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Abstract

Background: A major immune evasion mechanism of HIV-1 is the accumulation of non-synonymous mutations in

and around T cell epitopes, resulting in loss of T cell recognition and virus escape.

Results: Here we analyze primary CD8+ T cell responses and virus escape in a HLA B*81 expressing subject who

was infected with two T/F viruses from a single donor. In addition to classic escape through non-synonymous

mutation/s, we also observed rapid selection of multiple recombinant viruses that conferred escape from T cells

specific for two epitopes in Nef.

Conclusions: Our study shows that recombination between multiple T/F viruses provide greater options for acute

escape from CD8+ T cell responses than seen in cases of single T/F virus infection. This process may contribute to

the rapid disease progression in patients infected by multiple T/F viruses.
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Background
HIV-1 specific CD8+ T cells are first detected prior to

peak viremia and expand concomitantly with decline of

acute plasma virus load (pVL) [1,2]. HIV-1 peptide epi-

topes are presented to CD8+ T cells in complex with poly-

morphic human leukocyte antigen (HLA)-I molecules.

Certain HLA allotypes are associated with lower pVL set-

points and better clinical outcomes, suggesting an import-

ant role for CD8+ T cells in control of HIV-1 replication

[3-6]. HIV-1 specific CD8+ T cells are also a major select-

ive force in viral evolution in vivo [7,8] and can select

non-synonymous virus escape mutants in and around the

reactive epitope, that wholly or partially ablate T cell re-

activity, within weeks of infection [9,10]. The timing of

escape for each epitope is not random and is heavily im-

pacted by the relative immunodominance of an individual

CD8+ T cell response and the Shannon entropy, or popu-

lation variability, of the targeted epitope [10,11].

HIV-1 infection with a single transmitted/founder (T/F)

virus occurs in around 80% of heterosexual infections

[12-14]. The proportion of multiple T/F viruses initiating

infection increases in other groups, such as men who have

sex with men and intravenous drug users. Infection with

multiple T/F viruses is linked to factors that are known to

increase overall transmission rates, such as higher risk sex

acts and other concurrent sexually transmitted infections

[12,15-19]. Several studies have associated infection with

multiple HIV-1 T/F viruses, multiple subtypes, and/or a

diverse virus population, with higher pVL setpoint, faster

CD4+ T cell decline, earlier need for anti-retroviral ther-

apy and a worse prognosis for the infected individual

[14,20-24].

The emergence of recombinant viruses results from in-

fection of a cell with two or more different viruses [25].

HIV-1 is highly recombinogenic [26] and HIV-1 recombin-

ation has been observed in patients infected with multiple

viruses within weeks-months of infection [12,14,15,17]. Al-

though none of these acute-phase studies have experimen-

tally linked the emergence of recombinants to immune

responses, several mathematical models have suggested that

recombination may impact escape from CD8+ T cell re-

sponses [27,28]. Such associations have been suggested in

one study of superinfection during the chronic stage of

HIV-1 infection [29].
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Here we report on a subject infected with two T/F vi-

ruses. We find that differential T cell targeting of the two

T/F viruses drives accelerated recombination-mediated es-

cape in acute infection.

Results
Acute HIV-1 replication in subject CH078

Subject CH078 was detected in acute HIV-1 infection

stage Fiebig I/II (seronegative, pVL= 3 748 087 copies/ml),

near peak viremia [30,31]. Genital ulcer disease, which has

been associated with higher risk of HIV-1 transmission

[32], was diagnosed at enrolment, 3 weeks later. From

peak viremia, his pVL declined rapidly by ~2 log within

the first 28 days from Fiebig I-II, then stabilized, even in-

creasing slightly over the next 7 weeks (days 28–77). This

was followed by a period of slower pVL decline of ~1 log

over several months to establish a setpoint of 3,520 cop-

ies/ml around 6 months post-screening (Figure 1). CD4+

cell counts increased from a nadir of 251 cells/μl, 21 days

post-screening and remained >300 cells/μl over the rest of

the study period (441 days total) (Figure 1). His HLA type

(A*01, A*30, B*42, B*81, Cw*17, Cw*18) included the pro-

tective HLA B*81 allele. In accordance with local clin-

ical practice guidelines applicable at the time, he was

not initiated on antiretroviral therapy during the course

of this study.

