Recombination-line intensities for hydrogenic ions - I.
 Case B calculations for H_{I} and $\mathrm{He}_{\text {II }}$

 Summary. The relative intensities of H_{I} and $\mathrm{He}_{\text {II }}$ recombination lines arecalculated, including full collisional effects, for a considerably larger range of
temperature, density and principal quantum numbers than before. Case B of
Baker \& Menzel is assumed, and tables of line opacities are also presented to
enable the assumption of negligible optical depth in all but the Lyman series to be
checked. Collisional excitation of the $n=3$ levels from both $n=1$ and $n=2$ states is
considered, and is found to invalidate Case B theory in some conditions which
depend on electron density and the Lyman- α escape probability. The regimes of
temperature and particle density for which Case B is valid are discussed. Newly
calculated collision strengths for the $n=1,2$ and 3 states of He^{+}are tabulated.

1 Introduction

With the increasing sensitivity and resolution available to infrared spectroscopy, recombination lines can be observed in many types of astronomical objects at ever-increasing wavelengths. In order to interpret these observations, which can be uniquely useful because of the relative simplicity of the physical process controlling the formation of infrared recombination lines, antum necessary to have theoretical line intensities for transitions involving levels with numbers larger than previously considered. Moreover, in many of these objects, such as

 Menzel (1938) for which the Lyman lines are taken to be optically thick. In the Case B *Staff Member, Quantum Physics Division, National Bureau of Standards. Permanent address: Joint Institute for Laboratory Astrophysics, National Bureau of Standards and University of
Colorado, Boulder, CO 80309, USA. Colorado, Boulder, CO 80309, USA.

2 Formulation
In the determination of the level populations, $N_{n l}$, of hydrogenic systems, we follow the approach of Brocklehurst $(1970,1971)$, and make use of the computer program used in the latter work with a number of modifications and improvements. It is convenient to introduce the departure coefficients $b_{n l}$ defined in terms of the Saha-Boltzmann populations by
(1) parameterized by the Lyman alpha escape probability under which these effects can be neglected. The resulting relative intensities and opacity factors, which are tabulated in full on microfiche, are discussed in Section 5. collisional transitions from levels with $n=1$ and $n=2$ to higher levels, and derive conditions
 approxim can be easily calculated.
In a standard Case B calculation, the effect of collisional excitations from $n=1$ and $n=2$ states is ignored. The range of densities of interest for Wolf-Rayet stars includes a regime in which collisional excitation from the $n=2$ states may become important. In this paper we restrict ourselves to densities for which the standard Case B assumptions are valid. A subsequent
The recombination of a high-density plasma has been treated previously by a number of authors. The connection between the so-called collisional-radiative recombination theory of Bates, Kingston \& McWhirter (1962) and the approach used by Brocklehurst (1970, 1971) and by ourselves is shown by Burgess \& Summers (1976) and Summers (1977). Our Case B theory is identical to the 'depopulated $n=2$ ' case treated by Summers (1977), apart from numerical results are essentially identical to those of Summers (1977) in the few cases where comparison can be made, although the goals of his paper are very different from ours.
 upper and lower principal quantum numbers up to 50 and 29 , respectively. For Hi we cover the temperature and density ranges $3 \leq \log T_{\mathrm{e}} \leq 4.5$ and $2 \leq \log N_{\mathrm{e}} \leq 10$, while for HeII, $3.5 \leq$
 (1971). In Section 2 we give a brief description of the method of calculation and outline the most important differences from the work of Brocklehurst. Section 3 contains a detailed

D. G. Hummer and P. J. Storey

 proportional to $(2 l+1)$, so that $b_{n l}=b_{n}$. A matrix condensation method is used to reduce the

 stage are used to start an iterative solution for the $b_{n l}$. Brocklehurst (1971) defined a value of
Recombination-line intensities for hydrogenic ions 803

 energy-changing collisional processes. There are also some differences in the numerical methods used to evaluate the infinite sums of radiative rates. In the calculation of b_{n}, Brocklehurst
 transitions were included in which the principal quantum number changed by ± 1. Although transitions with $|\Delta n|=1$ dominate in the total rate for energy-changing collisions, this inconsistency in the treatment of collisions in the two stages of the calculation led to difficulties in matching the values of $b_{n l}$ and b_{n} at $n=n_{\mathrm{c}}$ (Brocklehurst 1971). These difficulties become worse at densities larger than those considered by Brocklehurst. In the calculations described here, all electron-induced energy-changing collisional processes are incorporated, both in the calculation of b_{n} and the subsequent calculation of $b_{n l}$. In addition, the same cross-sections and the same numerical methods are used in both stages.

3 Atomic rate coefficients and numerical methods

3.1 CALCULATION OF b_{n}

We describe the atomic processes included in the calculation of b_{n} and compare our methods with those of Brocklehurst (1970):

3.1.1 Bound-bound radiative transitions
 As in Brocklehurst (1970)

3.1.2 Radiative recombination

As in Brocklehurst (1970)
Brocklehurst (1970) used a mixture of impact-parameter, correspondence principle, and binary encounter cross-sections for these transitions. Here, the fits to various classical and semi-classical results of Percival \& Richards (1978) are used. A more complete background to these cross-sections is given by Percival \& Richards (1975)
3.1.4 Collisional ionization and three-body recombination
We use the symmetrized binary encounter ionization cross-section of Burgess \& Percival (1968, equation 37). Burgess \& Summers (1976) have added a contribution allowing for distant
 Using the formulae of Summers (1979), we find that the maximum contribution to the collision rate from this logarithmic, quantal part of the cross-sections is 4 per cent for the $n=3$ state of He^{+} at 100000 K . The quantal contribution declines rapidly as n increases and electron temperature

804 D.G.Hummer and P.J.Storey
decreases. We therefore neglect this term in the cross-section. Binary-encounter ionization
cross-sections are also discussed by Percival \& Richards (1975), who introduce a modification to
the binary encounter result for H at low energies. We exclude this modification since it is only of
importance at energies, and for states, for which collisional ionization is an unimportant process
in the conditions considered here. Brocklehurst (1970) does not specify how he calculated the
rates for these processes, but it seems likely that he also used a binary encounter method, which is
suitable for large energy transfers. Rate coefficients for three-body recombination are obtained
from those for collisional ionization using the principle of detailed balance.
We employ the matrix condensation technique first applied to this problem by Burgess \& Summers (1969). A description of the method is given by Brocklehurst (1970) and by Burgess \& Summers (1976)

3.1.5 Numerical methods

3.2.1 Bound-bound radiative transitions

Brocklehurst (1971) evaluates transition probabilities directly from the expression of Gordon (1929) in terms of the hypergeometric functions ${ }_{2} \mathrm{~F}_{1}$. He calculates these functions directly from series expansions. We use the same method for low principal quantum numbers ($n \leq 200$), but for higher values, which are required in our modified treatment of the cascade problem, we use
recursion relations to generate the functions in order to avoid cancellation difficulties (see for recursion relations to generate the functions in order to avoid cancellation difficulties (see for
example, van Regemorter et al. 1979).

3.2.2 Radiative recombination

As in Brocklehurst (1971).
3.2.3 l-changing collisions
As in Brocklehurst (1971), we use the semi-classical impact-parameter treatment for degenerate
 region of incident particle impact parameter, r_{p}, are defined. The boundary of these two regions, $r_{\mathrm{p}}=r_{\mathrm{s}}$, is defined by

$\sum_{l^{\prime}=l \pm 1} P_{n l, n l^{\prime}}=1 / 2$,

セิ
where $P_{n l, n l^{\prime}}\left(E, r_{\mathrm{p}}\right)$ is the probability of a transition from $n l \rightarrow n l^{\prime}$ at an incident energy E, and impact parameter r_{p}. The cross-section for collisions out of $n l$ is then given by
(3)
where it has been assumed that in the strong coupling region the average probability of a
transition is $1 / 2$, and r_{u} is an upper cut-off, discussed by Brocklehurst (1971). The probability s، \downarrow S.n

 cross-section is proportional to the oscillator strength, so that for all impact parameters,
(t)
The C_{n} obtained with this assumption differ by at most a few per cent from those obtained by Brocklehurst's method, but vary smoothly with l. In practice, $C_{n l, n l+1}$ is calculated and $C_{n l+1, n l}$ is obtained from detailed balance considerations. In the calculation of the rate coefficients for these collisions we have included the effects of electrons, protons and He^{+}ions. The assumed abundances are discussed in Section 4.

3.2.4 Energy-changing collisions

We use the cross-sections described in Section 3.1.3 above. As the collision rates for $\Delta l=l^{\prime}$ $-l= \pm 1$ dominate, we consider only those transitions. Because the collision rates among the nearly degenerate l-states for a given value of n are always much larger than for n-changing
collisions, the precise l-dependence of the $n l \rightarrow n^{\prime} l \pm 1$ cross-sections is not of primary importance. Moreover, the dominant contribution comes from transitions with $|\Delta n|=1$.

$\Delta l= \pm 1$

$$
\Delta l \neq 1
$$

$Q_{n l, n \pm 1 l^{\prime}}(E)=\frac{\int_{n l, n \pm 1 l \pm 1}}{f} Q_{n, n \pm 1}(E)$,

$$
=0
$$(5)

 Bethe approximation for collisional excitation. For transitions with $|\Delta n|>1$ we use the simpler approximation,
$Q_{n l, n^{\prime} l+\Delta l}(E)=Q_{n n^{\prime}}(E)$, $=0$,

$\Delta l \neq \pm 1$.

These assumptions maintain the correct total number of $n \rightarrow n^{\prime}$ transitions, and rely on the very rapid l-changing collisions with $\Delta n=0$ to correctly distribute population among the l-substates

3.2.6 Numerical methods
As outlined in Section 2, the iterative method of evaluation of $b_{n l}$ is similar to that used by Brocklehurst (1971). The differences lie in the treatment of the radiative cascade and collisional contributions to the populations of each sublevel $n l$. In Brocklehurst's treatment it was assumed
 $n>n_{\mathrm{c}}$. To obtain the total radiative cascade rate to a given level, $n l$, Brocklehurst sums the first
 transition probability from some higher state $n^{\prime} l^{\prime}$ to $n l$. This quantity is slowly varying as a function of $1 / n^{\prime 2}$. The fit is then integrated analytically. We replace this latter procedure with five-point Gaussian integration in the variable $1 / n^{\prime 2}$. These changes do not represent a great improvement in accuracy over Brocklehurst's approach, but arise from our desire to use, as far as is possible, the same techniques in the first-stage calculation of b_{n} as in the subsequent calculation
 terms and carrying out a numerical integration for the remainder. In this case a 16-point Gaussian integration in the variable $1 / n^{2}$ is used. Again the same method is used in both stages of the calculation.

4 Collisional excitation of higher levels from $n=1$ and $n=2$

The 'Case B' theory used here is based on the assumption that the level populations for $n \geq 3$ are

 collisional transitions from $n=1$ and 2 may make an appreciable contribution to the populations
 be derived under which these collisional transitions are negligible and that the users of our tables take these limits seriously.
 collisional transitions from all levels with larger principal quantum numbers is given in terms of an effective recombination rate constant $\bar{\alpha}_{n l}$, which is defined by
$N_{\mathrm{e}} N_{+} \bar{\alpha}_{n l}=N_{\mathrm{e}} N_{+}\left(\alpha_{n l}+N_{\mathrm{e}} \beta_{n l}\right)+\sum \sum N_{n^{\prime} l^{\prime}}\left(A_{n^{\prime} l^{\prime}, n l}+N_{\mathrm{e}} C_{n^{\prime} l^{\prime}, n l}\right)$,
(8)
where $\alpha_{n l}$ and $\beta_{n l}$ are the direct radiative and three-body recombination rate coefficients, $A_{n^{\prime} l^{\prime}, n l}$
is the Einstein coefficient and $C_{n^{\prime} l^{\prime}, n l}$ is the collisional rate coefficient for the $\left(n^{\prime}, l^{\prime}\right) \rightarrow$
(n, l) transition. From Tables 1 and 2 , which give values of $\bar{\alpha}_{n l}$ for $n=2$ and 3 in hydrogen and
ionized helium, respectively, at selected values of N_{e} and T_{e}, it is clear that these coefficients
are smoothly decreasing functions of temperature and are almost independent of density. Rate
coefficients for electron-induced transitions between levels with $n=1,2$ and 3 are required for
both H and He^{+}. We discuss these rate coefficients in the Appendix. The Appendix contains the

[^0]$$
\stackrel{\delta}{\infty}
$$

$4.11 \rightarrow 2$ AND $1 \rightarrow 3$ COLLISIONAL TRANSITIONS

results of a new close-coupling and distorted-wave calculation of collision strengths for $\mathrm{He}^{+}+e$, which provides rates for the $1 \rightarrow 3$ and $2 \rightarrow 3$ transitions substantially more accurate than those currently in the literature.
The ground-state population is determined by the balance of ionizing and recombining mechanisms, and consequently its value in any particular circumstance cannot be obtained from recombination theory alone. However, we can derive a limiting value for the degree of ionization which ensures that collisional transitions from the ground state are negligible. The population of level (n, l) will be unaffected by collisions from $n=1$ if

$N_{1 s} N_{\mathrm{e}} C_{1 s, n l} \ll N_{\mathrm{e}} N_{+} \bar{\alpha}_{n l}$.

(9)
We define a critical degree of ionization $\left(N_{1 s} / N_{+}\right)_{n l}^{\text {crit }}$, such that the total rate of collisional population of the (n, l) level is a small fraction, p, of the population rate from higher states, by (10)

 then the tabulated Case B results will still be valid providing collisional $2 \rightarrow 3$ transitions are negligible; this issue is discussed in the next Section 4.2. On the other hand, if collisional excitation of $n=3$ from the ground state is significant, then $1 s \rightarrow n l$ collisions are probably contaminating level populations for all levels, and the results of this paper are simply

$$
\begin{aligned}
& \text { Table 3. Critical values of } N(1 s) / N_{+} \text {such that } 1 s \rightarrow n l \text { collisional excitation is } \\
& 10 \text { per cent of the total population rate for } \mathrm{H} \text { and } \mathrm{He}^{+} \text {. }
\end{aligned}
$$ inapplicable.

$$
\mathrm{H}_{\mathrm{I}}\left(N_{\mathrm{e}}=10^{6} \mathrm{~cm}^{-3}\right)
$$

\square

$$
\cdots \stackrel{7}{1}
$$

$4.22 \rightarrow 3$ COLLISIÓNAL TRANSITION
 can be determined from Case B theory by a simple extension, at least if collisional $1 \rightarrow 2$ transitions are negligible. The statistical equilibrium equations for the $2 s$ and $2 p$ levels, respectively, can be written as
$N_{+} \bar{\alpha}_{2 s}+N_{2 p} C_{2 p, 2 s}+N_{1 s} C_{1 s, 2 s}=N_{2 s}\left[A_{2 q} N_{\mathrm{e}}^{-1}+C_{2 s, 1 s}+C_{2 s, 2 p}+C(2 s)\right]$

IL8	

 at the highest densities it is not strongly temperature-dependent. Simple approximate forms

(e8I) (981) $\beta_{\mathrm{c}}^{(3)}=N_{\mathrm{e}}\left(3 C_{p}+C_{s}\right) / 3 A_{2 p, 15}, \quad 3 N_{\mathrm{c}} C \gtrdot N_{\mathrm{e}} \max \left(C_{s}, C_{p}\right) \gg A_{2 q}$. (18c) $2 \times 10^{-13} N_{\mathrm{e}} Z^{-4}$. In regions (1) and (2) the dominant mechanism for depopulating the $2 p$ level is collisional transitions to $2 s$ followed by two-quantum decay, while in region (3), it is collisions to higher levels.

$D=\left[R_{s}\left(C+C_{p}\right)+3 C C_{p}\right]\left[1+\left(\beta / \beta_{c}\right)\right]$.

