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Abstract

Hybridisation and introgression can dramatically alter the relationships among groups of spe-

cies, leading to phylogenetic discordance across the genome and between populations.

Introgression can also erode species differences over time, but selection against introgres-

sion at certain loci acts to maintain postmating species barriers. Theory predicts that species

barriers made up of many loci throughout the genome should lead to a broad correlation

between introgression and recombination rate, which determines the extent to which selec-

tion on deleterious foreign alleles will affect neutral alleles at physically linked loci. Here, we

describe the variation in genealogical relationships across the genome among three species

ofHeliconius butterflies:H.melpomene (mel), H. cydno (cyd), andH. timareta (tim), using

whole genomes of 92 individuals, and ask whether this variation can be explained by hetero-

geneous barriers to introgression. We find that species relationships vary predictably at the

chromosomal scale. By quantifying recombination rate and admixture proportions, we then

show that rates of introgression are predicted by variation in recombination rate. This implies

that species barriers are highly polygenic, with selection acting against introgressed alleles

across most of the genome. In addition, long chromosomes, which have lower recombination

rates, produce stronger barriers on average than short chromosomes. Finally, we find a con-

sistent difference between two species pairs on either side of the Andes, which suggests dif-

ferences in the architecture of the species barriers. Our findings illustrate how the combined

effects of hybridisation, recombination, and natural selection, acting at multitudes of loci over

long periods, can dramatically sculpt the phylogenetic relationships among species.

Author summary

Many species occasionally hybridise and share genetic material with related species. Inter-

specific gene flow may be counteracted by natural selection at particular ‘barrier loci’. As a

result, a pair of species can end up sharing more genetic variation in some parts of their

genome than in others, and the tree of relationships in a group of species can differ from

one part of the genome to another. We studied relationships and barriers among three

species ofHeliconius butterflies using whole-genome sequences from nine populations.
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We find that species relationships vary dramatically and predictably across the genome

because the species barriers are more porous in genomic regions with higher recombina-

tion rates. This occurs because recombination determines how broadly the surrounding

genome is affected by a barrier locus. The genome-wide pattern suggests that barrier loci

are widespread across the genome. One consequence is that smaller chromosomes, which

have higher recombination rates, tend to have weaker species barriers than longer chro-

mosomes. The relationships among populations on small chromosomes therefore tend to

be predicted by geography, rather than by which species they belong to. Our work shows

how hybridisation, recombination, and selection interact to reshape species’ relationships.

Introduction

The genealogical relationships among closely related species can be complex, varying across

the genome and among individuals. This phylogenetic heterogeneity can be caused both by

incomplete lineage sorting (ILS) in ancestral populations and by introgressive hybridisation,

causing some parts of the genome to have genealogies that are discordant with the species

branching pattern or ‘species tree’. Genome-scale studies have revealed that particular geno-

mic regions such as sex chromosomes and chromosomal inversions can have distinct phyloge-

netic histories [1–3], possibly reflecting systematic differences in the extent of introgression

across the genome. Indeed, the establishment of barriers to introgression in certain parts of the

genome is a key part of the speciation process [4–8]. The heterogeneous landscape of species

relationships can therefore carry information about the ‘barrier loci’ that contribute to the ori-

gin and maintenance of species.

Barrier loci can be associated with extrinsic (imposed by the environment) or intrinsic

(affecting viability of fertility) selective pressures, and can act at both prezygotic or postzygotic

levels [6,9]. The barriers between closely related subspecies or ecotypes that interbreed fre-

quently are often restricted to just a few loci that contribute to local adaptation, resulting in

narrow ‘islands’ of genetic differentiation between populations [1,10–12]. As speciation pro-

ceeds, we expect an accumulation of barrier loci, leading to reduced gene flow and more wide-

spread genetic differentiation across the genome [8,13]. Recently, it has become evident that

patterns of genomic differentiation between more strongly isolated species are often complex

and reflect not only barriers to introgression but also within-species processes that cause varia-

tion in effective population size (Ne) across the genome, including localised selective sweeps

and background selection [14–16]. Relative measures of genetic differentiation, such as the fix-

ation index (FST), which are sensitive to variation in Ne, therefore provide a poor proxy for the

strength of a local barrier [14,15,17]. However, it is possible to largely avoid the confounding

effects of positive and background selection by using methods that intrinsically account for

heterogeneity in Ne and directly estimate the ‘effective migration rate’ or the level of admixture

and how it varies across the genome, either using summary statistics [18] or through model-

based inference [19]. Provided that there has been sufficient introgression between the species,

regions of the genome in which admixture is reduced can be inferred to have experienced

selection against foreign genetic variation.