Patient CH078 was infected with two T/F viruses

Single genome amplification (SGA) and sequencing of

overlapping 5′ and 3′ halves of HIV-1 genomes from sub-

ject plasma were performed at nine time points from

screening to 441 days post-screening (Figure 1). This

approach [13], allowed for analysis of recombination

events. Fifty, 3′-half genome sequences were analyzed at

screening (Fiebig I-II) giving > 90% confidence to detect

virus variants at the 5% level [12]. Analysis identified

(Additional file 1: Figure S1), a ‘major’ (96%) predominat-

ing virus with the other T/F ‘minor’ accounting for the re-

mainder of the viral populations. These viruses were

highly related (1.2% nucleotide differences in env) suggest-

ing transmission from a single donor. The greatest vari-

ability was observed in Nef which differed by 10.7% at the

amino acid (aa) level (Table 1). Two viral lineages were

also detected in the 5′ side of the virus; however the pre-

sumed minor population (2 of 11 sequences) was not de-

tected until 28 days post-screening (Additional file 1:

Figure S1). Therefore, the 5′ half of the genome sequence

for the minor T/F virus could not be reliably inferred and

differences between the major and minor T/F viruses in

the 3′ half genome were used to track changes in relative

viral frequencies and recombination.

The first recombinant viruses were detected at day 35

from Fiebig I/II, as pVL initially stabilized (day 28–77).

Recombinants then rapidly increased in frequency, reach-

ing 44% of all sequences at day 42 and representing 100%

of all sequences at day 77 and all subsequent timepoints

(Additional file 1: Figure S1).

Primary HIV-1 specific CD8+ T cell responses target

both viruses

We examined whether acute T cell responses were asso-

ciated with virus escape by mutation and recombination.

HIV-1 specific T cell responses were comprehensively

mapped in IFN-γ ELISpot assays using overlapping

Figure 1 Clinical data and experimental protocol for patient CH078. CH078 was HIV-1 viral RNA positive, antibody negative (Fiebig I/II) at

screening. The plasma VL (red points and black line) and CD4+ T cell counts (blue points and line) are shown. pVL declined rapidly by ~2 log

within the first 28 days from screening. Next pVL stabilized from days 28–77, followed by another period of slower pVL decline of ~1 log over

several months to establish a setpoint of 3,520 copies/ml around 6 months post-screening. Samples were used for SGA sequencing (orange arrows),

T cell ELISpot (purple arrows), and flow cytometry (green arrows) at the timepoints indicated.
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peptides that matched and spanned both the major and

minor T/F viruses, and optimal epitopes subsequently de-

fined experimentally. All T cell responses were CD8+ re-

stricted and dominated by a central memory CD45RO +

CD27+ phenotype (Additional file 2: Figure S2).

Five primary HIV-1 specific T cell responses were de-

tected when pVL was rapidly declining in acute infection

(Figures 1 and 2A) of which four (Gag180-188, Pol426-

434, Vif73-81, Rev12-20) targeted identical epitopes in the

major and minor viruses (shared epitopes). Variable escape

kinetics were observed following the accumulation of

non-synonymous mutations within the targeted epitopes

(Figure 3). The fifth T cell response targeted a 9-mer epi-

tope (Nef68-76) that varied between the two T/F viruses

by 1 aa at position 71 (variable epitope).

As infection progressed, three new HIV-1 specific T cell

responses emerged, two targeting shared epitopes (Gag25-

34, Env209-217) (Figure 2). The third targeted a variable

9-mer epitope (Nef19-27), which differed between the two

T/F viruses at 2 aa residues at positions 25 and 26.

Escape from T cell responses by virus recombination

The CD8+ T cell response that targeted the variable

Nef68-76 epitope recognized the major T/F epitope with

greater magnitude (>10-fold), higher functional avidity

(Figure 4A and B), and an increased proportion of reactive

cells producing 3 or more cytokines when compared with

the minor virus epitope (Additional file 3: Figure S3).

Within 50aa upstream of the Nef68-76 reactive epitope,

a second Nef specific T cell response, Nef19-27, also rec-

ognized an epitope that was variable. In contrast to the

Nef68-76 T cell response, the Nef19-27 response detected

the minor virus and not the corresponding major virus

epitope (Figure 4C). The minor virus existed at only

4% at Fiebig I-II and therefore the level of presentation

Figure 2 High frequency HIV-1 specific T cell responses were induced in acute infection in CH078. Ex vivo IFN-γ ELISpots were performed

on PBMCs from CH078 between 21 and 442 days post-screening (Fiebig I/II). Solid colored lines represent individual T cell responses and are

plotted as absolute magnitude (A) or % of total magnitude (B). The plasma virus load (pVL) of CH078 is plotted as a dotted line on each graph.