(19)
The only other occurrence of β in equations (16) is in the combination $R_{p}+C$, which can be written as
Thus the populations of the $n=2$ levels are manifestly independent of β when $\beta \ll \beta_{c}$; thus one can

 contrast, for lower densities the $\beta=1$ limit is probably appropriate, as the condition $\beta \ll \beta_{\mathrm{c}}$ is likely

 respectively. Hence Case B is relatively easy to achieve for the higher Lyman lines, but not for Lyman α.

For $2 \rightarrow 3$ collisions to be negligible, we require

(Iz)
Let us first assume that the terms in equations (16) containing $N_{1 s}$ are negligibe, according
 $n=3$ levels such that the total rate of collisional population of the $n=3$ states from $n=2$ is a small fraction, p, of the population rate from all higher states. That is

[^1]then equations (16) take the form
$N_{2 l}=(2 l+1) N_{\mathrm{e}} N_{+} \bar{\alpha}_{2} /\left(A_{2 q}+3 A_{2 p, 1 s} \beta+\gamma N_{\mathrm{e}}\right)$,
813 Recombination－line intensities for hydrogenic ions

$\begin{gathered} \frac{10}{\tilde{0}} \\ \frac{0}{6} \\ \frac{0}{8} \end{gathered}$	$\stackrel{+}{+} \stackrel{+}{\sim_{2}^{\prime}}$	$0 \stackrel{O}{0}_{0}^{\infty}$
	$\stackrel{+}{\mathbf{O}}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$
	$\begin{aligned} & \text { n } \\ & 0 . \\ & 0.0 \\ & 0 . \end{aligned}$	
	$\begin{gathered} \text { E } \\ \text { E } \\ 0 \\ \text { D } \end{gathered}$	㔛 垔

values of the Lyman α escape probabilities $\beta \gg \beta_{\mathrm{c}}$ ，where β_{c} is given by Figs 1 and 2．The species and relative number of ions causing l－changing collisional transitions，are given in Table 5．We assume throughout that $N(\mathrm{He}) / N(\mathrm{H})=0.1$ ．As He II recombination lines formed under rather different sets of conditions are observed in different types of objects，such as planetary nebulae and Wolf－Rayet stars，we have made trial calculations for He II which reflect the ionic abundances in these two classes of object．The＇PN＇calculations were carried out with the abundances given in Table 5．The＇WR＇calculation assumes that the plasma is composed entirely
of He^{2+} and electrons，so that $N\left(\mathrm{He}^{2+}\right)=N(\mathrm{He})=0.5 N_{\mathrm{e}}$ ．Comparing the PN and WR results at
 about 12 per cent，which occurs in comparing lines in the infrared with lines in the ultraviolet．

 differences，we tabulate results only for the PN model．Results are given for all transitions
between pairs of upper and lower principal quantum numbers n_{u} and n_{l} ，respectively，in the For each ion and each pair of parameters $\left(T_{\mathrm{e}}, N_{\mathrm{e}}\right)$ we give both the relative intensities and the
opacity factors，as defined below．In Tables 6 and 7 we reproduce the tabular material from the fiche for the case of H at $N_{\mathrm{e}}=10^{4} \mathrm{~cm}^{-3}$ and $T_{\mathrm{e}}=10^{4} \mathrm{~K}$ ．At the top of each table appears the identification of the spectrum，the values of T_{e} and N_{e} and of the parameter NC．The second line
 recombination coefficient for the reference transition 4－3 or 4－2 as indicated，the power in the reference transition in $\mathrm{erg} \mathrm{cm}^{-3} \mathrm{~s}^{-1}$ ，and finally the coefficients $\bar{\alpha}_{2 s}$ and $\bar{\alpha}_{2 p}$ defined by equation （8）．The main body of the upper part of the table gives the energy in each transition n_{u} to n_{l} relative to unit energy in a reference transition，which is $4-2$ for HI and $4-3$ for He^{+}．
wer part of the table contains，for each transition，the opacity factor $\Omega_{n, n^{\prime}}$ defined as

 ing to a path length of $L \mathrm{~cm}$ is then

$$
\tau_{n n^{\prime}}=N_{\mathrm{e}} N_{+} \Omega_{n n^{\prime}} L
$$

Note that for many transitions $\Omega_{n n^{\prime}}<0$ ，which indicates population inversions and the potential for maser action in those transitions．

The theory used in these calculations assumes that $\left|\tau_{n n^{\prime}}\right| \ll 1$ for $n^{\prime}>n>1$ ．When using the tabulated line intensities for an $n^{\prime} \rightarrow n$ transition in a particular astrophysical context，it is necessary to confirm that the optical depth given by equation（30）is small in all transitions， especially those involving states below n, n^{\prime} ．In this paper we do not calculate populations for
 the estimates of $2 s$ and $2 p$ level populations given by equations（16），these quantities can be calculated from equation（29）．The stimulated emission factor can be ignored．
D．G．Hummer and P．J．Storey

													co－29．	
												50－ヶ¢＇z	S0－G¢ $\frac{1}{\text { ¢ }}$	1
											50－18．1	50－2E．2	C0－76．${ }^{\text {c }}$	61
										¢0－2¢．t	S0－12－1	¢0－60＇2	S0－ss ${ }^{\text {c }}$	2
									90－1L＊6	¢0－GZ•1	G0－25．1	S0－E8．1	S0－02＇z	Z
								90－52．L	90－5z•6	G0－21．1	¢0－$\frac{1}{}$ ¢ 1	¢0－65 ${ }^{\text {¢ }}$	S0－16．1	2
							90－6t＇G	90－56＊9	90－$\frac{1}{}$ ¢ 8	90－ $28 \cdot 6$	50－21：	¢0－6を．1	S0－29．L	2
						90－02＇カ	90－62．G	90－62•9	90－0ヶ・L	90－01．8	¢0－ $0 \cdot 1$	50－zz：1	S0－9t．	2
					90－¢て「غ	90－90＊${ }^{\text {¢ }}$	90－18．7	90－29．5	90－95．9	90－89． 1	90－700．6	50－20．1	S0－82：	2
				90－\＆ら． 2	90－91．${ }^{\text {c }}$	$90-12 \cdot \varepsilon$	90－Lع＇t	90－10．5	90－28．5	90－08．9	90－66： 2	90－2п－6	S0－ 51.1	2
			90－00＇Z	90－Lt＇己	90－06＊$て$		90－98．ε	90－97．${ }^{\text {H }}$	90－81．5	90－70．9	90－01． 2	90－0t ${ }^{\text {c }} 8$	50－00．1	2
		90－65．1	90－96：	90－82＇z	90－$¢ 9 \cdot 2$	90－10．ε	90－97＊ε	90－66．ε	90－を9＇t	90－0t＇ 5	90－$¢ \varepsilon \cdot 9$	90－05． 1	90－96．8	2
	90－12•1	90－95．1	90－28＊	90－80． 2	90－2E．2	90－1L 2	90－11．ε	90－85．ε	90－G1＇${ }^{\text {¢ }}$	90－78．＇．	90－89．5	90－21．9	90－ $20 \cdot 8$	\％
90－ $00 \cdot 1$	90－92＇t	90－9t1	90－99＊	90－68．1	90－S1＇己	90－cti．	90－18．2	90－$¢ 乙 \cdot \varepsilon$	90－til ${ }^{\text {c }}$ ¢	90－98．${ }^{\text {a }}$	90－11－G	90－90．9	90－7C．${ }^{\text {90－8 }}$	E
L0－E9．L	L0－25．8	L0－ts： 6	90－20＇1	90－12．1	90－2E： 1	90－G5：	90－8L．	90－70． 2	90－9を．	90－51．	90－ 9 －${ }^{\text {a }}$	${ }^{90-\varepsilon 9} \cdot{ }^{\text {c }}$	$90-81 \cdot \frac{1}{1}$	\％
L0－5¢．S	L0－56．5	10－79．9	20－Gt．	L0－8£．8	20－87\％ 6	90－80．1	90－ $10-\varepsilon \cdot 1$	90－1t．1	90－79．	90－16：	90－7\％${ }^{\text {9 }}$	90－26．1	90－9\％${ }^{\text {c }}$	H
$\begin{aligned} & 20-86 \cdot \varepsilon \\ & 10-80 \cdot \varepsilon \end{aligned}$		$20-76 \cdot$ $0-28$.		L0－Eट．${ }_{\text {L }}$	L0－tor		20－90．	20－11－8		90－60	$90-62 \cdot 1$	90－25．1	$90-\varepsilon 8^{\circ} \mathrm{L}$	5
62	88^{8}	L2	92	¢	カट	£z	zz	12	02	61	81	L1	91	
													$00+58 \cdot 2$	
												10－z¢ ${ }^{\prime}$ ¢	$00+00^{\circ} \mathrm{L}$	
											20－21． 2	10－29．1	10－69＊．	
										20－Gtic	20－2\％・サ	20－10＊6	10－09．2	
									ع0－L2•6	20－85：1	20－5 L 2	20－ 5.5	10－65：	
								ع0－10＊\％	80－6п．9	20－70．1	20－18．1	20－59．E	10－60：	
							80－16．1	ع0－66． 2	ع0－95＇\dagger	E0－52．L	20－92：1	20－trs＇ 2	20－HE：	
						10－06．6	E0－0¢•1	ع0－0C＇ट	ع0－0 $\varepsilon^{\prime} \varepsilon$	ع0－mट．s	80－60．6	20－78．1	20－ $2 \varepsilon^{.5}$	1
					to－stis 5	70－to ${ }^{\text {¢ }} 8$	ع0－カt	ع0－¢9．1	ع0－9力＇Z	ع0－16．	ع0－6L．9	20－8¢．1	20－00．${ }^{\text {\％}}$	，
				70－21．ε	70－15．h	to－ $2 ¢ .9$	＋0－28．8	ع0－92＇1	ع0－68．L	ع0－66＊	ع0－12．5	20－90．1		L
			70－26．1	п0－2L． 2	70－89＇ε	70－00．5	＋0－26＊9	†0－68＇6	ع0－8til	¢0－5 ${ }^{\circ} \mathrm{C}$	ع0－60．＇，	£0－LE． 8		，
		H0－12．1	70－89＊1	カロ－tで2	＋0－26． 2	70－00＇t	to－25． 5	70－88．	£0－81＇	ع0－28：1	£0－2ट $\frac{1}{}$	ع0－21． 9	20－26．	，
	50－88．	70－80．1	＋0－1．1．1	to－tis＇1	70－2t＊ 2	カ0－tて＇ε	п0－2ヶ＊${ }^{\text {¢ }}$	70－8£．9	70－EG：6	ع0－25：1	ع0－99＇？	ع0－6\％．${ }^{\text {ch }}$	20－29．	1
S0－8z＇5	S0－ 1 L 2	¢0－ $12 \cdot 6$	to－21－1	to－25．	to－66：	70－99．	＋10－99．ε	to－ 02.5	70－28．2	£0－SL	ع0－02＇己	ع0－95．＇	20－58：1	1
S0－¢8．7	50－ 1.1 .9	50－ 52.	50－18：6	＋0－92．1	70－59．1	to－12． 2	70－70．$\underbrace{\text { ¢ }}$	＋0－7\％${ }^{\circ} \mathrm{H}$		ع0－tio	ع0－78		ع0－18．6	1
50－02．7	50－22．5	S0－Es．9	50－52．8	170－90．1	to－8E．L	70－58．1	70－7¢ $+0-51 \cdot 己$	$70-79$ $70-80$	to－9\％$\dagger 0-\varepsilon 9^{\circ}$	H0－2n＊${ }^{8}$	¢0－$¢$ ¢		ع0－85＇8	61
S0－01．${ }^{\text {che }}$	¢0－18．${ }^{\text {c }}$	¢0－EL．${ }^{\text {c }}$	50－56． 5	50－19．${ }^{\text {c }}$	50－176．6	¢0－¢£．	¢0－£8．1	＋0－ 0 ¢ $9 \cdot \frac{\Sigma}{}$	$\quad 0-26 \cdot \varepsilon$	ヶ0－En＇9	ع0－91：			O2
50－89＇z	¢0－82＇ε	50－90＊\dagger	S0－01＇S	50－85：9	50－25•8	70－カ1．	70－85：	＋0－92． z	п0－ 0 ¢ ${ }^{\text {¢ }}$ ¢	to－85．5	ع0－10．1	ع0－81 ${ }^{\circ}$	80－89．9	12
50－2¢＇z	50－¢8． 2	S0－15＊	S0－1ヵ＇H	S0－E9．5	S0－9E． 2	50－98．6	म0－9E．	п0－26＊	70－66． 2	70－68．7	70－16．8	£0－76．	ع0－26．${ }^{5}$	寿
S0－10．2	S0－9力＇	50－50．${ }^{\text {c }}$	S0－E8．ε	G0－06．7	50－04．9	50－65 8	70－61：	70－2L：	70－29：2		70－16．	ع0－9\％．	ع0－18．${ }^{\text {c }}$	\＆
50－92．1	¢0－st＇z	50－99 ${ }^{\circ}$	S0－п¢＇ε	50－82．7	S0－09．5	50－85． 2	カ0－50．1	＋0－25．！	＋0－28．2	to－ $70-\varepsilon ¢$	70－98．9	を0－で・1		52
S0－S5．	50－68．1	50－78． 2	50－76 ${ }^{\circ}$	50－LL	S0－76．${ }^{\text {c }}$	50－59．9	50－92．6	＋0－ヵ¢ + －	＋0－20．2	to－ $70-80 \cdot \frac{\varepsilon}{\varepsilon}$	to－ 51.9	ع0－62．t	ع0－50．\％	9
50－28．	50－29：	50－20．2	50－09．2			40－06：${ }^{\text {c }}$	$50-72.8$ $50-2 E$.	＋70－02	＋70－98．1	¢0－8L	70－2Z• ${ }^{5}$	ع0－Ll：1	ع0－1L $\mathrm{\varepsilon}$	12
50－12．	$50-871$	S0－78．1	40－18．	50－26．	¢0－06．$\frac{\varepsilon}{\varepsilon}$	¢0－EL－H	50－ 59.9	50－02．6	＋10－05．l	¢0－2G．${ }^{\text {¢ }}$	т0－GL．\dagger	£0－80．1	ع0－1\％＇ε	82
50－80． 9	¢0－2¢ ${ }_{\text {c }}$		50－20．${ }^{\text {c }}$	50－68．	¢0－65．${ }^{\text {c }}$	50－2L．t	G0－66． 5	50－8L．8	to－2E：	to－0¢． 2	H0－5¢ ${ }^{\text {¢ }}$	70－28．6	ع0－G1．$¢$	62
90－GL ${ }^{9}$	50－20．1	$50-\varepsilon{ }^{\text {c }}$－1	50－89．1	S0－91． 2	G0－58．2	¢0－18．ε		¢0－66． 2	т0－пて 1	7\％－01＇ 2	to－86．$\frac{1}{}$	70－80．6	ع0－06：	OE
90－55．5	90－08．9	90－2サ・8	50－20．1	50－8E．1	¢0－£8．1	s0－05． 2	S0－ES．ε	50－22． 5	50－61：8	$70-6 \varepsilon$	70－29．2	70－91．	と0－66．	G8
90－G8．ε	90－EL＇t	90－68．5	90－2t ${ }^{\circ}$	90－99．6	50－82：	50－51．	50－8t ${ }^{\circ}$	$50-29 \cdot \%$	50－81．5	50－28．6	＋0－06．	70－07．		位
90－98＊2	90－15．ε	90－8¢ ${ }^{\circ}$ ¢	90－95．5	90－61．L	90－75．6	50－08：	50－58．1	S0－12．	S0－2E．${ }^{\text {c }}$	G0－07．	to－ $70-11.1$	¢0－1 $+0-8 \zeta$		
$\begin{gathered} 90-i z \cdot z \\ 51 \end{gathered}$	$90-2 L \cdot 2$	$\begin{gathered} 90-6 \varepsilon \cdot \varepsilon \\ \varepsilon! \end{gathered}$		90－25．5	$90-6 \varepsilon^{\circ} \mathrm{L}$ 01	S0－10．1	SO－¢カ＇l	${ }_{\text {S0－}}^{\text {L }}$	${ }_{9}^{50-9 \varepsilon}$	SO_{5}				
\＆t－0GL．	＝ 9 d d	カレー	てサ「8＝5	s2			ら2－0カて	1 ＝W3		$-780 *$－	0y z－t	ع1－26	． $2=98$	
							$0 L=0$	83	＊o	$70+00^{\circ} 1$	3N	$10+00 \cdot 1=$		H

 can be readily carried out by assuming that the variation with temperature has a power-law form, $I\left(N_{\mathrm{e}}, T_{\mathrm{e}}, n^{\prime}, n\right)=A\left(N_{\mathrm{e}}, n^{\prime}, n\right) t^{\beta}$,where $t=10^{-4} T_{\mathrm{e}}(\mathrm{K})$ and $A\left(N_{\mathrm{e}}, n^{\prime}, n\right)$ and β are constants. A similar procedure may be used to
interpolate in n^{\prime} for $n^{\prime}>30$,
where $B\left(N_{\mathrm{e}}, T_{\mathrm{e}}, n\right)$ and γ are constants. Variations with electron density are generally sufficiently
weak that linear interpolation suffices.

