

W
(for

the whole gene) as close to constant as possible. This
involved simulating with the following pairs : n¯10
and S¯ 21 ; n¯ 20 and S¯ 27; n¯ 30 and S¯ 30;
n¯ 40 and S¯ 32; n¯ 50 and S¯ 34. Fig. 7a and b

show the results for no recombination (4Nr¯ 0) and
medium levels of recombination (4Nr¯ 7±5; equi-
valently, 4NrE θ

W
). The most powerful statistics are

W (no recombination) and Q (medium recombi-
nation). Higher recombination rates yield graphs
similar to Fig. 7b (results not shown). As above, good

test statistics should increase in power as more
individuals are sampled. The only statistics that do
not are W and G in Fig. 7b. Once again, W and G are
very sensitive to recombination; though W is the most
powerful in the no recombination case, it is one of the
worst once the recombination rate is on the same
order as the mutation rate. The superiority of Q in
Fig. 7b arises because it is less affected by re-
combination than the other statistics.

(v) Trade-off between sample size and length

sequenced

Under the constraint that a fixed total length could be
sequenced, simulations were run to see whether it were
better to sequence large stretches of few individuals or
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Fig. 8. The sample size (n) versus power for different values of 4Nr. Each data point is based on 100000 replicates. A
two-island model of geographic subdivision is used, with 4Nm¯ 0±5 and all individuals sampled from the same island.
Simulations are meant to mimic a situation where a fixed total length is sequenced and θ

W
per site is (as close to)

constant (as possible) ; it is used to study the trade-off between sample size and length sequenced. The specific parameter
values are: n¯10 and S¯ 64; n¯ 20 and S¯ 40; n¯ 30 and S¯ 30; n¯ 40 and S¯ 24; n¯ 50 and S¯ 20. The
recombination rates are: (a) 4Nr¯ 0; (b) 4Nr¯ 225}n (i.e. 4NrE θ

W
). Critical values are obtained from 100000

panmictic, infinite-sites simulations that condition on the same sample size and number of segregating sites, and use the
recombination rate that is the most conservative (see text). The eight test statistics examined are listed in Table 2.

a smaller length from more individuals. Since both
time and money are limited, most researchers face this
trade-off. For a panmictic population and a similar
question, a detailed discussion of optimal sequencing
strategies can be found in Pluzhnikov & Donnelly
(1996). Fig. 8a and b show power versus sample size
for no recombination (4Nr¯ 0) and moderate re-
combination (4Nr¯ 225}n). As before, the medium
rate corresponds to 4NrE θ

W
. This implicitly assumes

that the recombination rate and the proportion of
sites that are segregating are constant per base pair.
The model of subdivision was taken to be the same as
in Fig. 3, and the number of segregating sites was
chosen to keep θ

W
(per base pair) as close to constant

as possible. The following parameter pairs were used:
n¯10 and S¯ 64; n¯ 20 and S¯ 40; n¯ 30 and

S¯ 30; n¯ 40 and S¯ 24; n¯ 50 and S¯ 20. As in
Figs. 6 and 7, the most powerful test statistics are W

(in Fig. 8a) and Q (in Fig. 8b). For most simulations,
statistics show maximum power under intermediate
values of sample size and length sequenced, but this
intermediate value depends both on the particular
statistic and on the recombination rate. In general, as
the recombination rate increases, the optimal strategy
is to sequence a smaller length from more individuals.

(vi) Conditioning on the actual recombination rate

Fig. 9 shows power versus recombination rate when
the critical values are obtained from simulations that
condition on the actual recombination rate. All other
parameter values are the same as in Fig. 3. This
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Fig. 9. The recombination rate versus power with critical values obtained from simulations that condition on the actual
recombination rate. One hundred thousand replicates were run for each value of 4Nr, and all other parameter values are
the same as in Fig. 3. The eight test statistics examined are listed in Table 2.

situation is unrealistic because the intragenic re-
combination rate cannot yet be measured directly but
must be estimated from the patterns of variation.
Current estimators of 4Nr from sequence data are all
biased and have large variances (e.g. Hudson, 1987;
Hey & Wakeley, 1997; Wakeley, 1997). Conditioning
on the actual recombination rate noticeably increases
the power of all the test statistics relative to Fig. 3. The
most powerful test statistic is W (for 4Nr! 3) or B

(for 4Nr& 3). Q is less sensitive to recombination
than B, so it performs better when critical values are
determined using simulations with a conservative
recombination rate (e.g. as in Fig. 3).

5. An example

The results of Fig. 9 show that conditioning on a
positive recombination rate for the null distribution
increases the power of all test statistics. We dem-
onstrate this by analysing a data set taken from a
recently published study of Adh in Arabidopsis thaliana

(Innan et al., 1996). Although A. thaliana is mostly
self-fertilizing, a coalescent model is still reasonable
(with a change in time-scaling) since each sequence
was sampled from a different individual (Nordborg &
Donnelly, 1997). The purpose of this example is
pedagogical, not explanatory. Thus, the facts that the
sample locations might not be random and that
selection might be operating on Adh will be ignored.