A T cell response was considered positive if it was ≥30 SFU/106 cells and ≥4× background. All data represent the background subtracted mean

spot forming units (SFU) per million PBMCs. For each response the epitope name based on HXB2 aligned amino acid position within individual

proteins, the experimentally confirmed sequence, HLA restriction and epitope entropy are listed below the figure. Parentheses around HLA

types indicate the HLA type predicted for the epitope based on binding motif as opposed to experimentally confirmed HLA restriction.

Table 1 The sequence differences between the two T/F

viruses in CH078 for each gene in the 3′ half viral genome

Gene Nucleic acid (%) Amino acid (%)

Vif 0.7 1.0

Vpr 0.3 0.0

Tat 0.0 0.0

Rev 0.6 0.9

Vpu 0.8 0.0

Env 1.2 2.1

Nef 6.4 10.7
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of this epitope would have been very low relative to the

corresponding major epitope. By day 35, the minor

Nef19-27 epitope was found in 15% of sequences but

no T cell response was detectable in ex vivo assays. How-

ever, at the next timepoint (day 49) when cells were avail-

able, this T cell response was detected strongly at > 500

SFU/106 cells, suggesting this T cell response emerged be-

tween day 35 and 49.

Given that these Nef-reactive T cell responses each tar-

geted the major and minor T/F viruses in a reciprocal man-

ner, we explored whether HIV-1 could evade these two T

cell responses through recombination. Amino acid vari-

ation between the two T/F viruses was also found in the re-

gion (114aa) surrounding these epitopes (Figure 5),

which allowed us to unequivocally distinguish the

recombinants from the T/F viruses and identify recom-

bination breakpoints. No recombination was detected

before day 35 (Additional file 4: Figure S4). At day 35,

2 out of 25 (8%) of sequences were recombinants, and

both of these shared identical breakpoints (Figure 5,

Additional file 4: Figure S4). Recombinants increased to

44% and 65% at days 42 and 49 respectively, with different

breakpoints identified in different sequences (Additional

file 4: Figure S4). From days 35 to 49, a total of 32 se-

quences had a recombination breakpoint between the two

epitopes, and in all cases were found to be carrying the

epitopes least targeted by T cell responses (Figure 5). Five

distinct breakpoints were identified in this population of

32 sequences (Figure 5). This suggests that these viruses

became dually resistant to the Nef-reactive CD8+ T cell

Figure 3 CD8+ T cells targeting shared epitopes escaped via accumulation of variants in the reactive epitope. The epitopes Rev12-20

(A), Pol426-434 (B), Vif73-81 (C), and Gag25-34 (D) were shared between the major and minor T/F viruses and showed escape. The top graph in

each figure represents the changing frequencies of each epitope as measured by SGA sequencing over time. The bottom graph in each figure

represents the absolute magnitude of the T cell responses targeting all tested variants of the epitope, measured using ex vivo IFN-γ ELISpots. Each

figure has a different scale on the Y axis for the bottom graph. Data for the T/F epitope are shown using squares, data relating to the escape

variants tested in T cell assays are shown as triangles, while in the top graph only, other epitope variants (neither T/F nor tested escape variants)

are shown as gray circles (others). Screening corresponds to Fiebig I/II.
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responses through independent, recombination events and

the recombinants were selected because they afforded a

replication advantage under dual T cell selection pressure.

Classical T cell escape of variable epitope occurred

following recombination

As infection progressed, initial, partial escape from the T

cell responses targeting two Nef epitopes through recom-

bination was followed by classic escape, i.e. the emergence

of de novo mutations (not present in either T/F virus and

not derived through recombination) within the targeted

epitopes, conferring complete escape. The R71T change at

position 4 in the Nef68-76 epitope, which was first

detected at day 134 and was present in 100% of SGA

sequences at day 441, abrogated all detectable T cell

recognition (Figure 4A). In the Nef 19–27 epitope, additional

intra-epitope R19K and R21K changes also independently

ablated Tcell recognition (Figure 4C).