5.2 comparison with previous calculations

In the calculation of b_{n} and $b_{n l}$ for hydrogenic ions, the rate coefficients for radiative processes are in principle known exactly, and in practice can be determined to any desired level of accuracy. We expect that these rates have an error of less than 1 per cent in our calculation. A similar degree of accuracy is obtained in numerical methods. The rates for collisional processes are far less well known, but the values of the b-coefficients are somewhat less sensitive to these processes. It is therefore of interest to compare our values of b_{n} and $b_{n l}$ with those from other calculations with a different choice of collisional rate coefficients. We do, however, consider that the cross-sections of Percival \& Richards (1978), used in our calculations, are the best currently available. In the first stage calculation of b_{n} we can compare our results with those of Brocklehurst (1970), who tabulates b_{n} for H for $40 \leq n \leq 300$. We have made comparisons for $\log N_{\mathrm{e}}=3,4,5$ and $T_{\mathrm{e}}=5 \times 10^{3}$,

 density variation of 50 per cent a change in the collision rates of the same amount, which is

 that the differences between our results and those of Brocklehurst (1970) most probably arise from the different choice of cross-sections for the energy-changing collision rates
We can also make limited comparisons of our b_{n} for H and those of Summers (1977). We
 , For $n \geq 40$, we find maximum differences of 2 per cent between our results and those of Summers. Summers' treatment of energy-changing collisions differs

 (Summers 1977) Summers used the impact parameter method (Seaton 1962; Burgess 1964), consistent with the cross-sections of Percival \& Richards (1978) used in this work. Again the
 although now the differences are in the opposite sense to those with respect to Brocklehurst

 larger differences are unexpected, in that the populations of such low-lying states depend
 disagreement for the $3 d$ and $4 d$ states is his rather sparse choice of n states at low n in the matrix condensation scheme (Summers 1986, personal communication)
Our results for the relative intensities and effective recombination coefficients can be

 compared with those of Brocklehurst (1971) for H and He^{+}, and with those of Seaton (1978) for

 decreasing with rising electron temperature.
We find slightly larger differences when comparing with the work of Seaton (1978), who obtained relative line intensities for $\mathrm{He}^{+} n \rightarrow 2$ and $n \rightarrow 3$ series. These intensities were derived from the zero-density calculations of Pengelly (1964) and the density-dependent calculations of Brocklehurst (1971) by using scaling laws. We differ from Seaton by a maximum of 6 per cent, with an average difference of 3 per cent.
Brocklehurst (1971) also tabulates values for the effective recombination coefficients for the H $4 \rightarrow 2$ and $\mathrm{He}^{+} 4 \rightarrow 3$ transitions at a few temperature and densities. We reproduce his results for
these quantities to within 1 per cent for all cases.

Acknowledgments

We are grateful to Dr A. Burgess for reading this paper and making a number of helpful comments. DGH's participation in this work was supported in part by NASA Grant NAGW-766 to the University of Colorado, and by the Alexander van Humboldt-Stiftung through a 'US Senior Scientist Award' for research at the Institut für Astronomie und Astrophysik der Universität München. The progress of this work has been much facilitated by SERC travel funds available through Collaborative Computational Project 7. PJS acknowledges SERC support.
Crees, M. A., Seaton, M. J. \& Wilson, P. M. H., 1978. Comp. Phys. Comm., 15, 23.
Daschenko, A. I., Zapesochnyi, I. P., Imre, A. I., Vukstich, V. S. \& Danch, F. F., 1974. Zh. Eksp. Teor. Fiz., 67, 503.
Aggarwal, K. M., 1983. Mon. Not. R. astr. Soc., 202, 15P.
Baker, J. G. \& Menzel, D. H., 1938. Astrophys. J., 88, 52.

References

Basko, M. M., 1978. Sov. Phys. JETP, 48, 644.
Bates, D. R., Kingston, A. E. \& McWhirter, R
Brocklehust, M., 1970. Mon. Not. R. astr. Soc., 148, 417
Burgess, A., 1964. Proc. Symp. Atomic Collision Processes in Plasmas, Culham, UKAEA Rep. No. 4818, p. 63. Burgess, A., 1974. J. Phys. B., 7, L364.
Burgess, A. \& Percival, I. C., 1968. Ad
Burgess, A. \& Summers, H. P., 1969. Astrophys. J., 157, 1007.
Burgess, A. \& Summers, H. P., 1976. Mon. Not. R. astr. Soc., 174, 345
Burgess, A. \& Summers, H. P., 1976. Mon. Not. R. astr. Soc., 174, 345
Burke, P. G. \& Taylor, A. J., 1969. J. Phys. B, 2, 44 .
Callaway, J., 1983. Phys. Lett., 96A, 83.
Callaway, J. \& McDowell, M. R. C., 1983. Comm. Atom. mol. Phys., 13, 19.
Castor, J. I., 1970. Mon. Not. R. astr. Soc., 149, 111.
Eissner, W. \& Seaton, M. J., 1972. J. Phys. B, 5, 2187.
Hata, J., Morgan, L. A. \& McDowell, M. R. C., 1980. J. Phys. B, 13, 4453

818
 Appendix: Rate coefficients for electron induced transitions in $\mathrm{H}_{\text {and }} \mathrm{He}^{+}$ Consider two atomic states i and j. The collision strength $\Omega(i, j)$ for excitation from i to j is related
(A1)
where ω_{i} is the statistical weight of the initial state, E_{i} is the energy of the incident electron relative
to the initial state and a_{0} is the Bohr radius. The rate coefficient for excitation from i to $j, q_{i j}$, may to the initial state and a_{0} is the Bohr radius. The rate coefficient for excitation from i to $j, q_{i j}$, may
be written

[^2]where $\Delta E_{i j}$ is the energy of the transition and $Y\left(i, j, T_{\mathrm{e}}\right)$ is an effective collision strength, obtained by averaging $\Omega(i, j)$ over a Maxwellian distribution of electron velocities,

(A3)

We require values of Y for transitions between the $n=1,2$ and 3 states of H and He^{+}. We give the sources of this information below.
We use the effective collision strengths of Aggarwal (1983), who makes the fit
$Y\left(T_{\mathrm{e}}\right)=A+B T_{\mathrm{e}}+C T_{\mathrm{e}}^{2}+D T_{\mathrm{e}}^{3}$
and tabulates A, B, C, D for each transition. For $1 s \rightarrow 2 s$ and $1 s \rightarrow 2 p$, Aggarwal uses the collision strengths recommended by Callaway \& McDowell (1983). For the $1 \rightarrow 3$ transitions he uses the

[^3]Recombination-line intensities for hydrogenic ions 819
about 0.04 Ryd of the $n=2$ threshold, there are considerable uncertainties in the rates derived, treated in the unitarized distorted-wave method. The use of the distorted-wave method for $L>12$
 Fit from Callaway (1983).
\[

$$
\begin{array}{lll}
\hat{0} & \hat{N} & \underset{N}{N} \\
\underset{\sim}{n} & \underset{\sim}{n} & 0 \\
\dot{0} & \dot{0} & \dot{0}
\end{array}
$$
\] particularly at higher temperatures.

We have carried out a six-state calculation ($1 s, 2 s, 2 p, 3 s, 3 p, 3 d$) of collision strengths for He^{+}in the energy region above the $n=3$ threshold. We define E_{1} to be the energy (in Ryd) of the incident electron relative to the ground state of He^{+}, and L to be the total orbital angular momentum of the $\mathrm{He}^{+}+e^{-}$system. We calculate collision strengths at the energies $E_{1}=3.57,3.8$, $4.0,4.41,5.0$ and 6.0 Ryd , for $L \leq 23$. For $0 \leq L \leq 12$ we have used the close-coupling code impact (Crees, Seaton \& Wilson 1978), and for $13 \leq L \leq 23$, the unitarized distorted-wave method described by Eissner \& Seaton (1972). Comparison of collision strengths calculated using the two methods, at $E_{1}=6$ Ryd and $L=12$ shows that the agreement is good with the exception of the $2 s \rightarrow 3 p$ and $2 s \rightarrow 3 d$ transitions, where the difference is 13 per cent in both cases. This difference is due to strong coupling between the channels based on the $n=3$ states, which is not correctly implies a maximum uncertainty from this source of 4 per cent for these two transitions. The error

 lower energies, such corrections are negligible (<1 per cent).
Our calculated inelastic scattering collision strengths are given in Table A1. More elaborate
 $1 s \rightarrow 2 p$ collision strengths at intermediate energies. We adopt the following values for these
transitions
$1 s \rightarrow 2 s \quad 3.0 \leq E_{1} \leq 3.24 \quad$ Linear interpolation of calculation of Morgan (1980).
Linear interpolation of calculation of Wakid \& Callaway (1980). $3.24<E_{1} \leq 3.556$
$3.556<E_{1} \leq 4.0$
 $4.5<E_{1} \leq \infty$
Table A1. Collision strengths, Ω, for $\mathrm{He}^{+}+e^{-}$

$$
\begin{array}{ll}
& \stackrel{\rightharpoonup}{0} \\
\infty & \stackrel{n}{n} \\
\dot{0} & \dot{0}
\end{array}
$$

N
0
0

D. G. Hummer and P.J. Storey
$1 s \rightarrow 2 p \quad 3.0 \leq E_{1} \leq 3.24 \quad$ Linear interpolation of calculation of Morgan (1980). $\begin{array}{ll}3.24<E_{1} \leq 3.556 & \Omega=0.279+0.357\left(E_{1}-3\right) . \\ 3.556<E_{1} \leq 4.0 & \Omega=0.262+0.311\left(E_{1}-3\right) .\end{array}$ $4.0<E_{1} \leq \infty \quad$ Fit from Callaway (1983).
The calculation of Morgan (1980) is the most elaborate in the near-threshold region. In the energy region $3.24<E_{1} \leq 3.556$ we use the results of the calculation by Burke \& Taylor (1969) who use a three-state close coupling expansion with correlation terms. These results contain considerable resonance structure. The value of $\Omega(1 s, 2 s)=0.147$ in this energy region is a simple mean of their results, whereas the linear relation for $\Omega(1 s, 2 p)$ is a least-squares fit to their results, this form being chosen to reflect the shape of the experimental curve of Daschenko et al. (1974) in this energy region. Between the $n=3$ threshold and the ionization limit, $3.556<E_{1} \leq 4.0$, we are guided by our own six-state close-coupling calculation. We consider that this calculation gives the most reliable result for the collision strengths immediately above the $n=3$ threshold, but that it increases too rapidly with increasing energy due to unaccounted for open channels. The choice of
 (1980) at the ionization limit, whereas the linear behaviour of $\Omega(1 s, 2 p)$ is chosen to connect the six-state close-coupling result at the $n=3$ threshold with the Callaway (1983) fit at the ionization
 collision strengths $\Upsilon\left(T_{\mathrm{e}}\right)$ have been calculated (equation A3) and fitted to the form,

VOL. 224, NO. 4, 1987
Recombination-line intensities for hydrogenic ions - I.
Case B calculations for $H I$ and HeII

D.G. Hummer and P.J. Storey

[^4]

三我

－

mo

＝ 0

a
Nod
Nond

 ＝ F Ao dow － Sognd

へ
－Nimiso

A

ス An

©

－ 0
\＃

 －

－

＝

～
年 $\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\Delta}}$

－
 －Enso ＝三～～～

 － －Níndid

∞

 －

 Nm＝nouvinonnonnmion－mo

 －man

$\bar{\vdots}$

ḿ․

SE－

スmom

－Numisini

annimisois

운

 ニ ＝cos－－－rininmmiznivi

ニ́Nónotato

N15

三系

 ～

ジロのェ
ai

ミミニシー

－79～T
ミロローシャッ

－incium

シーショロロのが

\therefore－

2
－1，－Mnのーベーー・

－

介ッチローーN二とかーNにー
 ＝

 －nmísininvo Semeremeremeremes

THE

x
Nond

 \＆

 ＝

 $\stackrel{\rightharpoonup}{5}$

mino aciain．．．．．．

－No

$\therefore \because \because \because \therefore$ N～Nim

ニ

우ำก

シュ

＂

 が

＝ondinmo

 $\bar{z}=0000=000000000000000000=00^{\circ}=00^{\circ} 00^{\circ} 0^{\circ}$苍

ตตตลス

＂

 MMNNNDNNNDNNNMNNNNNNNN二O

 \because Nicionior

530

－．．．．．．

～

又路
nicá－innuivinio

－ 0

m

空

 An O N N O O O N

 A

 누N
 －

 －HEOQ
$\therefore 2$
〒曻
ตミロスヘッ

デブラーシ
戸ョミが心え

－NHMT？
－Epan

－ロニのペ～ロが

Gーッチーmが

戸ーロースがががN

mín onom

micunnvimmim＝$=5$

－

－
－

NAOENO

 $\underset{\mathbf{z}}{\mathbf{z}}$
$\stackrel{\vdots}{3}$

え～
－N二が

－Nindiá
の吴
へíś․․․

amnix．．．．．．

minn

M，

©

No

－

c－n＝2

Mnmmmminmmmonmenan ASNAN

E

 －

戸ージッが

mo－n

戸からがへ

$\therefore \underset{\sim}{2} \mathrm{O}=2 \mathrm{n}$
$\therefore=$ ーNーに
シーッーがに

－N－
～NNOスNon

－ニーデディ
がッチッペのがN

テッテーデーデッ

－

 ód didd

m 0

 ＂
$\stackrel{\rightharpoonup}{\hat{E}}$

ぶッジか
$2 x^{2} \mathfrak{y y}$

－ミロッ
そ \therefore－mininis
ニシニシャャ
ション～2
$\therefore-n=-m i n$
シーシミススキッ

－

rimi－$\therefore=-\therefore=-\infty$

$\therefore \therefore \therefore-\dot{A}=0$－moin

－－－－－－－－－－－

＝

－ 10

a
Nm＝viryn

\square

 ～
 $=$

$$
\therefore n=0 \therefore \therefore \text { ninis }
$$

Non－1－1－－000：002

－banmsonno－nnz～－M－

こも

 \therefore－ $\boldsymbol{\sim}$

 －

 －

 ジ刃

능
坒

シニミズ

Sーシinm
戸ミミロッへ
ニ
－mism
戸ミロシャッス
スースのジき名
$\therefore-n-\therefore \dot{m}$
戸ーニシャッが

$\therefore \therefore \dot{\therefore}$

えは
＝－ースNーmN

－naomm

ニーシミニニかのズッニス

\therefore－－Ao－nimos．

－\therefore－is－

二品

 －

シミシスえ
ลิ์
Oームn＝
ตシミละ

－ตーがーが
－ $\bar{\sim} \approx \approx \approx$

－ートーート
戸戸がッジ

がのがロージ
ニーシミスがが

＝－ーシーがかん

戸ニニ戸ミミミきへのミへ

－cimisimívoinnin－

$\therefore \therefore \therefore=\therefore$－Nimininnion

Downloaded from https://academic.oup.com/mnras/article/224/3/801/980922 by guest on 20 August 2022