If species barriers are highly polygenic (made up of many loci) [20] and each locus has only

a weak effect on fitness, their individual localised effects on levels of admixture might be diffi-

cult to detect, analogous to the difficulties in studying polygenic adaptation more generally

[21–23]. Whereas it may not be possible to identify all barrier loci in such a situation, we can

test hypotheses about the architecture of barriers by studying genome-wide patterns of
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admixture. In particular, barriers made up of many loci of small effect are expected to be more

porous to introgression where recombination rates are higher. Foreign chromosomes that

enter a population through hybridisation and backcrossing will be more rapidly broken down

over subsequent generations in regions with higher recombination rates. This will tend to sep-

arate clusters of foreign deleterious alleles, reducing selection against them, and also break

their linkage with neutral (or mutually beneficial) foreign alleles at other loci, allowing these to

avoid removal by selection [19,24–27]. A correlation between the recombination rate and the

inferred rate of effective migration has been observed between subspecies of house mice [28],

subspecies ofMimulusmonkeyflowers [19,29], in hybrid populations of swordtail fishes [30],

and even between humans and Neanderthals [30,31], suggesting that loci experiencing selec-

tion against introgression among close relatives can be widespread in the genome. Therefore, a

combination of extensive hybridisation and polygenic barrier loci could theoretically produce

predictable large-scale heterogeneity in phylogenetic relationships across the genome, with

regions of higher recombination rate showing greater discordance with the species tree. Dis-

cordance caused simply by ILS in ancestral populations is also expected to be elevated in

regions of higher recombination rate, due to their typically larger Ne [32]. However, the effects

of introgression should be distinguishable in that particular discordant topologies—those that

group hybridising species pairs—should be overrepresented.

We explored species relationships and barriers to introgression among species ofHeliconius

butterflies. ManyHeliconius species are divided into geographically distinct ‘races’ with dis-

tinct warning patterns, which signal their distastefulness to local predators. Selection favouring

locally recognised warning patterns maintains narrow islands of divergence at a few wing-pat-

terning loci between otherwise genetically similar races [1,10,33]. However, there are also

more strongly differentiated pairs of sympatric species that hybridise rarely and have strong

postzygotic barriers, leading to higher genome-wide genetic differentiation [1]. We studied

three such species—H.melpomene (‘mel’), H. cydno (‘cyd’), and H. timareta (‘tim’)—which

form at least two independent zones of sympatry separated by the Andes mountains. Whereas

mel is found throughout much of South and Central America, cyd is largely restricted to the

west of the Andes and the inter-Andean valleys, where it overlaps with the western populations

ofmel, and tim occurs only on the eastern slopes of the Andes, where it co-occurs with the

eastern populations ofmel. In addition to strong assortative mating based on chemical cues,

along with visual cues in the case of cyd andmel [34–39], both species pairs show ecological

differences as well as partial hybrid sterility [36,37,40–44] (and see [36] for a review). Never-

theless, previous studies have revealed surprisingly pervasive admixture between these species

in sympatry, most likely explained by a low rate of ongoing hybridisation over an extended

period of time [1,45,46]. There is also considerable heterogeneity in the relationships among

these populations across the genome [1]. Adaptive introgression inHeliconius is well docu-

mented. Mimicry between sympatric races ofmel and tim has been facilitated by exchange of

multiple wing-patterning alleles [47,48], and at least one case of introgression betweenmel and

cyd has allowed the latter to mimic other unpalatable species [49]. However, the extent to

which introgression among these species might be selected against remains unclear.

Using 92 whole-genome sequences, we asked whether the heterogeneous relationships

observed among these species reflect the influence of polygenic barriers to introgression that

vary in their strength across the genome. Then, taking advantage of high-resolution linkage

maps for these species [50], we show that admixture is correlated with recombination rate,

consistent with polygenic species barriers leading to widespread selection against introgres-

sion. This selection also explains broader variation in admixture at the chromosomal scale.

Overall, our results highlight the pervasive role of natural selection in shaping the ancestry of

hybridising species.
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Results

Population structure

We analysed whole-genome sequence data from 92 butterflies representing nine populations

from the three focal species,mel (5 populations or ‘races’, 10 individuals each), cyd (two races,