Table 2 from Innan et al. (1996) was culled to
include only biallelic single-nucleotide poly-
morphisms. There are 17 individuals in the sample, 75
segregating sites and 13 distinct haplotypes. The
average number of nucleotide differences between two
sampled individuals is 19±06, B«¯ 31, rAr¯ 9,

Table 3. P �alues for the different test statistics and

the data set of Innan et al. (1996)

P value

Test statistic 4Nr¯ 0 4Nr¯ 8±9

W 0±579 0±444
B 0±062 0±019
Q 0±024 0±007
G 0±759 0±304
D(1) 0±148 0±087
D(2) 0±296 0±175
T(1) 0±297 0±196
T(2) 0±594 0±392

B¯ 0±419, Q¯ 0±533 and η¯ (38, 7, 9, 5, 0, 1, 5, 10).
The last is Fu’s (1996) notation for the frequency
spectrum of a data set with no outgroup. One hundred
thousand no recombination, coalescent simulations
were run for a panmictic population conditional on
n¯17 and S¯ 75. The results are shown in the second
column of Table 3. The only statistic that is significant
(at the 5% level) is Q, with P¯ 0±024.

The data from Innan et al. (1996) show some
evidence of recombination at Adh in A. thaliana. The
estimated minimum number of recombination events
in the sample (R

M
, from Hudson & Kaplan, 1985) is

7. We construct a lower bound C
min

for 4Nr as
follows: we take the largest value of 4Nr such that
simulations with this recombination rate are unlikely
to produce data sets with R

M
& 7 (i.e. they do so less

than 2±5% of the time). This is roughly the same
method as in Hudson & Kaplan (1985) and Hudson
(1987). For our example, the estimated lower bound is
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C
min

E 8±9. Simulations were then run with the most
conservative value of 4Nr that was greater than or
equal to C

min
(in this example, 4Nr¯C

min
for all test

statistics). Although this method has two sources of
Type I error, further simulations show that it is still
conservative (results not shown). The P values are
displayed in the third column of Table 3. All the P

values are lower, and two statistics are significant ; Q

has P¯ 0±007 and B has P¯ 0±019. These significant
P values support the claim of Innan et al. (1996) that
the observed haplotypic structure is suggestive of
population subdivision or selection.

6. Discussion

One observation that is evident from the simulations
is that all test statistics have poor power to reject the
null hypothesis, even when large sample sizes and
many segregating sites are considered. In reality, the
power is even lower for actual data sets because a
randomized test would not be used. However, the
order, (e.g. that Q is usually the most powerful while
W and G are often the worst) would be essentially the
same. As discussed in Section 1, part of the problem
is that the information contained in which individuals
were sampled from which localities is not used by any
of the test statistics. In fact, all the test statistics except
for T(1) perform better when all individuals are
sampled from the same island, instead of comparable
sampling from all islands (see Figs. 3 and 5b).
However, there is still some new information that
these statistical tests provide. Though the permutation
tests of Hudson et al. (1992) are constructed to
determine whether samples from different localities
are different from each other, the results presented
here suggest that samples from a single locality
already often do not conform to equilibrium neutral
expectations. Researchers who overlook possible
subdivision in their samples underestimate the vari-
ance in possible outcomes that can arise due to non-
selective factors.

The conclusions that can be drawn from a dis-
crepancy between results and neutral expectations are
far from obvious; the test statistics described were all
constructed to test the consistency of a given data set
with the standard equilibrium neutral model. Those
data sets that are consistent with the neutral model
provide at best only indirect evidence that the region
in question is actually evolving neutrally ; such data
sets may also be consistent with selective alternatives.
Conversely, a data set that is inconsistent with the null
modelmight also be inconsistentwithmany alternative
hypotheses (see, e.g., Wayne & Simonsen, 1998).
Because of this difficulty, studies of genetic variation
that use ‘statistical tests of neutrality ’ without explicit
a priori alternative hypotheses are hard to interpret. A
significant test result without any additional infor-

mation does not help to distinguish between possible
alternatives. Even if the data are unlikely to have
arisen under the null model, they may be even more
unlikely to have arisen under most or all alternative
models. If one had two easily simulated hypotheses
and access to powerful computers, then a likelihood
approach (that compares the likelihoods of the data
under each model) might be appropriate. However,
this might not be computationally practical for large
data sets or for models (such as island models of
geographic subdivision) that require extensive para-
meterization.