- 名

- O8RNO

-
-

Sine

ヘロースimi=

ニニかのm=

～品

 －ní－

岕

ぶージ
ニシーシ
＝－mー
バッチェッが

mini－si－
ががからのへ

ベヒージーシ

－n－mn＝－

－0 NoNにNom

ล

 NOーN゙ーNがースNMN

戸लmmNNNNNNNNNMO

三atan

 ＂2

 ＝人1

¢ よ \＆did

 の

下与Nu

シーツース
ล）
－ジップ
 a
テッデテー・
ぶがッジッか
촟․․․․․
－－․․
MNMNにきが

シデロースー・

 Tーロースmu－N～

 －万斤ーローcimioーAm

シnicm＝var－mian－

 Min－

三＇ 1

 ＝$=\omega$

人

ニロonn

Nm=0 ionion
m

$\underset{\sim}{2} \underset{z}{z}$
宝

天 ゅージn
 $\therefore \because-\mathrm{Nivin}$ Nity
 へご
 $\therefore \therefore$ ヘッヴ
 $\therefore \dot{\operatorname{com}}=\mathrm{m}=\mathrm{n}$
 －～mmininvoreo

た

 o
 mまinaー

ค

My

ジ
の

 ＊

म $\stackrel{\text { 山 }}{\stackrel{\rightharpoonup}{\leftrightarrows}}$

ーラッジ

シージゥ
戸ニーニかか
※こうこのが
デヲ
シーショワのロ
え

かMmmeña

かぁ－ぁかcoon

＝

ニลショニ

－

－

ミ

2
 か－～へim
ミき゚ロきまき

बー－

电0000000

 ～a゙
 ～ －n－jobojirix
 －気 Nrmoncon
 nimiogä

 mini－－Cinnomm

 ＝00－－－nninunimmiz＝$=$

＂

 ＂

 －

 $\bar{z}=0000000000000000=0=00000000=0000$ $\stackrel{\breve{3}}{\underline{x}}$

戸ージが
云的气家

ががロッN

－Niciテr
ベッシミスベか

ががッががが

$\because \because \underset{\sim}{\circ} \div \underset{\sim}{\circ}=$

 \＃＇úd
N

た
cnim

Nincon

ㄴósod

$=\therefore=0$
-20

～

Noncosico

AOMOAO

－

 がovainigepinnoñm $\therefore \therefore$－ m mither

$\therefore \div$

$\stackrel{1}{2}$
－

ニ

 ォ

戸～ニ二゙

がこテ

ティ9ッチ7
かんがこのが

シュさmsinco

がッグニッシャッロ゚

～ヘローラミニッズベ

$\rightarrow \cos _{0}$
＝மo－NNimmm＝ninionci－：

$\therefore \therefore \therefore$－

 ＝ 0

 No

＝ód

m

－Andon
$\stackrel{\rightharpoonup}{2}$

－

人

 （
 ニのすこの

 へ

人

－

omy

「ッチース

ヘニーが
ペ゙ッジか
气定
जimcinio

$\therefore \therefore-n=$

$-\therefore=-c-=N$

 －－$n=-$ Nimiーm

$\therefore \therefore 二 \therefore$－

ま

シヘío
－00－

－

＝
 $\infty-\therefore$－
 －

=

を

wexpereperemem
气品

\square

~mín
 ニ́s

－mmmmmmNnNoninvern－ A1 1 A

－fondoty

 －N－

＂t

ب
㟶

シージッ
ล1
Mローニー
がこニニミ゚

へござー
ジッチージか

－のごいーー－
ぞミニーシミスの

－ーヘニースのッースに

$\therefore \therefore \therefore-\operatorname{Anminnomon}$

Now
 － 05 ためN

－

－

 ＝忥

[^5]
N0
Nom

－ivi－nini

 Kito －©－－ヘimimim

－－－

－n－ixo－n

－

No NM, Mownon

= No No No

ヘN゙
ه
mindu init ind

=

mincia- Nonionion

今天
$\stackrel{y}{c}$ ミ

Nm＝0．

$\stackrel{\square}{6}$

NNMFN

－- －-0

NMN二口欠N

－mamin

－N－́N
のベッチーがが

ゅージージ～

シーNさーNのロース

mi－mi－ージnion

MMm NMNNNNN～N

МলmmNNNNNNNM

－$n=\dot{\circ}$－

か－miがーテーシnivĩ

 －

＋00 ．cinimininiorio

NinNMmisy in

 m ～N

 $\underset{\sim}{2}$ ミ

a jopo
ベペ゙ー・
No かom．
 0in～NN～

50008008

NNoNon

3

ベーGon № gion

OOƠƠƠƠOHin

gio
KNMŋ

Miminircoi－․․․́n

时

戸戸戸戸゙
－ofi

 ¢＇

 ＂

苞

N－～～ㅇN
an
熍宁
バッツーが

○～～ロ゙ー
Nがmoño

 NテローラーN゙N

※

Nmy

TN్MNANNNNNNONO

 MMNNNNNNさNNーーロ
๙ ${ }^{2}$

＝


```
ni
```



```
    M,
```


－めーシN
 －oi－－ninin

N

 NNN№
 N N N No －
－ －Nimiviourtionoia No．

Nơogninnninninnnginnn ＝

 $\stackrel{\text { を }}{6}$


```
* #
```



```
    *\mp@code{MNANO}
```



```
MNO
MmmommmmonmNNNNNNNNNNNNNOZOOOO
```


のース（
సía

monNo
m
No

Nhín

～

onn
○

OJOgGJNNGO゚
＝訁̈
＝
MNONO Nmina， mid

－

z－．．．．．
客

MMMMNNNNNNNNNニーズロO nd

 にがぁ

₹

MNN－O

品简
MNN－NON
Nif ベMN゚ロ mNNMOMN

mッNーがかopi

ベッテティị
MNMN－ODOO

＂nN్లM－

～

mo

- $0=060$ Mond

-

=

-

o

Nown

No
nin:omin

mNo

ה

- in=心ivonin

N
$=$

ががが
றலージージ
のッツがのが
A Bo indan

mmeñoーN
2.
9 Non
MMMMNNがッド

ヘMーシヘ

ニ

ㄴ№

-

三るo

－音

＝
ミ
mNMN

－シージ・～
mNMMON

MーNーmin
MMNN－ON

＝0－voin－
のがッチーが

ベレーデーmiñ

simisónnio－－

クーツッぁががッーロロ
べきジき

－
－－misnimincioriso

	テうこと8 minio－
	$\begin{aligned} \\ \therefore \end{aligned}$
	え ${ }^{\circ}$
Nonnon	
为	 \therefore Nminisico

Nipoce

Nimind

ज⿹丁口欠心号
5－0m5に

N
ペーが，

～두№ Noo
N

N

COOEGEQ －－Ni＝niso

－
－

*

是

= 0
m

$1:$
$=$
$=1$
身

Downloaded from https://academic.oup.com/mnras/article/224/3/801/980922 by guest on 20 August 2022

m=0 -

mini~~
~ós.

=ルiーNNべN

Fiôơơog
=

ज

へ

N

No

Nínibiticiliti

-

に

=

minno - $0 \infty 0 \mathrm{~N}$ N

弓ПmmmmmmmmmmmmmmmnnannNNNN---0
言OMOMOMMMMMMMMMNNNNNNNOEO耳OO

$\underset{\sim}{2} \underset{z}{2}$
mまずージ
のín
－
－Minn
－

mity
MANOOON

NmचNomarrrrrninm
－

のididd
mNN－

 ベーズminiouoricooringmini ゅべべー

Fón ind
MNMーO～N
mo－Nminm z＝

－－ウー～～

 으웅․ （ino－

of júdind Noon－NGOMNN

\therefore. . Ano

M An Md

天

名

=0 =NNNNMm=NONON

 z

 ～íoinop 룰

かー－Nmmm＝ェ゙ー

 －－nmininosicicioio

－

ココツMmmmmmmommNNNNN－

Nammen
Nixind
－Mi Hi
NMNFNั

－Nimi
NNNMONON
Nomindis！
－NGMT：

MNNM－ORON

～NMNーツー우N

SNONONM

Non
N
1

$=$

aión Mo

No
－00－－
Ninitonim
คン～～

N⿵人一口

 N00

N～Nivonon

－OQ
※ín

Nm＝NーMーNNNMmin

 च

mら！
 － 08 元

MMN゙か
 ペッ～
Mmimpon

mmnNorn

べテデデッ
MツツN゙がかっか

－MomN－Mmo


```
    *)
    SNM=000
```



```
    MoNOS
```



```
    *)
```



```
    M-N
```



```
*)
    NON
    ~GEAN
```



```
    FM
    - < M N

```

 #min
 *)
\#-0

```

```

 nvoinnin
    ```

```

 MES=心0
 䟿射品名
    ```

```

 0%-rimmim
    ```



```

 FOOOOO
    ```

```

 -cm==~nin
 Fy000000%%%8
    ```



*)

```

－

```

\section*{
}


\(=\vdots\)
















₹
















2






～

\(\stackrel{\text {－}}{\overline{\text { E}}}\)

mNNN
abymid
\(\therefore \therefore=-0\)
＝mmmin

－－へioin
戸चmmmen
\(\therefore \approx=0\) NO～

ジミシツN～～ロ
No のロのーデデT
シニジッベットロ


ニニロニ～Nかー－
둥․



























 Maso
毋



 －

 －



```

~NO

```


```

 A゙にづ
 OE
    ```





    AOOME





※




－

6nomso

－\＃N二N
「こ゚ロロ日゚ロ
べすそうがものが

ニ
\(\therefore \therefore\)－rimimim \(=\)

ri－nmm 二二厶心

\section*{
}




－Nmoorea－－
の－

 ＝

an＝0 Mmsindonsm －
怘 き

\section*{}




































＂上が




Mmmine
がmant
－miso
Mッツがか

－Ninióo
のッलッーが
～
－Nini－niri


\(\therefore \because \therefore-\mathrm{AN}\)


\(\dot{\circ}\)


－ールーNニーージ




\(\therefore 0-\mathrm{Ac}-\mathrm{Ninin}\)








\(\because \because\) сのnimini…mi－


－mar－－ヘinisivi－ォ＝－
发











- MEOOOONOMMEMANONONE




=





○
\(\therefore\) Nmínow

or
    -
    -
co

    -
    药
    \(\therefore \dot{x}-\therefore\) nimi \(=\therefore 0-\infty\)

守


-
- Sn

    N=MNN


    ウジージン





    )
    =aceraza
    inici-nNininio

    Eztetabze
    ำะํํํํํํํํํํ

ヘ © No

人
SE=N





-nmino
\(\therefore \therefore=\therefore \dot{\sim}\)
- NNNN
:uxupapueme
-nionsonn
\(\ddot{\text { ® }}\)
玉
玉

m- -




\(\frac{\exists}{1}\)


mminn












    "








ㄹ

三品
    Zobn

min
Mn=


\(\cdots\)











,
苞
MツヅッチがN．ińsimbin
－Nuñolo0Mndempmo－NすN Non
戸लmmべッチー・
NMMmがMmo
    - 2
    a゙moinirninto
＝MMMNNNーーロ


    \(\therefore\) Niomionić







    - \(-m-n=-\dot{n}\)



    - N-



    micinconan



    \(\therefore \therefore=-\)





    \(\therefore\) ォ二小insinio-

    =
    =N0 =


\(\stackrel{\text { 飠 }}{\text { • }}\)





















 －Nodiomon ond

 －


－

 ～品
－injuzmo minnimmidi

mッ～～ロ

－ \(0^{\circ}\)


m＝00ー：





－Nmioñ7





－ーローデッデ



























Downloaded from https://academic.oup.com/mnras/article/224/3/801/980922 by guest on 20 August 2022




－ANo dod

戸゙
\＃wad

ゅ゙
－











の



















宸

Nonmo

－N゙NiN
N్లNMORN
Míg íinin
デデテ
MNNNMOR
Ninngincin


ペ
○ーベッデ品

Nらめの10



 MMMNNN工N్NN－











の戸円m円mm



－NAMNNO


－かoongiotmoraogmin






```

 ~1
 Nm=N-N
    ```

```

 N # mivenin
    ```




    =0m9「こ:


    Noílo

    ำ\%

    -
    の
    -
    \(\therefore\) Niminivionco -




    - iopo ioipo


        デoom-nin

    ningnnme
    ज
(NNTN=NN
    Nóniodididili


        -OOOOOOOOOOOO




    mキ゚ロー~
-58988880







- \& L





 ＝ロローーNNNNNNNNNーシージーM゙N
 －









 ゆopowowo


 ローー







 z 1000000000000000000000000000000000000岁

がッ～が

 MNNーが

テ97～
mलNmomo
Nなinsind
ゥッデッチ
MMNNMOO

 Mmñomoro








लmmNNmmmomo









－ベ














 min…vinimm＝ivo



 －
 a －

 ○omit



 nioit in oit

 ＝N⿵⿰丿⿺⿻⿻一㇂㇒丶𠃌⿴囗十


 \(\underset{\sim}{2}\) 를


Mジらの－
wion

Nísinnhí


「－0．8ロ8ロロ\％
Niti
5̄ロOロロ9888

「ごロロロロロロロロロ


N
～o


－Nminnoincio．


－Nmivormaースーース




－
NN＝0ロー．．．．－nininvim








－Nin


























 \(\because \underset{\sim}{\square}\)



 88888888888888888888888883585888

\section*{}
\(\stackrel{\circ}{\stackrel{\circ}{w}}\)

MMN్లN

－


－－



















－ニ̄











－






三íd
 ONニートローテ




 ＝












 ＝

 の
 ※ ※
\(\stackrel{\rightharpoonup}{\mathbf{s}}\)
\(=\) －



\section*{Nín}


NoNNO


－\(\dot{-0} 0\)－Ninin

ninionninmi



O日－＝，ao
电
\(\therefore-n m m=\pi n c o\)



OOOYO O



シnco

－





－ 0








※


＝Nóviox




























菏


シュッm
2nsing
m－m－

Notindmb
ベニッーベロ
シュ戸ジが
＂上inotemo
－nimingio


－ーーデデー
Mnnmennos





















































o

 －













 ＂

妾
－Mmñ
nins in
\(\therefore \mathrm{NiN}\)
戸ヵmッチン
ペッジósín
－ヘージゥ
戸゙ッヅッチー




\(\therefore \therefore=\operatorname{ON}\)


シーローツーツーヘー




～mロー～ローN二ーか















－







 ＝


－


mão

品 2


人二〇が－NiNNか
 N二厶心录

 え言

0nomonorin
R



 a－－n＝j解

 ＝ind －
 andon






minto

nitu ititich


－\(=\)＝

－© ÓnMódin No Nimmis



ZNOOOMNOENNNME
人





＝









へimini－
～
ベージが

nouninn．

mint－r－rr
nió

ニution
＝シ̈ージーNiNimm

in－iniminizz
N O O N O O M
O＝nのovinomn
GOOOOQOQOOQ00

טoi－nimiz＝inco
N⿰亻⿱丶⿻工二又

－No

oópeot







\(i\)
 ＂

 Fiti

毋＇0＇心N＇







 O





－




号




 －

 m＇

 00000000000000000000000000000000

mmmm
RHMm
niminif

\section*{mmmmN－}


लмmmがm

\(\therefore \therefore \dot{\sim}\)
MMMMMNM















～











ニ









 ヴ
 チinifoninin
 ジロッーNNNNN


\(0 \infty-\) Ninmmí＝


～

 N－Nin＝＝ivivio：－
－
－NNzinuinion

\(\therefore\) Nmino
－





 のヘのnショジ






※： \(\div \div \infty-\dot{\sim}\)
 ＝




 a）





 －
べがminimouno －


mmmion
N⿵冂䒑山心
垵デか miminのo
 ヘNNNDO mymen－
No Niぁd．\({ }^{1}\)


 \(\div \div 00\)－irs
ショm～NN－m

poovinino





テソinn－imionn
戸ぁ゙mmindivioo






O＇心












\(\therefore \because=-\dot{y}\)



\[
\begin{aligned}
& \text { シャネ゚ }
\end{aligned}
\]
 mínorn











0








mō

ㄴ～ ม o Nimz＝ \(\xrightarrow{\lrcorner}\)



m゙がー

N下Nisom
Nôoto
Nmonn
気氨虽虽号




 NiN－NNNNNN N

 No m－Nimimy＝inino

N が－nim＝junvinirir － － 응 がN وq908\％台









 いのジジジ



 MNGTZNNNNNNNNNT：



 －







い















N
\(₹ 00000000000000000000000000000000\)
\(\stackrel{\text { 䨤 }}{2}\)


MNNMO

デTMN
mलNNDOM

－incim mminnon

がTOPNT
आMNN－융




テテロップッブ



mmmNNK－－ 00







二円MMNNNNNNNー－O








 －





mmmmo

がッチン
テMmNo

ローム～へ
जmminoo
ล



个テッファッラ
戸mmmpmoio



 ッテッデテップ




















 ЕЁ二戸mmmmmmmNNNNNー天



```

M
ONMO=NMNNMOた\&OMNOO

```




- \(0^{-1}\)


-







\(\therefore\) -
風会会会言きます。


0







ज́ño
monmonnomonn
-•・ーシヘ


\(m=\) nめ－


NANESN
sionion
ヘー Nもロシー
NiENO
NNM＝M：
 misũ̃o ～

人



 \(\therefore \therefore \dot{y}\)

축웅




















































戸戸戸戸が

－へ＝ご
戸゙ッジッが
气



がーデデT


のーラッチップ































```

 M
 Nocomom
    ```




-

NoEnnninnunninnunn
N号
    =ni-ninnumzsivios...