Discussion
Two major determinants of virus escape patterns are

immunodominance and epitope entropy (population

level sequence variability) [10,11]. In CH078, the early

immunodominant Rev-specific T cell response which

targeted a high entropy epitope escaped within weeks

(Figure 3). Escape in this epitope occurred classically

through the accumulation of non-synonymous mutations

within the epitope. Conversely, the acute CD8+ T cell re-

sponse targeting the Gag TL9 epitope which is very low

entropy did not escape over the study window, despite

subsequently gaining immunodominance. Slow escape in

the TL9 epitope has been described elsewhere [33].

By contrast, the Nef68-76 CD8+ Tcell response, which was

subdominant and targeted a low entropy epitope, both pa-

rameters associated with slow virus escape [10], escaped rap-

idly, within weeks of infection. Here, recombination provided

an accelerated escape in acute HIV-1 infection. The efficiency

of recombination as a rapid mode of escape from T cell

immune pressure in acute HIV-1 infection was highlighted

by selection of recombinants that simultaneously excised two

Nef epitopes located 50aa apart. Five different recombination

patterns were selected within the same short period, strongly

implying that direct selective forces were acting on this region

as opposed to selection occurring elsewhere in the genome

and recombinant strains becoming dominant through linkage

between two epitopes with escape mutations.

Figure 4 CD8+ T cell responses differentially recognized Nef epitopes in the 2 T/F viruses. The epitopes Nef68-76 (A) and Nef19-27 (C)

varied between the major and minor T/F viruses. T cell responses were measured by ex vivo IFN-γ ELISpots with responses against the major T/F

shown by blue squares and responses against the minor T/F shown as red diamonds. T cell responses to subsequently emerging escape variants

are shown as triangles. To the right of these graphs, the changes in each epitope are shown over time. The EC50 of the Nef68-76 T cell response

targeting the major variant was lower than that of the response targeting the minor variant (B). dps = days post-screening (Fiebig I/II).
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These observations of rapid recombination and CD8+

T cell escape in acute infection are novel. They add to,

but are distinct from, two previous reports that describe

superinfection in the chronic stage of HIV-1 infection.

Those studies described the selection of the superinfect-

ing strain because it contained mutations that conferred

escape from circulating T cell responses [29,34]. In one

of these studies, recombination was detected in a patient

two months after the superinfection event, and was asso-

ciated with T cell pressure [29]. Here, our more detailed

sampling clearly shows that primary HIV-1 specific T

cell responses can select recombination between distinct

T/F viruses even more rapidly, within weeks of infection

when pVL is stabilizing prior to the establishment of set-

point. These observations provide empirical evidence of

a mechanism beyond stochastic events to explain the

emergence of recombination reported in acute infection

[12,14,15,17]. A striking feature of the results presented

here are the five independent recombinations observed

in a very short time period and the fact that two separate

T cell responses, neither immunodominant, combined to

select the recombinations.

Very interestingly, as infection progressed the early re-

combination mediated escape in the Nef epitopes was

followed by the emergence of non-synonymous mutations

within the targeted epitopes that themselves more strongly

ablated CD8 T cell recognition. This is consistent with re-

combination offering not only an alternate route of escape

but in some cases more rapid escape.

Our observations are also consistent with others

[35,36], that show T cell escape is a dynamic process. In

addition to the ongoing emergence of HIV-1 variants

through either recombination or mutation, we also ob-

served changing recognition of T cell escape variants

Nef19-27 Nef68-76 % of variant
Major T/F MGGKWSKSSIVGWPDVRERIRRTAQAAEGVGAASQDLDKYGALTTSNTAHNNADCAWLQAQEEEEDVGFPVRPQVPLRPMNYKAAFDLSFFLKEKGGLEGLIYSKKRQEILDLW

Minor T/F ---------L--------------PT-------------H-----N---R---TW--VK----G-E-----K--------T--------------------VH-Q---D----- Major  Minor  Recombinant

d35.3       -----------------------------------------------------------------------K--------T--------------------VH-Q---D----- 80% 12%     8%
d35.4       -----------------------------------------------------------------------K--------T--------------------VH-Q---D-----

d42.2       -------------------------------------N---------------------------------K--------T--------------------VH-Q---D----- 50%     6% 44%
d42.9       -------------------------------------N---------------------------------K--------T--------------------VH-Q---D-----

d42.8       -----------------------------------------------------------------------K--------T--------------------VH-Q---D-----