Another problem with post hoc analysis using
statistical tests of neutrality is that most researchers
do not correct for multiple tests. In practice,
researchers apply a number of different statistical
tests, and consider their data set ‘non-neutral ’ if at
least one test is significant. The probability that at
least one test rejects neutrality at the 5% level is
clearly much higher than 5%. When the P values in
Table 3 are recalculated (by simulation) to correct for
multiple tests, only Q (when 4Nr¯C

min
) remains

significant.
Since an accurate correction for multiple tests

requires extensive computer simulations, it might be
best if only a single statistical test (chosen before the
data is collected) is used for analysing a given data set.
The choice of test should depend on what alternative
hypotheses the investigator thinks are the most
reasonable. A statistical test that is good at detecting
geographic subdivision, for example, might not be
particularly effective at detecting other types of
departures from the null model such as recent
bottlenecks or linkage to a recent selective sweep.
Knowing which test statistic to choose requires more
work to be done investigating the predictions of
common alternative models to the standard neutral
theory.

To highlight the degree of overlap between test
statistics, 100000 genealogies were simulated using
the same parameter values as in Fig. 2; these simulated
data sets were then analysed using W, Q, D(1) and
T(1). These four are generally superior (for detecting
geographic subdivision) to G, B, D(2) and T(2)
respectively. It was found that 12±8% of the replicates
had at least one significant test (7±8% with one, 3±2%
with two, 1±4% with three, and 0±5% with all four).
To have a 5% chance of obtaining at least one
significant test statistic, one could run each test with a
nominal rejection probability of 1±75%. (This rejection
probability was determined by simulation.) However,
this composite test statistic is no more powerful than
any of the other statistics (results not shown).

There are many other ways one could construct a
composite test statistic from W, Q, D(1) and T(1). If
the composite is defined to be significant when one or
more of the component test statistics are significant,
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Fig. 10. The power of D(1) and Q as a function of the number of loci considered. Each locus has parameters as in
Fig. 3, with 4Nr¯10, and critical values determined from panmictic simulations of k loci using a conservative
recombination rate. Here ind. stands for independent, and cons. stands for consecutive (see text).

then the nominal rejection probabilities could differ
among the four component test statistics. For example,
since Q is more powerful than the others in Fig. 3, it
might make sense to ‘weight ’ Q more heavily than the
others by giving it a higher rejection probability while
lowering that for the others. A composite test could
also be devised that requires more than one test
statistic to be significant at a certain level. The power
of a number of different composite statistics was
compared with the eight test statistics described in
Section 1, and none of them performed better than Q

(for low levels of recombination) and D(1) (for high
levels of recombination) (results not shown).

This last observation is rather disappointing, be-
cause it suggests that many test statistics use similar
aspects of the data. Perhaps even more disturbing is
the observation that increasing the amount of data
(i.e. increasing the sample size or the length sequenced)
does not lead to a large increase in power. In fact,
when recombination rates are high, increasing the
length sequenced actually decreases the power of most
test statistics (see Fig. 6c). As the length sequenced
increases, so does 4Nr ; tests that use critical values
from no recombination simulations become
increasingly conservative (and thus less powerful).
However, when the parameter combinations in Fig.
6c were rerun with critical values determined from
simulations that conditioned on the actual recom-
bination rate (cf. Fig. 9), the shape of the power
curves was more like Fig. 6a (i.e. power increased with
increasing numbers of segregating sites for all test
statistics except W ) (results not shown). Thus, it is not
the presence of recombination itself that decreases
power, but the difference between the actual re-

combination rate and the rate used in simulating the
null distribution.

Demographic departures from the standard null
model are expected to affect the patterns of observed
variability over the whole genome. One way of
increasing the power to detect geographic subdivision
of all the test statistics examined is to sequence
independent loci instead of one large contiguous
stretch. The advantage then is that we know when
there is free recombination between the loci, and
hence can condition on it. Simulations were run that
modelled k independent loci (1%k%10), each with
n¯ 30, S¯ 40, 4Nr¯10, and the same island model
as in Fig. 3. Critical values were determined from
simulations with k independent panmictic loci, each
with conservative recombination rate. The power of Q

is shown in Fig. 10 as a function of k. Also shown in
Fig. 10 is the power of Q as a function of k when the
k loci are consecutive, not independent (i.e. S¯ 40k,
4Nr¯10k). As can be seen, the increase in power that
arises from being able to condition on free recom-
bination between loci is substantial. For comparison,
Fig. 10 includes the power of D(1) (the best of the old
test statistics in Fig. 3) as a function of k when the k

loci are independent or consecutive.
In the future, the amount of sequence data available

will not be the limiting factor, and information will be
available on the patterns of variation at many unlinked
‘neutral ’ areas (or at least areas with no functional
significance or obvious signs of selection). This
information will be used to construct likely demo-
graphic scenarios ; these scenarios will then be used as
null models in tests for selection in specific areas.
Instead of just accepting or rejecting the equilibrium
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neutral model, we will be able to infer which selective
and demographic forces have shaped the observed
patterns of sequence variability.

I thank R. R. Hudson for helpful discussions as well as B.
Charlesworth, M. Kreitman, T. F. C. Mackay, M. S.
McPeek, M. Przeworski and two anonymous referees for
comments on an earlier version of this manuscript. This
work was supported by the University of Chicago Division
of Biological Sciences Unendowed Fund.
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