ลํํํำ



    NM,





    -
    -

    miot

    \(=\) 言首


    m



\(=\stackrel{\vdots}{6}\)

amiso－
No
nm＝
人
miviー․․

＝in－inin

ごローがNiNN
 nivo－Ninimimm

今气ge
\[
\therefore \dot{a}=\dot{A}=0
\]
\[
\text { 年0 } 0
\]

00000




```

\#1010

```

```

ま-N
Nm=゙ージM

```













```

mi=m:0

```

```

=~iต--NNNN

```

```

\#GOR-NNNNmm

```



```

\#二=~NORNONO

```

```

N\&N

```



```

-\infty

```



```

 ^人% %
    ```

```

 ~
    ```

```

O

```

```

 ~ow
    ```

```

 ~=A~CN
    ```




```

 Mocon
    ```





シ
Tors

Nond
戸戸が品
天系商会
－かんー－
シニュのーか

ジージー
シューががッ

ベーンジー



ล2
－かニーーnのー・
ジョック～がゥ

－\(\because=-\therefore-\therefore=-\infty\)
シニニジッツッチがか










ジミシミジッジががm







\(\therefore \therefore=0\)－




鳬 \(\overline{0} \bar{\sigma}\)

and
－n
0






 －かod




隹












 の上亡








mmがmion
ลミ．
\(\therefore-\min\)
がmがか

－Nioniv－
Mのmがべか


シーツッががm人min －－mini－s
戸mmminnim

－\(-n=-\) Nim－a


\(=ゅ-m \infty-n=-\)
シーツッツツッツがの













crnmes～ors－om－9
が戸ジョジミジ


 ニ


がががシニシニジ



 －Nmzinn

 NNminaー－－－－N NNmmininio











 －Nos



 N0 O－
\(\qquad\)


= 气an

- Nim=
м
m ond

ミ

\(z=\)

ヘ
ヘin：

为禺

＝n
쿠쿵웅웅
人



 5



人

 －

 －
 \(\therefore\) N二心ưo
 ＝ －－～mかinがロー




がごか
の上よ



のッジャッ
天
フー～ール゙


T 二isions


守べローシ
ショシッスがッロ

\(\therefore \mathrm{G}=\mathrm{M}=\mathrm{m}-\mathrm{mN}\)












が









ニ


－1



\section*{ －}





 －












Эロニニベかめx



－




minan

－



为

里

馀気电
的

NOMN．

＝0＝Ninn



6モー・ペ


Kititioititio
－＝an












\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\[
\stackrel{\circ}{\circ}
\]} \\
\hline \\
\hline
\end{tabular}








NO

















＂




 ＂






ت

manme
のita
ヘigioi

天
ッフテにム






Mominninmo


MOMMNNNNNN






 ¢シーデMッチーーか




















三giona





 －anm inno







ショシーン

mz゙心ース

\(9 m+0 \infty 0 \rightarrow\)

Zロ0～～

as＝－me










－
－－minincitio

＝








－Nminourn





    in- Ninimin
    A
N
0

    m ód

\(\stackrel{\otimes}{2} \underset{ }{z}\)
辰








－ 1














＊














 －－


交 －













    4

    \(\stackrel{\vdots}{\vdots}\)
    N是
    - SAOM-








\(\stackrel{\rightharpoonup}{\vdots}\)

-mindi ion
- vinio- …NM,



    -••





min
そぞミOO





的




シニシニー

－－ーiM

べがごッ



二ロニデー
べッジッヂか










－No 能
















 ＝







ミ




 mito


Noídoído


=10


- iñ









ón ond






Nonnoman
突

    iminio

Ninino:-
त
Nomのきロ


Nôo
- ヘ̂̃omonmm
人气气0
そmism inn
- voー~NinNum
Nin







スペロN







の に思思 －Nim＝\(-\infty=0\)－NNimion








－©ox





Nべご
No
\(\therefore\) aṁ
スペラ




minizinuin

－n்ーNivinmim
N

NNon

monow
 －




－





 를
 －n̄ō



－ion








 カnco－－－－－－－－－－

 －





\[
-n m=00-\div
\]










－＝






 च





\(\bar{z}=000000000000000000000000000000\)


ジミツッチ

シューーツ
ミニニがが

シーローがら
シニジッヂか

mivivimi
シニショーロが
 mm＝nヶcm ジジッジッヂが

NAMmがMiN
シニジロジッツッチ
＂
－niñ－0．ionin















 －





よめ








－0ヵomnon

N1
 ＝ぶ兀
\(\qquad\)




 －Món wid

－







 が戸かの




numin
～


nim＝人 \(\because\)
人


N1


2 シた
＝nis－ivinimm
N
¿oonninummins


人 Con － \(\therefore\)－nmm＝iniso


－


웅엇웅


\(\stackrel{n}{5}\)





 ジジッーロ Faind がき心． yininon－





\(\dot{O}-\operatorname{mininc}\)
シニロッチがmo



 －－inハースース＝－




 yo－bininin－ciem













－





```

* N
MN=0

```

も三品



 N1

 M－No No
 ，＝－


 の白の－
 －












\(\Rightarrow\) A
z




\section*{}

へmました
人
N～ジシーシ

amoin…
N
M，

m＝\(\dot{6}\)－
人
三nin－…ninin

－bérinniñN

－ig－inivimimi

\section*{}


 \(\therefore\)－

 かー～NMmm＝＝invirio

MmんN NrANNS：
＝



.













＝




















minnop

守守守
－mのベが
天象象家

MMMシーローか

デテテーディ
戸ッツツNがー

品品分

た































 ＝












 a
 －








人

 －\(-\mathrm{H} \overline{0} \bar{\sigma}-\mathrm{O}\)



Ninis

\(\therefore=100\)

mon min
に
ตゥン

二nめーシーシinin
人
－ \(0=\)－Nvinivim


－1

 virimim＝＝inio
 か－Ongm，Nomota




－－nminiove co．．．．．
（



































=



-


-

-







-
*



- \(\because \cdots\) -


(
z z onnmmin=ino onn
象象

边



\(m=0\)

\(\therefore \therefore=-2=\)
ニキミ゚


＝－m～N
\(=0\)－incincm
N

\(\therefore \therefore \operatorname{Anmmin}=\sin\)
＝m
－
츨



－




\(\stackrel{5}{6}\)

 ニ́ndóso





























 Nownowno

は，





\(\stackrel{\rightharpoonup}{c}\) ㄹ
菜

ジmのロ

－icion
シュッジロ


ジッグがッ


シュッのががか

シージッダッ
ショニッNN～ーロ

～ゥoncisoñ

















 がョ\＃mmmmmmmonimim



















－
＝Nownow

－


の悥家

 O
 －Nmixom－mzorn
－
NonNm：

 －A10

へimion


\(\stackrel{\dot{c}}{\mathbf{E}}\)



馀会
へoNing \(\sim \dot{\sim} \dot{\sim}=00^{\circ}\)

气
NOが



m＝0

 ㄷの№三niø－－ncinicio
 ＝0－NNrinmim
 in－rinimin＝




 －－Ni＝sinowoci－


＝



























 ※

 100














 \(\bar{z}\)
2


 －Nmi～かの…

 moyty －

 －

 －8020gndoden

O


A－smintivion






の

    -

    m


\(\Rightarrow\) ~No
\(\stackrel{\rightharpoonup}{s}\)


a
\(\stackrel{\sim}{\sim} \dot{\sim}\)
 NM＝

人家定号


miso

ジローシー・ー～
气 mini－i－ninin





 －Nのmmシニジの
 \(\therefore\)－－Mrimin＝indin
－ ＝nmozono


－
\(\therefore \operatorname{ainin} 0-\infty\)












－1＇
















＂












药


\section*{ジッデー}

\(\therefore \therefore \mathrm{AB}=\)
がニッグが
도ำํํ
ローニーへm








がニシmmminm
－
ற்ーシーシーシーか


シーティローズージー
がニニジッツッツが

\(\therefore \therefore \therefore \dot{A}-\mathrm{Nanc}\)








\(-\therefore-\sin -\therefore=-0\)



－ジミニジニ






Downloaded from https://academic.oup.com/mnras/article/224/3/801/980922 by guest on 20 August 2022





=


—

N


=











2戈
-ninio

Nosmm





-no - Novimim= =niona nin
5




Nivicon

の

ス步





A
A
0

๓足
\(\therefore\) -



=



- Nonmmin




A思


miderand



－OOO웅
＝

OíNANA









n
ヘiviniso



のーシーーーー




x－rysor＝
の

＝inc－i－Nininimm


－






ゅ品
ㅋํ웁우웅

\(\therefore \therefore\)－


 z \(-\infty\)
今心のNう












 N
 ＊











 －














ジッグがか

守曻
戸戸ががか

テーデッ
ショウッベが



 テテテビッフ





○べ八テティ～


























－armonson
ま







－

－ 0










 \(=A\)



 \(+\)



人
－Nimis



NOOMO

도NNNN






成


かoーsinaminn

\(0-0 n \infty=0\) ．

amnoraco



促



\(\therefore\)－mininuo


ジッペか







































\section*{}

岂

Downloaded from https：／／academic．oup．com／mnras／article／224／3／801／980922 by guest on 20 August 2022



ジ




N．


No










－

AM

\(=\) An
 m
 N
z \(\stackrel{\rightharpoonup}{6}\) \(\stackrel{\triangleleft}{¿}\)

为
－nmin
为会会 \(\therefore \sim \sim \circ 0^{\circ}\)


为 か－Nin＝
















O定























\(\stackrel{\rightharpoonup}{\vec{x}}\)

ジがが
のin 2
BNomio
がぁがめ゙か ヘ上こ゚心2 ジデッロ ぶッチッN゙

デテーがロ







天



テーデッチーディ



























 NNoNmiran








人


 －＝No

 OSOM




 ～品 き

\section*{ \\ －nimini}

R
\(\sin =0 \infty^{\infty}\)

जhín wig

NMini＝
N －－iomz
 mioniono
 antoonnNo


 －
 응융 ๙ 2人）































 －















\({ }_{\omega}^{\circ} \underset{z}{z}\)


ごがが
adidis
\(\because\)
ェッニがm
会

ニッチェッ～か

minㄱーか
ロッジッチッチ

テーロッ円ー
ががこのがた


がジッショッグー









ニ
－
















```

NO

```

```

M,

```





```

~00%%

```

```

*

```

```

NO

```




```

^人%)

```

```

OM

```





```

0

```




```

 -20
    ```

```

NO

```

```

~N

```



```

OO

```

```

0000N0m=0<-N

```








```

 <0,
 #*)
    ```



\(\stackrel{F}{2}\)
N
\(B\)
\(E M=4\)
\(\approx\)
\(\stackrel{\rightharpoonup}{\Delta}\)



    =
=
解
    - Nimis









\(\dot{m}=0-\cdots N\) NN

olid




N


がm゙ローシー
N~人
ごッ゙ー・ーシ
a
- ジーシージ
MiN N-NNNN

-


 －im－civinimio －ラ〇そ゚

 ＝O～NM，FNOR



 －Moms nionco

 N －

 z \(\stackrel{\rightharpoonup}{3}\)


\footnotetext{

}

 －－min－－－ranm＝とがーNi゚ー
三







 ニ























 ．\(\because\) •





ジミニ゙

ヴーシーシ


\(\therefore=-=-\)
ジッジッが品
C
nmor：＝ーの

ニン日ぎ心
－morーテーの
のがががッが
に高边
－ッニーかーツース










so－ri－arimioire













 －\(\therefore=-\mathrm{Namisio}\)






－ 0



＊ －iw－ninmoniono nirmina









 Mース象象
象 \(\therefore\)－人 －00－ncommi＝
 ヘNジ心ッロッシース







 \(\equiv\)



\(\therefore\) añosion



ASA日


F








ニー

ました





ady









のミミース
呺空
\(\therefore \div \div\)
ニシニシミミ

\(\therefore \therefore \div \div\)
コーニ゙ラシミス

－\(-7 \div\)
づニニーシニミ

－〒－テ二



シえミワのニニシミス


シミニシニロッニニミか







＝\(\because=-\)－














－moーniviza＝


\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline ＝ \\
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline － \\
\hline
\end{tabular}

禺会気
人
\(\therefore\) 电
为
为象
\(=-\equiv 0\)


ニ上権



－－－－•••・ーシ
禺



必电













－

－ \(0-\)－- ล



三1，







－





边


\(\therefore\)－-10 －




₹

minnan

－rimiー
ジジが気

－－スィーテ
ジッジニニか

＝－ーーテーテ
このジッジが


こここのらえ

のニーがいいい
ニニニニミごこニミ


ニこニニニミこえここ


ここここここご二こここミ
ここごここここここご

ニッニニニこニこミこここ
－

ミニニニニニンーごこここう

ニーーンニニがージテテデ
コニミニニ゙ッニニニニニニこの
－










Downloaded from https：／／academic．oup．com／mnras／article／224／3／801／980922 by guest on 20 August 2022


-mmis


-





-


    Mon


,
Nージニー・ー・
    ~
    0 -




    2





    \(=\) 电



    - \(\because \therefore\) -


z anmon


mind －






ค




 －

 1 N N N－
べへが



















\begin{tabular}{l}
0 \\
\(\frac{0}{0}\) \\
\hdashline \\
\hline
\end{tabular}










Downloaded from https：／／academic．oup．com／mnras／article／224／3／801／980922 by guest on 20 August 2022
-


= 人












    尼总







MAN天NNo


气气 じ1

 ニ







\(\therefore\) an 2 ninusion

 NOONO




읍气ロロロ
ละ，
\(\therefore \therefore \dot{n}\)
象领 \(\therefore \therefore \dot{\sim}\)气ききききご会



\(=2 n=0 m\)



的过



O


\(\therefore \therefore \therefore \therefore\) am \(==\)

－asm

 \(\therefore \therefore\)－inmos＝








    \(\therefore\) 元

    -

    -7

- \(=\mathfrak{y y y}\)

:
























－














ぞがが
気总息家
\(\because \therefore \because\)
ががかのた


のッヂロショの


ががこミショ

いこのーー～べ
ふめがべがッジ


のニッ～ーデッニス

－－－－n＝－－mi
のがらニニニーが，

－n－Mーがこのに





\(\cdots=-\therefore \therefore ー-\therefore=0\)























옹․








ニ-


an














=




 \(\vec{\sim} \dot{=}=0=0=0\) \(\stackrel{\text { 苍 }}{\underline{\mathrm{E}}}\)













 ニ 人


－







 －

















戸ージ品

\(\div テ\)

＂
－ヲテッチ
シニーニッス゚


がニッシ゚ロッ

シーッダラジ

2－2

へのニーシミニニッ゚



天吴








́ad









우ำ