d42.J       -----------------------------------------------------------------------K--------T--------------------VH-Q---D-----

d42.O       -----------------------------------------------------------------E-----K--------T--------------------VH-Q---D-----

d42.25      ---------------------------------------------------------------G-E-----K--------T--------------------VH-Q---D-----

d42.L       ---------------------------------------------------------------G-E-----K--------T--------------------VH-Q---D-----

d42.18      -----------K--N------------------------------------------VK----G-E-----K--------T--------------------VH-Q---D-----

d42.G       ---------------------------------------------------------VK----G-E-----K--------T--------------------VH-Q---D-----

d42.I       ---------------------------------------------------------VK----G-E-----K--------T-----------......................

d42.6       ---------------------------------------H-----N---R---TW--VK----G-E-----K--------T--------------------VH-Q---D-----

d42.19      ---------------------------------------H-----N---R---TW--VK----G-E-----K--------T--------------------VH-Q---D-----

d42.13      ---------------------------------------H-----N---R---TW--VK----G-E-----K--------T--------------------VH-Q---D-----

d42.29      ---------------------------------------H-----N---R---TW--VK----G-E-----K--------T--------------------VH-Q---D-----

d42.H       ---------------------------------------H-----N---R---TW--VK----G-E-----K--------T--------------------VH-Q---D-----

d49.2     -----------------------------------------------------------------E-----K--------T--------------------VH-Q---D----- 17% 17%   65%
d49.12    -----------------------------------------------------------------E-----K--------T--------------------VH-Q---D-----

d49.19      -----------------------------------------------------------------E-----K--------T--------------------VH-Q---D-----

d49.25      ---------------------------------------------------------------G-E-----K--------T--------------------VH-Q---D-----

d49.10      ---------------------------------------------------------VK----G-E-----K--------T--------------------VH-Q---D-----

d49.23      ---------------------------------------------------------VK----G-E-----K--------T--------------------VH-Q---D-----

d49.18      ---------------------------------------------------------VK----G-E-----K--------T--------------------VH-Q---D-----

d49.9     ---------------------------------------H-----N---R---TW--VK----G-E-----K--------T--------------------VH-Q---D-----

d49.13    ---------------------------------------H-----N---R---TW--VK----G-E-----K--------T--------------------VH-Q---D-----

d49.4     ---------------------------------------H-----N---R---TW--VK----G-E-----K--------T--------------------VH-Q---D-----

d49.1     ---------------------------------------H-----N---R---TW--VK----G-E-----K--------T--------------------VH-Q---D-----

d49.24    ---------------------------------------H-----N---R---TW--VK----G-E-----K--------T--------------------VH-Q---D-----

d49.16    ---------------------------------------H-----N---R---TW--VK----G-E-----K--------T--------------------VH-Q---D-----

d49.3     ---------------------------------------H-----N---R---TW--VK----G-E-----K--------T--------------------VH-Q---D-----

d49.21    ---------------------------------------H-----N---R---TW--VK----G-E-----K--------T--------------------VH-Q---D-----

Figure 5 HIV-1 recombination can afford rapid escape from acute CD8+ T cell responses. The first 114 amino acid region of Nef spanning

the two variable T cell epitopes in CH078 were analyzed. The recombination breakpoints between the epitopes are shown. The major and minor

T/F consensus sequences are displayed above the individual sequences. Sequences derived from the major T/F are highlighted in blue and

sequences from the minor T/F are highlighted in yellow, while the regions in which recombination probably occurred are indicated in grey. The

patient ID and days post screening (dps) which corresponded to Fiebig I/II are followed by individual sequence identifiers. The 2 epitopes are

outlined by red boxes. Graphical inserts beneath each epitope indicate the magnitude of T cell responses targeting the major and minor T/F

variant of each epitope (data derived from Figures 4A and C). On the right, the percentage of the recombinant viruses at each timepoint is

shown. Non-recombinant viruses are broken down in the % major or minor virus. Note, at day 35, two 3′ sequences (of 27) with large deletions

were excluded from analysis.
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over time (Figure 3, Additional file 5: Supplementary

Text). This is best explained by the emergence of

discrete circulating T cell clonotypes that differentially

recognized epitopes as HIV-1 infection progressed [33].

These data underscore the complexity of interpreting T

cell selection pressure in chronic HIV-1 infection.