```

=00-\thereforeNNNNN二NNNMmin=

```






```

8
\therefore-\

```




```

*)

```

\section*{}
```

$\therefore \therefore$

```



```

＂

```

```

$\dot{\sim} \because \because N i \therefore \sim$

```




```

気会会会会

```



```

\because－

```



```

－．mísinisisoso
の会会领気気
ニ5

```


```

（ $=00-$处 $\therefore \dot{A}$

```







































 ＂










そニニ
気边
ーデッ
シーシミミき

ッフデッ
のニかミロ゚か

シーテ～テ

굽






そだニニニニミミデき

























－

＝110




※号



－or ord
（
我

－
\(\sum_{i}^{\Sigma}\)
－ － 0

 mod



きききジッド
成
禺
－0゚ーが



ニニーーのmmmm




R CNO

解気気気気






Qx




\section*{}

\(\qquad\)

n＇d

























 ＊



'1'1'1







\(\stackrel{-}{0}\)


ベッロース
天上定高
ベヒーシー


\(\therefore=\therefore\) ○ー


－mッーデテ


－sincio？
シーががニシべ


のックローニシシャッ






 A－





















```

 mNONNMMNONM{ONNOOg
    ```


```

 Nminom-ivinmmzsivicomo
    ```


```

Nonthondmondond

```



```

Nom-mim\#\#nonm-m,

```




```

-vmivicon-N

```



```

M
m=0の

```


```

M%%%%%
タNONジロご

```

```

*)
=00-NNNN

```

```

~0

```

```

%%%%%%%%%
00N0000Nan!m

```


```

-a.*-*NO.

```

```

```
F -nmivion-Novononown
```

```
```

```
F -nmivion-Novononown
```

```


```

*****)

```

```

80%20ambaz%zab

```






```

Ma

```


 ～～ーロッ

anded

－シージーシ

があぁがN









MN－Mらが

＝i－coin






 Smaño mo－＝min－

NNEFEOENか
 ベッ゙ーがからべー

デロ


－minㅍirixinsoo





\(\because\)－ 0 •••










 mbád

 へ
F


Downloaded from https：／／academic．oup．com／mnras／article／224／3／801／980922 by guest on 20 August 2022
\begin{tabular}{|c|c|}
\hline &  \\
\hline &  \\
\hline & \begin{tabular}{l}
 \\
 \\

\end{tabular} \\
\hline & \begin{tabular}{l}
 \\
 \\

\end{tabular} \\
\hline &  \\
\hline
\end{tabular}


 －
w
 O－minurion
N
－ \(0 \times \sim\) Now
OZ̈JMmmmmmmmmmmm MNNNNNNNNNN
NM＝MN
 か．
 ＝




z inc－
\(\stackrel{\rightharpoonup}{5}\)


N Å Nべキ
 ベーシー・ー





No
míboi－チin
ニ

Oyoninginition

－inio－NNN～mim
～气ロ



 Nío

 －＝NTMF＝O＝NGN．


－Nominiorioi－－－－nin



\(\qquad\)


\footnotetext{

}





\(\therefore \therefore\)
～NMーかNin

noinirimin


コNールニーMN

 MOーmN＝ロNN


njoin-Nmoin-



 －min＝＝－－mion




－NMNNM心N：





－ームデーーNNmのローmー・











三

















－

 －




 へ
2itioit

\(a-r=\)
ロロロロ8：8
に
o
\(\therefore\)－iminis
Nichitik




－iminioin









흘


m＝6ロー～NNNMm＝int





以








 mano


 －





nin





－＝＝m－o On om＝nman－





or


のジロニッ
－－＝～m
シーテのが心
※
へーmーニ～～

べずべN
nanamen
がバ戸戸がNべN
 シーーローーツN

 mio－misi－min
ベッニッロ゚ロッが
 NルーNーNまのN



Nへーシーロ0090




－

 －Nmanimina－nio－


MNNースースー－ 0 －0유NN
 OーN二ーーーNm＝スーN二ー・



－miduthummonmond




ました。

 ヘNジロ
min
 ～ójo

＿obo
 mins－ninimiminiono－Nimo

ベゥジーー

Nmino


Niono
míó․․unin


min
Nio
a


Mnininerg
N人NO00000000

\section*{}
Nísion
めoかnnonvovin
－

Oî́i



下ơ\％

인



oco




iopopopopoppopopopopopopopopopopot





\section*{}











 － 0 ond




























\(\stackrel{\text { 5 }}{\substack{5 \\ 5}}\)

ベがㅇN

－ーデ
ベッチ゚がN

－－mi＝a
Nがmaが？

noinimomo


sr－nn－ma

へinomogoon
－
N～～以゙mpsoini

Nin－N－Ni＝cinN
NNM－
～ N二Nーツ－nmon

Non No
Nimo－niciomini－





－Nm由Nm＝0の－NEー－


－－mo－rinminc－nio－

 －\(n=-\)－nmini－niñ－









\begin{tabular}{|c|c|}
\hline  & 气．8．5\％ ～N －nimin \\
\hline  &  \\
\hline  &  \\
\hline \begin{tabular}{l}
 N \\

\end{tabular} &  \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline  &  \\
\hline  &  \\
\hline
\end{tabular}
\(\infty\) か̂oñ
moididituid

    -



053-13
ne
A









-
Nividin
为



－


 R－N：＝amonm－



 － \(\because \underset{-}{ }\)




N


\(+\)


















のम山L




－







 －


～

－
mmmion


ツmmmぁo
©
＝பio－it
mツツッチーロ
 mingnipis
mimmommo

Numiñoris
mmmonmon

－NNーデラーロ



FMmmmNN№

ローテーテデッロッチ

N －




 mmニnかomiñフォNT



픞̈ㅍ̈nmmmmmonno


 －hat iodataind

 옵․




Nit

























－


 Mid

 ＝






स 12000000000000000000000000000000000
\(\stackrel{\text { 山 }}{\stackrel{\rightharpoonup}{w}}\)

NNNM－

－Nínio



N－ヘinin
ーーNデギ
ตMNNN－




mo－－＝inio．
＝MmलウNNMm
※
べシーシベmioi
毋mmmpmpmip
～2




戸戸लmলmmmmmNo








戸ే戸戸戸mmimmmmpmin





に戸゙

cinmsinorioininn－nio


Downloaded from https://academic.oup.com/mnras/article/224/3/801/980922 by guest on 20 August 2022



Nity
Nín in
Nisisis
 minvis Ning hin的ジッジが
 mivosin
 シャ゙ローシー

ज Mity nion
 N Ninnonoronm スin win it ition o MOM－NNNNNNMM
 －－－NNNNNMmmm＝
 \(\because-{ }^{2}\)
 －CNimimimisi inivion

－











\(\stackrel{\rightharpoonup}{\mathbf{5}}\)
Mon

－





がmoN
2 \({ }^{2}\) Nin
品离家


©iNiT：
NNM－MOR
N以
？\(\because \div 7\)

2
ヘッーベッキャ








－Nipisimioint
mNNMN－mmone


MNNNNNNNF——MO







 mmmmpNoNNNNNNME ancuaviniow suzworn

 －
 －Mmmmmmmommennom




```

 Nm=0000.0NNO
    ```

```

NMNONNNNENG下MOEMNO

```

```

mon=0

```


```

=0

```


```

N0

```

```

ONOON

```






```

 MyN
 Monicinij
"\#

```

mмmmmminNuNNNNNNM-O
NNFOR


xin




- -mmmm


ลebizizizi





nsio


ล̄

NKu--090


Mn N---
N M

ตNN~-7-


mNM-
๙

-




-


-



mama


N－MNo
地宅
mmpNog

Nond
Neminini
mmmporg

－Tiッi







幺isodindifm


 －Mivincisipi
 N －minotiviois
 －


天

 Qisideticikinidy －7A～MAMGNmFTim










\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
 \\
 \\

\end{tabular} &  & & & \begin{tabular}{l}
 \\
 \\

\end{tabular} &  \\
\hline  &  & & & \begin{tabular}{l}
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 －Nت゙ージm
\end{tabular} \\
\hline \begin{tabular}{l}
 \\

\end{tabular} &  & & & \begin{tabular}{l}
 \\
 \\

\end{tabular} &  \\
\hline \begin{tabular}{l}
 \\
 \\

\end{tabular} &  Nímídónd ＝inin in ＝iñー－NiN & & & \begin{tabular}{l}
 \\
 \\

\end{tabular} &  \\
\hline \begin{tabular}{l}
 ＝ \\

\end{tabular} & －yyonininingia Nincinininio シャロースNNN & & & \begin{tabular}{l}
二 ゆid \\

\end{tabular} &  \\
\hline \begin{tabular}{l}
に给 － \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 － iri－́ñNimimi
\end{tabular} & & & \begin{tabular}{l}
ベ Ofj \\

\end{tabular} & \begin{tabular}{l}
 \\
 jrirminioini
\end{tabular} \\
\hline \begin{tabular}{l}
 \\
 \\

\end{tabular} & \begin{tabular}{l}
으용ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ Nó \\

\end{tabular} & & & \begin{tabular}{l}
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\

\end{tabular} \\
\hline \begin{tabular}{l}
むే － Mar－ \\

\end{tabular} &  & O
u
O & & \begin{tabular}{l}
 هry？ \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\

\end{tabular} \\
\hline \begin{tabular}{l}
 ～ \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\

\end{tabular} & （1） & & \begin{tabular}{l}
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
mmmonnunn － \\

\end{tabular} \\
\hline \begin{tabular}{l}
 \(\checkmark\) \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\

\end{tabular} & S & & \begin{tabular}{l}
 － \\

\end{tabular} & \begin{tabular}{l}
 \\
 \(\therefore \therefore\)－inifinimisiovi：
\end{tabular} \\
\hline \begin{tabular}{l}
 \\
 \\

\end{tabular} &  & － & \[
\begin{aligned}
& \text { n } \\
& \stackrel{y}{0} \\
& \hline 0
\end{aligned}
\] & \begin{tabular}{l}
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 － \\

\end{tabular} \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
ヘininininionisig ö \\
 \\

\end{tabular} & 岂 &  & \begin{tabular}{l}
 \\
 \\

\end{tabular} & \begin{tabular}{l}
戸\＃ \\
 \\

\end{tabular} \\
\hline  &  & 管： &  & \begin{tabular}{l}
 mbうóádo \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\

\end{tabular} \\
\hline  &  － & \(\stackrel{\text { w }}{\sim}\) & 宸
J
¢ &  &  \\
\hline  &  & 両 & & 二 &  \\
\hline
\end{tabular}

 miod Nod











No
？








 \(\stackrel{\rightharpoonup}{2}\)

a 200000


ベゥデャー・
Mogennin
Nペ Nivido
ふiminio…
Noyy
mivorinn

 mini－NNNNN

Norninninnanin －
 जí－－Nimimjuino




 ainNoniniogñ

 －i



辟














＝


－










 －










耳＂－ppopopopoporopno


品





き＂＇


mit if ex dido

戸 mpmmmmmmmmminnw


 ＝


－



















 m

 z \begin{tabular}{l} 
응 \\
足 \\
\hline
\end{tabular}

NNN－O ลダMind －mis＝0 NNN一O
 －Nininioin NNDEOON


MNNFMOON


mNNM－mºno


mmpnmpmor
ニトゥoiodicin N

MmNNm－mporo



※ midnciod
mu－ñーNivisin


micinión－imini－in
mmpnimenmoropa勺om


MEMNNMNMNFF－ON



תmmmind



MmmmNNNNNNNF－mpo
 －Nimo－NNminirintio
monmwinmwnemmomern




Downloaded from https://academic.oup.com/mnras/article/224/3/801/980922 by guest on 20 August 2022

鳬 \(\overline{0} \bar{\sigma}\)

Mane



凶禸ウ்





－rivap






๓iñ









－\({ }^{\text {bit }}\)



















    - NM=
    No
    -nmini










Min


-





ํํํํํํํํํํ
- Niminioio


mom Ni=nvoy


へべデゥ

mm円mぁ웅


ヘifo in mis
-NN゙Mi


लmm户nッo



\(\therefore\) ㅍimin
MmminNo
N


- 0 品
-ッロッヂッ

Mrmprome

 Od \({ }^{2}\) d＇d





かう









 ジジロmino
（
Nmioioy



ํํํํํํํํํํํํํ



－
 －í





 －







毋



坓 0000000000000000000000000000000000苞









～























＂








0 z 00000000000000000000000000000000
\(\stackrel{4}{4}\)

工్లNN్
※ิต
－MyN


－7～～＝
MNNのがロ
Nógiosiod
ジッテー～



MMMMNN－

－Civosinio



Mmm





mmmmonnon－


－





戸䒑＂










－



 ジギッジ



N．


＝




















＝

－ํ．．



\(\stackrel{\square}{\underline{z}} 000000000000000000000000000000000\)
㟶
总

NMM－～～～


ำ


NMM－0\％












Nよ





－


 － mmmminmiminmen



－กัં

シmmmmimmmmmmen m
－2


－


足
\(\stackrel{\sim}{\square}\)
\(=1.00+08\)





    mind

    Nist ind


    = NA No did


-ituduthon


    Non

    ㅇun ont








    = Andod



z


    Nm=

    NRENEO

-
Nón

ANMminition
Nm@
む

-

Moxmasinm
シニジロmmmmmmmmmNNNNNー
nis


シóaintad



















 －
 ゆゆ




aiotijinindidinijo
- -
oiede ind


N NMmy





ヘnNovo mayotom
－\({ }^{\text {Notation}}\)
\(\succsim\) ¢

MNNMN
 －Niテ

N oninipio mмn－mod
N戶斤テテォoí










Nへ（x）
 MmpNmがmpoon
かopmg incinitio





ํ．






 \＃ュmmmmNNNNNNNNー－O

 \＃\＃wmmmmmmNnNNNNM －




```

N00%%

```

```

Nm=0-N

```


```

NOO
m-ONON
-SOO

```


```

M,

```



```

******N
Nmivi=-

```

```

m=voin=:

```

```

CNOGO

```

```

\#Ni-OONN

```

```

MNOMON=0%%
~0

```

```

NON

```



```

 \inftyowm=0,ON
    ```




```

A--N=N~NON
MMmmNNNNNNNNNNNNNNNNNNNONONONONONONONO
MMOMNNNNNNNNNNNNNNNNNNNNNNOOOOO

```







```

\infty心m=\#N:N

```

```

¿-NMm=N

```

```

 NNGN-OF=OOOF
    ```

```



```

```

N~N*N

```



\(\stackrel{\rightharpoonup}{2}\)









＂andod


ㄴ．
 にジロジシジ














解
 ๗ะ心． の中

 －

 m o

 ₹ \(0 \dot{0} 000000000000000000000000000000000\)宸

き

ジッツ込
คit indid
ヘッジゥ
戸̄＂mpen
N0 \％
守守安
戸लツNーが


あmminmore


जmmnmmopo
N


＊


 9－m7innMN

N．

 －
 －mmmannfirmmioi














Rニき円M





    No

Mom No
No,
    nます。
人

べウジa
Nín Min Nin
ヘMinix－：
No
mivair
No

mini－incinio
ल －Fmonuna
 nió－Niñimimion

Nobinion

－



－ －

ゅîinuninuinining ition

 － －imivioがーシーシージ





nき




 －







กinn



＂\({ }^{\circ}\)




 ～～～ロペ







 －



 ：

＂

mmpina
Nind
Miticio
mmNo융
※inconcot
Nいージーロ
mmmonopo



Né
－miormois

 \(\therefore \mathrm{CO}=\mathrm{OHNO}\)



\＃mmmNNNNM－O


\＃\＃mmmncnunim



ス







540以



mim memmmen mix
以 ल゙




Downloaded from https://academic.oup.com/mnras/article/224/3/801/980922 by guest on 20 August 2022


AFEmmmmmminnwo－o
－

 ま以






－nimioiririniminirionuito
 － 0 促



joorincimmininioirininjuioimis























mmoro
2 \(0_{0}^{2}\)
デがベージ


がが「ご～

N
ज゙：ページロハー
mmmono
NMng－
Nisimivi－
mimponmo





mmmnnmmono


かMmmNNNNM－

\(\therefore\)－icincinionio



Mommonminmommo ～かomexing－


－NはM－ 0 ond




 －Matomming ionuirgom







戸్ల



 －Nivi－nNijo－Ninioin




－

ゅ戸゙ッジ


のベゥジ
óndondy




 －Natyond

 －

 ＂

 ＝

 misiond

א



memno
Nmゅing
シャッデー
mmonoo

mo゙rin－
mNNN－0
aition
Niñ－jioni


Nうがmio：－
Mmmon＝－ipo

aimiviminio
monnNomiog
＊Áditn
－Nレロードーズー
muminnm－n－o
N


N
－－mísimioinio－s

＂


Núdod















又



-




 ま m


N1

\(\stackrel{\rightharpoonup}{2}\)










－





＝



















 －




～
1000000000000000000000000 00000
monion
Nif ind
ジージか
momper

ーツーデーヘ
戸mminmo




rivirumin



－mMmNNN－ロ






N1． NはーNスのーーN二の
戸戸戸かmmomminim


 N．








An \＃M，







Downloaded from https://academic.oup.com/mnras/article/224/3/801/980922 by guest on 20 August 2022

与だ





 －
 － M
 －0－Nonimino




－





minivicoóro

ジロージーシーシ

mivió：－－
N









 MEETEEETM以 ～ Criririomurner－Nu－h
 ～2





























₹ \(=\dot{0} 00000000000000000000000000000000\)

Nominn
※気出灾
－ペัベベ
MNNWCO
an＝tis
mNNMF－MN

 MNNM－FOP



ล

MलMNNMMm
 mandeg－nym MM以NNかNN－
N






 minmmomennincom
















जデTNo
ッ12A
－


 ＝mminem


 －\({ }^{2}\)



















©0ロ-m゚N~OMNOJMNNRUNON


ニ



N
-
\(\dot{-1}\)





aded

ゅ.