Although it seems likely that the selection of recombi-

nants in some patients may have negative outcomes for

the host, this did not occur in this patient, at least in the

study window observed. Other host responses, including

the subject’s more dominant T cell responses which exhib-

ited consistent oligofunctionality, could have contributed

to the virus control observed; particularly as this subject

expressed the HLA B*81 allele which is overrepresented in

viremic controllers [37]. Other viremic factors, variation

in Nef-mediated immune evasion [38,39] or Gag-Protease

replicative capacity [40] could have resulted in emergence

of less fit and or less pathogenic viruses resulting in the

lower setpoint. Given the number of variables in this, a

single patient study, we cannot draw firm conclusions re-

garding the HIV-1 control observed.

Conclusions
This in depth case study of a patient infected with two T/F

HIV-1 viruses has demonstrated that the appearance of

recombinants known to occur during acute infection

[12,14,15,17] can be driven by the selective action of CD8+

T cell responses.

These observations have clinical implications. Whilst

we show that recombination mediated escape can occur

within weeks of infection, the generation of escape mu-

tants will be generally slower in regions of sequence

conservation. Vaccine-induced T cell responses that

dominantly target conserved regions of HIV-1 will

therefore also be less subject to rapid escape by recom-

bination suggesting a conserved immunogen design for

prophylactic T cell vaccines could also retain benefit in

individuals infected with > 1 HIV-1 T/F virus. Func-

tional cure of HIV-1 is an emerging field with a role for

HIV-1 specific CD8 T cells to detect and inhibit HIV-1

reservoirs recently highlighted [41]. Our observations

suggest that following reactivation of the HIV-1 reser-

voir, recombination between proviruses, even in individ-

uals who received very early antiretroviral therapy,

could mediate very rapid escape from T cell responses.

Methods
Study subject

CHAVI patient 078 is a black South African male aged

22 at the time of screening. Transmission occurred via

heterosexual sex from a known HIV-1+ patient. The sub-

ject remained antiretroviral naive over the subsequent

study period of 442 days. At screening, approximately

22 days post transmission, samples were collected for

viral identification and serology only. Twenty-one days

post-screening, the patient was enrolled into the acute

infection arm of the Center for HIV/AIDs Vaccine Im-

munology (CHAVI) 001 study. At enrolment and all

subsequent visits, blood was drawn, PBMCs isolated,

and these cells used for subsequent T cell studies.

Plasma and sera were also isolated for viral sequencing

at these visits.

Amplification of near full-length viral genome by SGA

Viral RNA was extracted from longitudinal plasma sam-

ples using the PureLink Viral RNA/DNA Mini Kit (Invi-

trogen, Carlsbad, CA). cDNA was synthesized using the

SuperScript III reverse transcriptase (Invitrogen, Carlsbad,

CA) with the primers 07Rev8 5′- CCTARTGGGATG

TGTACTTCTGAACTT-3′ (nt5193-5219 in HXB2) for

the 5′ half genome, or primer 1.R3.B3R 5′- ACTACTT

GAAGCACTCAAGGCAAGCTTTATTG-3′ (nt9611-9

642) for the 3′ half genome. Single genome amplifica-

tion (SGA) was performed to obtain the 5′ half, 3′ half or

near full-length HIV-1 genome as described previously

[13,42]. For the 5′ half genome amplification, the first

round PCR was carried out using the primers 1.U5.B1F

5′-CCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTG

T-3′ (nt538-571) and 07Rev8 5′-CCTARTGGGATGTGT

ACTTCTGAACTT-3′ (nt5193-5219), and the second

round PCR with primers Upper1A 5′-AGTGGCGCCCGA

ACAGG-3′ (nt634-650) and Rev11 5′-ATCATCACCTGC-

CATCTGTTTTCCAT-3′ (nt5041-5066). To amplify the 3′

half genome, the first round PCR was performed using the

primers 07For7 5′-CAAATTAYAAAAATTCAAAATTT

TCGGGTTTATTACAG-3′ (nt 4875–4912) and 2.R3.B6R

5′-TGAAGCACTCAAGGCAAGCTTTATTGAGGC-3′

(nt9636-9607), and the second round PCR with primers

VIF1 5′-GGGTTTATTACAGGGACAGCAGAG-3′ (nt4

900-4923) and Low2c 5′-TGAGGCTTAAGCAGTGGG

TTCC-3′ (nt9591-9612).