    =


- -1 nond

द

－





＝




出～
ㅎ \(\mathbf{z} 0000000000000000000000000000000\)岂


テーM～～
EmmNoo
Neddye：


 がなデッシ シलmNommor



 －戸円mmoñがmes


 N
 ＝FMMNNNNN－DO

 ニニMmNNMNNMー응











 O2






    Nrimmsunonarn


M M ído

    ぇ呂
    minirionivini
    No
    -
    ~




nimzanmmmmmmmmonnome






－\＆\＆


N．


＝

 으N．





ód

Nominnominminininum



－

に


＝



m


N


MmmNo
ล
－Noms
mmonno

－N゙ラージゥ
जmmonme












N



 の\＃\＃\＃\＃\＃\＃\＃mmmNom ～m 읓wowiong iniod



 wninm －
 －Mim










き号








－injoridiciob










 －







 －




山


岕
mmme
2
\(\therefore\) moige
mmmNoo

－Nibision
mmmen－o
Noing in in mo

ずmmがmos

がージーデが，
戸mmmen－
Nósiodgmaio





N「ón Mo mod




\＃\＃\＃mmm

msioinvió－ \(\mathrm{N}=-\mathrm{min}\)



\＃ै


（\＃\＃


ジショニツmmmommonNoー


 OHOA家



```

-%)

```





```

N~min-MNNN

```



```

m=0,--NNNNmmisivioon--Nmm

```



```

*10

```










```

 Nown
    ```


OO：O\％
N1．1．
ージ
momere



 ～Niviórinmjormir







＝คo




























豆

－misio
लmmeño
Nógége
－NrNoic


－Nin－Nán

Nóa


－ヨatyooino
\(\infty-\) Nintionvo




NKwhd

戸ヲMMNNNNM－
N


＂dadediticind

 N号సた








ज\＃\＃\＃mmmmmmminnion






릊ㄹ
䒾





三aj mo jobud

 ？ 0





＝aidy adid














aboo



оouninnuinnianinining


¢íno






 の





mbd do dodydod


～


mmmine
Not \({ }^{2}\)
－Misisi
mmon－o
Noposin
－ninioio
－
N NoNoteo
－Niñioin
Mmpn－momo
N둥nticine

जmmon－mo
Ning indico



 \＃\＃ワmNNNNーロ Noinipiricmjoni noーラーNテツーシm

※








－


が心No Niviciñinnionirnjoin－



ジ\＃ －




Downloaded from https：／／academic．oup．com／mnras／article／224／3／801／980922 by guest on 20 August 2022


nd dod


च Nón＇ind










 －














に！

甘






－5000 500



八ーn゙ゥ


ベージッチン
ジッジが品

＝二心im：

人


AnNon＇



－－－Mivioi

～ －Nonisinis















 －









～
＂

－

－Aón


Mm＝0 NMAN








の○m



565





N
NminonNon
욱웅
NE＝AN
～



mió－NNNNMm＝＝inin

NM心








\(\stackrel{\rightharpoonup}{\mathbf{z}}\)




＝



















 －Max





©


\(\gtreqless\)＂

 －





мックゥ～

べヴーシ
mmmñ
※g＇medt
－
ตmmmann
N

＝mmmommo






 ＝vor－ォriva

※以








 －－inNoNNing－icia に


onnmpunmen minnm


 －Q












 ~ m





 -HTō

Downloaded from https://academic.oup.com/mnras/article/224/3/801/980922 by guest on 20 August 2022


Downloaded from https://academic.oup.com/mnras/article/224/3/801/980922 by guest on 20 August 2022



ニ＊


三GNodíand








－


























z 10000000000000000000000000000000000

mMNーO
ค M品留 MッNッジ

MOT：





がゥッジ
ตmmNぁぁmon

















 －－＝inntomoviniovi

 GきONEMUONMNEDNHO
戸戸戸円mmmmommminnion

 స̄ల్mmommommminim




Downloaded from https：／／academic．oup．com／mnras／article／224／3／801／980922 by guest on 20 August 2022















引引引
\[
\begin{aligned}
& m \\
& \dot{B} \\
& \underline{\xi} \text { nj } \\
& 0
\end{aligned}
\]
min
monmmmonnNNNNNNNNNNNNNN
man



－HTo
～inimis
Ditํㅠํํ


ジッジジ
 N⿵冂䒑


MごごーシNか



－Oitunin
NNOUMOEF＝FO？


 －ninimy＝invois
mín of in




\[
\begin{aligned}
& \text { きむ } \\
& \text { - }
\end{aligned}
\]








和 \(\frac{1}{z} 00000000000000000000000000000000\)
岕

ジmかe
へもらべめ
ricini


m®ベゥ

N2OGENAN


ล ล่
























 －








－



















 －










＝
＝







宸

ばっかmm
－－－inim
戸゙meñ Ni．लimmo N－mizn
シカñ゙ゥが
へ⿵冂䒑山甲 ion

ジラヘminño




लiö－misionin

 min－ベ－ヘimisi－



ジロデnmmm



下




 a－nデー－ininix－mán
 －\({ }^{\circ}\)










Num
 minio－

Mh＇t



－njo－incmivivo－nvionir




ㅇ．．










 －\(\dot{\text { Nod }}\)
 － －

 ＝

 mini Móhót

 N － 2 － ＋
\(\stackrel{4}{5}\)

－HEOQ

Nin
－लंलिiniono

Nity


テing onn ingun
Mットーー・ー・ー・
minmmat ono



～ménouzingio ind

ふえ）








＝－0，\(=0\)－


ジmm№ Ninifi
戸mmoñ
 ーーッーデ
戸がmがか
 －Mロージ

 nioi－ióni－iñ

NM，
ごーテNーMN
ज
むめN
戸゙ज
 NコロNローNMON－

 NMO－NN－TMNN






 －NoN． －monNmintinn－


 －






Downloaded from https：／／academic．oup．com／mnras／article／224／3／801／980922 by guest on 20 August 2022
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}







 \(=\) non odonn


の









 gousninnunnuinnun
 －\＆Eid minnonn
 © ońando





 Jui－NiNminmstrivio．




Nin

ming y






 №́




















n！ónho
亮 \(\dot{\sim}\)
 ＝




 N
 \(\stackrel{\underset{~}{4}}{\stackrel{\rightharpoonup}{4}}\)

 Fintod tódition mix


－Gno



の管
\(\therefore \sim \dot{\circ}\)

～
－Nウ＝
No

＂
Numincor－




운 min miso．
 mixizi－nvinimio
 ＝ñ－NNNNMmm＝のñ


＝


 －oirnmm＝＝sinoroci－




    - \(-N\) -




    =




    人

-




＝人
























 かよd








台 \(\bar{z}\) 0．0000000000000000000000000000000
岕

がジッロ゚

ベージージ
べがッチーが

ワーム～N
心がminmo

戶斤ッシヘッ








レーシヘッターツーテ







－






 －

以心umbninwonimg mmo









-

- mowsun Novern

- diditinitupijo



號
No



-nimion

-nimixixic
No
\(\therefore\) ヘiniví-




o 1



os ond

～
ぶッジッ゚ーシーシーシ


\(\dot{m}=0.0-N\) NiNum

\section*{ \\ }
o






 Min o FMNON～－áyn





 mun＝＝OE＝MO－n Nito ditio
 n－













－





ニた









 z F م





\section*{}

ジラ戸m
ล่ำN．







 スอง


 －－TMiN：


 が

















 －¢ －．．．－nnnn－arviviti







\footnotetext{
\(\xlongequal{2}\)
\(N\)
\(\vdots\)
\(\vdots\)











}


＝mming



三＇t

























```

 -NNminorooi-_-inNNm=ivo
    ```

```

 Mar=N%N
    ```





```

*)
-inum

* *

\#N%

```

```

-numinion
*)
0
NM, %

```


```

*)

```



        óy 0

        -







        m

        MMMNNNNNNNNNNNNNNNNNNO

    \(\simeq z\)


－


－ \(\sin -\operatorname{-innin}\)
2

－ onionn
－








мmmmo


ティッツ
がッグッグ

Mivicini
ジッジッギ
 －\(-\underset{\sim}{\text { Minconc }}\)
 ヘคำ \(\because \because \operatorname{TinNA}\)




ลัต ำ ドロテーローツーが

 \＃テinnoーNoー

 MNージースーN゙ーの







 －9MーヘローーNmu－NにN



 F





를
\(\mathrm{HE}+\quad \mathrm{TE}=1.50+04 \quad \mathrm{HF}=1.00+06\)

～
MomiNon
－

\＆

oognting ind inin









ニ








N


＝


－


－1


－\＆


－




 の品




 M


स \(\vec{z} 00000000000000000000000000000000\)
至
minnion

ッヂテ
mindpe




ベゥテッiか






MMMMNNMNM
 －NMNMFDNT戸mmnmennm

戸Mmmmmminnix







 シニニジmmmmm＝mmi



 －Nimiovopimivinomin
 Fimboco












- onqo
        Amiñ

    気
    き乌きロミロロ

        Nin =inio
    率


        sesazases







a
N
\&íd
OKOGNa=N





Nin
    -



\(\begin{array}{rl}0 \\ 0 & 0 \\ 0 & 0\end{array}\)
-



11
"
2

    momox Sminmompoow
    -aー~Nmimimiżシinin

= 是



のが心がm
Manga








 か




 m


( \(\overline{2} 000000000000000000000000000000000\)
亥

※2dinis
ジゥージテ
ตッMッがか


Mnmががッ












～ども










 －




 －



Downloaded from https：／／academic．oup．com／mnras／article／224／3／801／980922 by guest on 20 August 2022


Ninnisa
珹
べゥジシー・
N－0

Nosino－…




－


＝ッño

テップ

－

がすごべが
かoniデゥ
戸シツツーが

の－m－心m















x 0

 －

以




 ＝




 \(\stackrel{\prime}{2} 100000000000000000000000000000000\)宸
 ※águncoss



戸戸लmnNMーか











 ค


















a －ニN®

－


 \(\therefore\) Non
 No
n

 －m



 쑻 き妾
～io
－nmin
No
ぶミ゙ージゅの
 ～Non
－
nisitndowid
notionionia


－

miniz－－NinNiv


－





 \(\therefore \therefore \dot{\sim}\)

\(\therefore-\mathrm{N}=\mathrm{j}\) जniviodin
















 －


















 \(=\) ？

 M

 ～1́
岂


ลิธ
Minio
戸うmmen
Nondone
Nルージーシ
च尹\＃\＃mwn

Nomosiniz

ㄴ．



－－min＝in
が



N：


N


－


ヘ ม


－\＆Ád







 －\＆



Downloaded from https://academic.oup.com/mnras/article/224/3/801/980922 by guest on 20 August 2022



-NNNOM N


    か-~Nウ
    N

- Nindon
-inizni


Nominsious


No


ベがめding
＝inion－
च゙चmmoñ
N
misunini－


NS－MmかN
Fヨ＝MNNN－
※ ơobowado




ジ戸かmmininno
N

 ～ －numimioñデース








Nun





๗nin

nig．．








－\(\frac{1}{0} 0\)


An



 OiN＇

 O＇心． ごロのーか

 －VaーNNNMmm＝＝n6on
造 \(\because\)－Nommm＝nino－




ニおが


둥






 －








Nが




 －







號
\(\bar{z} 0000000000000000000000000000000000\)
要

ががmo
～5
テテデ
ががmの品
がㄷ․․․․․ テ～N゙デ


守守守


 べ心がmpNom ลด์ べiMmivai


 ※ッががmmmin

















 ＝






Downloaded from https://academic.oup.com/mnras/article/224/3/801/980922 by guest on 20 August 2022



三ロúd







－

NN二〇ーN







An N
n シヘ

－


 ～ z－NMmionion－Non を

－

－Nimin
N
\(\therefore\) Nisio

－－N
은

－ヘmの～かのー・

－nimisioi－\(\because\)


～
NMミトーーーーーNN
～
NOMm



ぶーーーNNNNmmm＝ニー



－00－Nummin＝ivinoig

－

－


 ～品

 －\(\frac{0}{2}\) dut




 ＝





\(\stackrel{1}{2}\)苍

シmmm


がMmのn
凡
ロッーが方
ジロッツッ～

ご心のージ
戸戸戸戸戸戸が


ジショデッグが




－ヘッニーーディーテ




人
ローーローツーヅゥ




















joinmmz inivicin







ON－NAJ＝OMLRONRN＝O－2


－








＝ Nニ以
m


 \(=\)


N


\(\therefore\) ベッ゙

\(\therefore\)－Nimisio

\(\therefore \therefore \dot{n}\)





－nimisor－r．r．

Nn＝－


 Nmiconn NiNmimm
ofovotinninnn inn
























E














－＂








岕
＝mpNo
ล2
ヘージシーシ

\section*{}

三人ーが
戸戸戸ッがゥ

monvinio



戸चラMmNMN

－＝anaーNom




－N＝－Nm＝ズーNー







ㄴ． mト－NiniviースNiNo

 Nnormm＝＝inomaio



 ＝


 かーN二ーヘのローーーーーーツー～～




 च －Nminuonson－Nin
m Son


Nu＝かかosin
 －wod g＇mod


 oxo
x





Nino Nodin
（



m


 \(\stackrel{\rightharpoonup}{4}\)
！



2isy


－nウ̇シ

－riminis






へimisy

minnon

\(\dot{m}=0\)－






טめー－

－


－immincon


\section*{}


mmmon

へ管品宫
フNテニ゙

三
 シッグッがか


人 テーヅーデブ

 －T～かingy
























 －家


\begin{tabular}{|c|c|}
\hline  &  \\
\hline  & Q゚ロロべ \\
\hline  & 中心 \\
\hline  & －Nimis \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
N \\

\end{tabular} \\
\hline －Nmincor－r－－r－NNN &  \\
\hline  &  \\
\hline へめ－ &  \\
\hline  &  \\
\hline \begin{tabular}{l}
 \\
 \\

\end{tabular} &  \\
\hline  &  \\
\hline － &  \\
\hline  &  \\
\hline \begin{tabular}{l}
 が \\

\end{tabular} &  \\
\hline \begin{tabular}{l}
 \\

\end{tabular} &  No \\
\hline  & mivi－irinivinio \\
\hline \begin{tabular}{l}
 －M－M Mond \\
\(\therefore\) Nmisioviso－
\end{tabular} &  \\
\hline \begin{tabular}{l}
 － \\

\end{tabular} &  \\
\hline  － & \begin{tabular}{l}
 －ดัa \\

\end{tabular} \\
\hline  & \begin{tabular}{l}
 －Gipmsinism imidini \\

\end{tabular} \\
\hline  －－Nimono－ & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline BMOM N N N N్ర్రీ － &  － \\
\hline  &  \\
\hline  &  \\
\hline  & \\
\hline
\end{tabular}








 －










 －
















 －．


    च





    Nind



Non
Nodindidem



-in-.-TNNNNMios

    -

    ovin
Exixaze

\(=\)


-






mónmmonno































©


＂









흘
岕

ジミジー
象过
－～ن゙心
戸ぁぁのが




nimmimmme




mu－NNーラッ











シャッ












 －



 －0000000ヶ0のnn＝



－




 ＝－

 Q










 ～号










 N
 \(\stackrel{\text { 岕 }}{\stackrel{3}{5}}\)

ジッジゥ

\(\therefore=-\)－in


－Misioio

～



－－＝ーールが
がッジッツがが

－－misuño
のニニ゙mmmiñ




\(\therefore \therefore=\mathrm{Anin}\)




そう







－Nmisi－nviminirormoin








 व்ー～～～～
 \(\therefore \because \because=\)
 \(\therefore\)－Niminin － 0 ondinno
 Mnuntuninnu －niminoncoar．．．．nncingżinio



 \(\therefore\)－Nrinió


 ＂
 －～Mテーかめのー・
 N


क Náz
N

Níd
\[
\exists \text { Ni -NNNMmmons }
\]
운）
－～ó
ruct
－
No
N
Nminco：－inninm
－－Miminco－cim言 K以


－a－r－Nininimm＝




＝ m ¢ －0nnninnnuninnning ne


ninnonmmmzonvionin




\[
\therefore \text { Nionmonmy }=\infty
\]
～h＇s．










 ～

















z Noñod
亗

ジッジッチ
 －
戸戸ぁのベッ
तó⼼．
－Nivimin


－ñ́ricio





か－ninimioninio








シー・ーシーシ

＂
－


\(\cdots\)－


－




※志


```

M

```



```

 Ezommoz=
    ```







```

ON二N\&NM,N-NO

```





```

N\&J
N~

```

＝
※呙
 \(\therefore \therefore\) Aminin

道
\(=9 x=0\)
人


－nimionia゙
2
Nへニヒロー・•・ー・

\(\sim m=\)



 mion－Niñimio



 ＝vaーNNNmmm＝ninvono

 ペローーNmmmキニニnueーがー


＝

m





 － \(\mathrm{H}=0\) og：
 2才























 ，
 －No －










z 00000000000000000000000000000000

にががが

－テ－

\section*{がここの一}
※ísiond
○ップッタ


テーテテティ～
©Amyminm

シーデッチ
ロッがmmmN




シーディデッチ


－ñpin－ivin




－










 FA＇ANAN＇







が戸戸ッヂッツッ




















 め

 ＝A tod





\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
 \\
 \\

\end{tabular} \\
\hline &  \\
\hline & \begin{tabular}{l}
 \\
 \\

\end{tabular} \\
\hline & \begin{tabular}{l}
 \\
 \\

\end{tabular} \\
\hline & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline &  \\
\hline &  \\
\hline
\end{tabular}
\＆ \＆No No mon
－


ニーーベ
N




－－nmiono

N0 Nosin


No
MmnLED－N：


\(\therefore\) A

\section*{
}



 がニースNumm＝ ＝



 －


mivinniro
＝

－－










BE A A A An 0











－








－



 －

 mínóns ind


Z 0.00000000000000000000000000000
電

ジシャッか
－mioninin
シ\＃\＃mmum



－i－mominia－
出戸゙戶戸mmmmNN

－insinos










 －miñiniminioni：

Qexo


－


＝





    N

    =
    -

    м



    z \(\sim m=0,0 \times \infty\)








-

\section*{}


～
\(\therefore \therefore \dot{\circ}\)



え
\(\therefore\) Nrinivico
 －im＝0－






人天心

\＆
\＆：



\(\approx \underset{\sim}{\circ}\)

－ ニ－ nver－vNnNmminioio

















－










 まえ





※＂




 －よ

孚～


ジミッが
为家家
－iv－s
戸ゥがmが

17－io
シ二ぁが心

Niフionos



戸戸がかmmin

\(\therefore \div=0<0<\)







ぶ






















 －ラーNーラTーN～NーNmor＝N
















－会




 －
















垵安


T分空：




 －








\(\therefore \times \underset{\sim}{\circ}\)
＝



～

















\begin{tabular}{|c|c|}
\hline  &  \\
\hline  & \(\therefore \therefore\) nimj \\
\hline  &  \\
\hline
\end{tabular}
=m



-







\&





- ヘñ゙シーシ
Nist
-nMon









かidíd
-









ニ





\(\stackrel{1}{c}\)





- 5 NNNE KNO

-
へi

Titbuequid

※祘

= midy
N


-

Nino \(\because=\)






ボウ

    ค
m=nion -iNN
Kiop ํํำ

就





    OEx No Now in idity



    Nm=
    =














- '促





nind



NonOOONNOM



Nmitn


200000000000000 000 =000000000030








＂















 Finino











 ＂




言 \(\vec{m}\)

 miv－NNminiom－ninomio












－in ind




 ه

 －

















にこきのー

－－Mーか

NíNésín
nirinionin
ベッジッグが
ニウído


mio－imini－


N二ーがーminir

ニ







 －NM～NMジローNテーロ

















\section*{}

に守





－
＝


－．．．



O





－


 \(\stackrel{\rightharpoonup}{4}\)





 Mondosion



人 がーべ


え －
 －へimivio
 \(\therefore \therefore \dot{-} \dot{-1} \sim \infty\)
 ーNツシー～かのース

の人
－－－

o







－No


気家边

－ ＝
 \(\therefore\)－inmmm


















がッジッシ
anisur
－－－－－N
がぁmin
※
ni－ñom
nがmmin
～～～
＝0－vam
Lnmぁnmom

のローコMめNー






 －moージージローー





－NMめNMニーーNニー





o－N＝－－－Nmina－mon



＝






がmnがm

N⿵冂人口欠

    シーベテー


ゆong

ペツッチン




「ゾッヂテ
जロッnmme


Nupunminn
Nominnuot=



©




Nす




-onvonnionn 11




のind


Q ANANANN



ニ



```

micuid
MNNNON

```







```

 ~0
    ```




```

 NM, (0)
    ```




```

 Now
    ```










```

 *N⿱一𫝀口
    ```



```

z =-\infty00-N,\#\#0N

```

```

~MON゙ミN゙
シージm
~

```

```

\becausenimm
O
NべベNOGごす
\therefore~migi=
*)

```

```

*%%%

```

```

*)
-Nm=`icoscigio
M
-Nmisiocr_NM

```


```

Movoninninn{2%
~MEM

```








 \(\stackrel{\text { 岂 }}{\substack{2 \\ 2}}\)





 Nは品

－amo Nmio

omesmmNo．出 \(\ddagger\) 亿

 n

\(\square\)
 NN＝0
 An

 ¢NmNminemoma．


－кuncmam
年
－oboreoniono RN：


－inio－nininimimisinioñ

ni


愿

 ninomin neon now N～べNós \(\therefore\) 天Nio のniomen

－ヘiか


－कicirinit
Dormiznmo








ロovoning＝min









QN：
－－citrificicing







－
















ํ．




 응́․





＊

 －





ค2










ベッジッ
のñad
か－m゙・
An＝玉min

かぁーディ
Annますがm
N
\(=\dot{\sim}-\mathrm{MiNin}\)
nのnnnism



Nonem＝inien


 －Nmimioiviñ





\(\therefore \because-\infty-1 \div \div\)




N © \＆




 Qád


 －NNNiNN－omngestitict
 －










N．


－\(-\cdots\)



m
がき




－



＝


möopooooooocoopo o o do NONONNNONN ～iono
离



がNiN
No
－
a－－Nimm
O日日0080
品このペの品

00000000

\(\therefore\) Numininin
NiNs
\(\therefore\) Niminions
ニ －NNimónioio
 ～

 －Nmiciocinnon －
N \(2 \cos\)
 NMシ゚்ーシーシNini


＝Miso





nioำ．．．．


ジッジテ
～＇

TTiNN
Minngin

iominin
Mnommin

ベッチーが
Mnnemmmon

ficinimini－
Mnsmmmme

ヘベージがーシ


－\(\because-\infty-\) nuri－o


－

～


 ○No＝－Nm＝ーーNum

戶～Na－Nminomo
 － 0

 －Moño










 － m mindition


 \(\therefore-\operatorname{Nininion} \mathrm{m}\)









M Nmionioninninnimzinionnisi





－
\(\stackrel{\text { ² }}{\approx}\)



ai：－vim
Mo
웅




प\％080000\％
Nimbinisidid
－NNimininiovo

N



Nodisionden
yoyyoninnaninun N禺

 NMni－：－NNNN o OOOONininninninin －
 －




nin Nnom


戸すがm


๙ั内

 च
 ゆoponiminmonowininunimiñm















©










 ＝








ヘロッデ

Natidd
－9isism
जロッMN－

－N゙G77




Nód










 へ










 ＝\＄0 did










0 0



－－Nmジ
N NOQ日品
？－insinini







の



－ NMnめー－ー－～～NNiN

幺 \(\rightarrow=0\)－inninmm
 Minionninnmmiz
 ＝60－NNiNimiz＝玉Lin ，은 Nin－NNNmim＝nincio
－











 N2











か \(\cos ^{2}\)


















\(\stackrel{1}{\boldsymbol{z}}\)
（ \(\because \therefore\)－
品

ヘヘッヅラ

ショin
ががッジッ


のジロッが心

デッチン～




ล年


































\(\therefore\) Nimióorioi－－－Ninimia





o
Nmiño

0und




 － 101010




＝ minnonn
m NNロRMF




－rviñ
200


H6NONMN


YOQ \＆O O




NOMNMOMOM
 Nmin＝N－N
 montiousininant
 ゅMinciowno owois



An Anmin



©：
\(.00+1\)
－
＂

 ま
















 －




 －



ミががか

－Nomis
ミがががい
 ヘーシージ




ジががッチェ



ลิ

추N．




f．


․ ．



















\(\sim \sim\)
\(\therefore \therefore\) niṁ
，í
Nỡベゥ

－Nimos
A

Nono



ヘM＝－－－－－－－

足







ががが

2
－※～～ing
シヘッシャッ

－nべへ
ジッジッウヘ

－iーn－\(=\)
ミラッががmが



シージ心がごェ







 masro－ース




ํ．
－のニーががらーールーベ







＝－Mex


－


\begin{tabular}{|c|c|}
\hline 20nn &  \\
\hline  ます &  \\
\hline \begin{tabular}{l}
 \\
 \\

\end{tabular} & Nobe \\
\hline \begin{tabular}{l}
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
¢ \\

\end{tabular} \\
\hline  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline  & \begin{tabular}{l}
 \\
 －riminuricio
\end{tabular} \\
\hline \begin{tabular}{l}
 \\

\end{tabular} &  \\
\hline  & \begin{tabular}{l}
 \\
 \\

\end{tabular} \\
\hline \begin{tabular}{l}
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 － \\

\end{tabular} \\
\hline  － & \begin{tabular}{l}
\％oncanannannnin \\

\end{tabular} \\
\hline \begin{tabular}{l}
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 － \\

\end{tabular} \\
\hline －す̈a － &  \\
\hline  &  \\
\hline \begin{tabular}{l}
 \\

\end{tabular} &  \\
\hline 2． &  \\
\hline
\end{tabular}
 －







－


ㅇ．\({ }^{1}\)




 －





－









 ＝






 \(\stackrel{\text { W }}{\stackrel{\rightharpoonup}{\omega}}\)
ommin

Nivigi
ゆominme

～ーラ7：


－Noiが曻


\(\therefore\) ショデッテ


－ásNipionio



 טinmitiviopo









 －







 －






Nニ以ーフ















 \(\therefore \because \dot{\sim}\)












 ＝








\section*{풀}

nunusin
～



がごージー
Dininnsmm

－－матー。
Vinuins

ทัェininiまois


＝0－m－IMON



Monnninungem




－min－cinvisurioia




 のーNシャーシージッ
 －
 －rouxumuxumpurmin






今mpownopmoumpopont











齊 n \＃̈己己




M






corion
م＂O8\％
にioninina
が－ヘimm
No
ぶ－－inimi
No：0000

Nifinithirin
\(\therefore\)－Nimsinivio

－rnmiuurrm


0


\％ooy



mion onininion

＝ítoit ioid ño
－




 ＂





5ino A1A－
 ＂7－m以Noinm

ipnoizic
Ooommme

ทinio－m
Dominsmmin



N Mivinivoin－

 ジッシージがが



 Nは，

 －ainmon ind









Fonmoworonninnumge


以innmorovopunniniminne











－








－品デ9






－
－AN ジゥ
 －

以ำ
ก



\(\therefore \because \dot{\sim}\)
 ○よo






ค \％


ま


mò


※ด์


＝


Q日bid





－And


－


6 A M

 n

 ＝

 ＂

 N：


デッデテ

N\＆
－9oデロ
Minñ mix
Ninco
〒9べッチ
Nunctmmme
N～NOMNDNめ




ロunnusimmmm









KNGOQGONNOMgNAN MOTNOOTFNTMT Dowemmininn











 －Nompring Nownhyoso




\footnotetext{
- \(\mathrm{H}=\overline{0} \overline{0}\)
}


 －2
 －Nminiviod－N NNNMm＝


－



－




 のールぶ心

 － mino


 \(\stackrel{\rightharpoonup}{5}\)

－No
 Oーテ～Nim
～ \(\because=\)

 No
 － ANA
 －
 （1）
 ，
 （6）
 －












N．．


F－







 on＇10







 Nif

 ＝


 ユロ

 z－nmio－


Dopunm Ninniois
－がージ


－※uninu゙シ

Níg＇indi





ñ்ー́nintiom
minuonminimym
ล气

～




 －Nivinimíniónjo

 －Numiñónminisig









 Nixix ibd




    ciodo









    m Z
    owninminn

    -


の
－ーー～N






K


－Mind


－



＝100


 －innonmmis＝ivo

\(\therefore \dot{-1}-\mathrm{Nanmin}=\mathrm{anciosio}\)






－\(\ddagger\) まo











の1か


ón










 ＝\＆mndito Namonno

 m





जovinm
 －ウ்ジロ

ロッロッグm

－Noncó

Nべ




monoming m
Nig＇mindenis
シーがシージ

సも

 ＝nーmーNMロージ

 noonoir－miniona

 micioinix－rñーシn










－




```


[^0]:

[^1]: (zz)
 where N_{21} depends parametrically on $N_{\mathrm{c}}^{\mathrm{c}}$. In general equation (22) is quadratic in $N_{\mathrm{e}}^{\mathrm{c}}$, although it
 regions (2) and (3), for which the condition $3 N_{e} C \leqslant A_{2 q}$ is valid. if, in addition

[^2]: $\Upsilon\left(i, j, T_{\mathrm{e}}\right) \exp \left(-\Delta E_{i j} / k T_{\mathrm{e}}\right) \mathrm{cm}^{3} \mathrm{~s}^{-1}$

[^3]:

[^4]:

[^5]: $\stackrel{s}{3}$