Sequence analysis

The SGA amplicons were directly sequenced by the cycle

sequencing and dye terminator methods on an ABI 3730xl

genetic analyzer (Applied Biosystems, Foster City, CA). In-

dividual sequences were assembled and edited using

Sequencher 4.7 (Gene Codes, Ann Arbor, MI). The se-

quences were aligned using CLUSTAL W [43] and the

manual adjustment for optimal alignment was performed

using Seaview. The Neighbor-joining (NJ) tree was con-

structed using the Kimura 2-parameter model. The high-

lighter plot was generated using the Highlighter tool at the

Los Alamos HIV sequence database (http://www.hiv.lanl.

gov/content/sequence/HIGHLIGHT/highlighter_top.html).

Genbank accession numbers: 3′ sequences KC149035-

149139, 5′ sequences KC148775-149034.
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Recombination analysis

All sequences from different time points were compared

to the parental T/F sequences. Recombination break-

points were identified by RDP3 followed by manually in-

spection of the Highlighter plot. The aligned sequences

were analyzed for recombination signals using BOOT-

SCAN, GENECONV, MAXCHI, CHIMAERA, SISCAN

and 3SEQ in the program RDP3 with a window size of

20 nucleosides [44]. The T/F sequences were used as the

parental sequences.

T cell response analysis

IFN-γ ELISpot mapping, Shannon entropy calculations [45]

and time to T cell escape were performed as previously de-

scribed [10]. For mapping, the entire proteome of both T/F

viruses were tested using PBMCs from days 28 and 187,

while responses against both NEF proteomes were add-

itionally tested for at days 42 and 105. To investigate

whether ‘novel’ T cell responses were induced in response

to viral diversification, variant peptides that matched non-

synonymous ‘stripes’ that emerged over the course of the

study window were tested. No de novo T cell responses

were detected.

Once all optimal epitopes had been identified, these

were tested at 1 μM concentrations as outlined across

multiple visits using ex vivo IFN-γ ELISpots and flow cy-

tometry. Avidity of responses was tested at some time-

points using peptide dilutions. Peptides are identified by

alignment to HXB2 proteins.

Flow cytometry

Following thawing and O/N resting, PBMCs were stimu-

lated with peptide or control (0.45% DMSO) for 6 hrs in

the presence of Costim™ (BD Biosciences) plus Brefeldin

A and Monensin. Anti-CD107a fluorochrome-labelled

antibody was also added to assay for degranulation. Cells

were then washed with PBS and incubated with LIVE/

DEAD Aqua viability dye (Invitrogen Life Technologies)

followed by fluorochrome labelled antibodies against

CD4, CD8, CD19, CD45RO and CD27. Cells were fixed

and permeabilised using Cytofix™ prior to staining with

fluorochrome-labelled antibodies against CD3, IFN-γ,

TNF-α and IL-2. Flow cytometry was performed on BD

LSRII and data was analysed using FlowJo (Tree Star

Inc.) using the following gating strategy lymphocytes/sin-

glets/alive/CD19-CD3+/CD4-CD8+/exclusion of CD27 +

CD45RO- cells. Polyfunctionality was analysed using Pes-

tle and SPICE software from Dr Mario Roederer, NIH.

Data shown is background subtracted and a positive re-

sponses defined the mean plus two standard deviations of

mock-stimulated response measured across all timepoints

(n = 7) tested.

Ethics Statement

CHAVI 078 gave full, written consent to enrol into the

acute infection arm of CHAVI 001. Experiments were

approved by the Prevention Sciences Review Committee,

Division of Acquired Immunodeficiency Syndrome and

by the Oxford Tropical Research Ethics Committee.

Additional files

Additional file 1: Figure S1. Highlighter analysis of sequential half

genome sequences from subject CH078. 5′ and 3′ half genomes

overlapping by 118bp were amplified by SGA from sequential plasma

viral RNA. The Highlighter plots denote the location of nucleotide

substitutions compared to the sequence representing the inferred major

T/F virus. The days post screening (Fiebig I/II) are indicated at the right of

the plot. Nucleotide substitutions and gaps are color-coded. Gene

locations are indicated beneath each highlighter plot. For the 5′ half of

the genome, the presumed minor T/F virus is noted in the 28 days

post-screening data and for the 3′ half of the genome, the minor T/F

virus noted in the 0 days post-screening data.

Additional file 2: Figure S2. T cell responses were CD8+ restricted and

primarily of the CD45RO+CD27+ central memory phenotype. Cumulative

data on the expression of CD45RO and CD27 by IFN-γ producing CD8+ T

cells from intracellular cytokine flow cytometry for each positive peptide

response (n=21) observed over study visits between days 21 and 187

from screening/Fiebig I-II. Data are grouped to show T cell phenotypes in

response to stimulation with epitopes found in either the major or minor

T/F viruses as well as subsequent escape variants. The percentage of

central memory (CD27+CD45RO+), effector memory (CD27-CD45RO+),

and terminal effector (CD27-CD45RO-) cells within the IFN-γ+ CD8+ T cell

population are shown. Bars represent the mean ± 1 standard deviation

for each memory population.

Additional file 3: Figure S3. CD8+ T cells express IFN-γ, TNF-α and the

degranulation marker CD107a in response to both the major and minor

variants of Nef68-76. Intracellular cytokines and CD107a expression by

CH078 PBMC were assayed by flow cytometry after 6 hours of stimulation

with 2μg/ml peptide representing either the major (FPVRPQVPL) or minor

(FPVKPQVPL) epitope variants of Nef68-76. A) Single function analysis.

Percentage of CD8 memory T cells expressing CD107a (red), IFN-γ

(purple) and TNF-α (green) in response to the major (solid line) or minor

(dotted line) epitope variants at days 49, 77 and 134 post-screening

(Fiebig I/II). B) The proportions of the specific CD8+ memory T cell

response accounted for by cells producing all possible combinations of

IFNγ, TNFα, IL-2 and CD107a. Colored arcs indicate expression of each

individual marker and the shaded sectors show the proportion of cells

expressing each marker combination.

Additional file 4: Figure S4. Highlighter recombination plot of partial

nef gene sequence. The first 342 bp of the nef gene sequence containing

both Nef T cell epitopes were used to detect recombination events. The

major and minor T/F viral sequences are shown in blue and red lines at

the top, respectively. The major and minor T/F virus signature nucleotides

are indicated as blue and red ticks, respectively. The nucleotides that

differ from both T/F viruses are indicated as black ticks. The Nef T cell

epitopes are outlined in green box. The days post-screening (Fiebig I/II)

are indicated at the right of the plot.

Additional file 5: Supplementary Text. Maturation of classic virus

escape. As previously described, the emergence of virus variants within T

cell epitopes is not static and changes over time [9,10,35]. Given our

access to longitudinal samples, we examined how the more common

epitope variants that emerged at different stages following infection

impacted T cell recognition in the shared epitopes. Several patterns were

observed. In the early immunodominant Rev12-20 epitope, the most

effective R17K escape remained dominant in the virus population and

the less effective K20R variant disappeared by day 77 (Figure 3A). In 2

epitopes (Gag25-34, Nef68-76), maturation of virus escape was observed

with different escape variants dominant at earlier and later timepoints

Ritchie et al. Retrovirology 2014, 11:69 Page 8 of 10

http://www.retrovirology.com/content/11/1/69

http://www.retrovirology.com/content/supplementary/s12977-014-0069-9-s1.pptx
http://www.retrovirology.com/content/supplementary/s12977-014-0069-9-s2.pdf
http://www.retrovirology.com/content/supplementary/s12977-014-0069-9-s3.pdf
http://www.retrovirology.com/content/supplementary/s12977-014-0069-9-s4.pptx
http://www.retrovirology.com/content/supplementary/s12977-014-0069-9-s5.docx


with the later escapes more effectively ablating T cell recognition

(Figures 3D and 4A). These examples suggest that under ongoing T cell

selection, HIV-1 ultimately selected the most effective virus escape.

Interestingly, in a fourth epitope (Vif73-81), the early A78D mutation

ablated the T cell response much more strongly than the P75T mutation

which arose later in infection. This hierarchy of recognition changed

with time. At day 266, the P75T mutation ablated T cell recognition far

more effectively than the A78D mutation (Figure 3C). The changing

recognition by T cells of escape variants over time, suggests the

emergence of discrete circulating T cell clonotypes that differentially

recognize these epitopes, recently described in chronic HIV-1 infection

in [33]. Therefore, not only does HIV-1 evolve in response to T cell

responses, but T cell responses themselves also adapt in response to

virus escape. These data underscore the complexity of interpreting T cell

selection pressure in chronic HIV-1 infection.
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