10 individuals each), and tim (two races, 10 individuals each), along with two individuals from

an outgroup species H. numata (‘num’) (S1 Table). Our sampling included four regions of

sympatry: two on the west of the Andes where cyd co-occurs with western races ofmel (hereaf-

termel-W) and two on the eastern slopes of the Andes where tim co-occurs with eastern races

ofmel (hereaftermel-E), as well as an allopatric population from French Guiana (hereafter

mel-G) (Fig 1A). Principal components analysis (PCA) and a phylogenetic network based on

whole-genome single-nucleotide polymorphism (SNP) data show clear distinctions between

the three species, as well as betweenmel-W,mel-E, andmel-G (Fig 1B). By contrast, pairs of

races of the same species from the same broad geographic area (i.e., west of the Andes, east of

the Andes, or French Guiana) are not clearly distinct in the PCA, indicating nearly panmictic

populations in each species in each area, despite variation at a few wing-patterning loci, as

shown previously [51,52]. The tight clustering and lack of intermediate individuals in the PCA

indicates that none of the sampled individuals result from recent hybridisation, consistent

with observations that hybridisation is very rare on a per-individual basis. However, large

reticulations in the network are consistent with extensive introgression, which has probably

Fig 1. The three species are clearly distinct but show reticulate relationships. (A) Sampling locations of the nine races from three species included in this study
(coordinates provided in S1 Table). Species ranges [53] formel, cyd, and tim are indicated by red, blue, and green shading, respectively. The dashed line indicates the
central part of the Andean mountains. Whilemel occurs on both sides of the Andes, cyd is restricted to the west of the Andes, and tim is restricted to the east of the
Andes. Map generated using R package ‘maps’ [54]. (B) Distance-based phylogenetic network and plot of principle components 1 and 2 based on genome-wide SNPs
(data deposited in the Dryad repository [55]). Colours and symbols are as in panel A. Principal components 1 and 2 differentiate both cyd and tim from threemel
populations but do not separate the two sampled races of each species on either side of the Andes (e.g.,H.melpomene rosina from Panama andH.m. vulcanus from
Colombia form a single cluster, which we have therefore considered as a single population,mel-W). The same is true for the two populations making upmel-E, cyd, and
tim. cyd,H. cydno;mel,H.melpomene;mel-E, eastern races ofmel;mel-G, French Guianamel;mel-W, western races ofmel; PC, principal component; SNP, single-
nucleotide polymorphism; tim,H. timareta.

https://doi.org/10.1371/journal.pbio.2006288.g001
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occurred gradually through rare hybridisation events spread across millions of generations [1].

These results therefore highlight the contrast between the strong barriers that exist between

species—even in sympatry—and the continuity that exists within species, with the Andes

mountains and wide Amazon basin presenting the only major sources of discontinuity among

sampled populations of the same species [51,52].

Topology weighting reveals phylogenetic discordance consistent with
extensive introgression

We explored species relationships across the genome using Twisst [56], which quantifies the fre-

quency (or ‘weighting’) of alternative topological relationships among all sampled individuals in

narrow windows of 50 SNPs each. Consistent with previous results, topology weighting indi-

cates that large-scale introgression has shaped the relationships among these species. Examples

of local genealogies and their corresponding topology weightings are shown in S1 Fig. All 15

possible rooted topologies that describe the relationship between cyd, tim,mel-W, andmel-E

(rooted with num as the outgroup) are represented at considerable levels across the genome

(Fig 2). Moreover, fewer than 0.5% of windows have completely sorted genealogies (i.e., all

groups cluster according to a single topology, resulting in a weighting of 1, see S1 Fig for an

example) (Fig 2C). Coalescent simulations using an appropriate split time (approximately 1.5

million years ago [45,46,57]) and population size (2 million [52]) show that, in the absence of

introgression, we would expect far less phylogenetic discordance and more complete lineage

sorting (more windows with a weighting of 1 for a single topology) than seen here, unless the

population sizes were much larger (S2 Fig). However, the addition of moderate gene flow

between sympatric pairs produces levels of discordance and lineage sorting similar to our

empirical results (S2 Fig). The two most common topologies across the genome are T3 and T6,

which differ entirely in the relationships among the ingroup taxa (Fig 2A). T3 matches the

expected species branching order, in which cyd and tim are sister species andmel-W groups

withmel-E ([cyd, tim], [mel-W,mel-E]) [51,58]. We refer to this as the ‘species topology’. T6, by

contrast, groups populations by geography: cyd withmel-W, and tim withmel-E ([cyd,mel-W],

[tim,mel-E]). We refer to this as the ‘geography topology’. We therefore hypothesise that the

history of these species can be modelled as a branching process following the species topology,

with considerable introgressive hybridisation beginning at some point after the species diverged

that increases the rate of coalescence between sympatric populations from distinct species, as in

the geography topology. Although the geography topology has a slightly higher average weight-

ing, the species topology occurs far more frequently with a weighting of 1 than any other topol-

ogy (Fig 2C). In other words, the only pairs of populations that consistently show complete

monophyletic clustering aremel-W withmel-E and cyd with tim (for an example, see S1 Fig).

Our simulations agree that, although extensive introgression can also produce high rates of

monophyly, this level of monophyly between allopatric populations is only expected if they are

sister taxa (S2 Fig), thus supporting T3 as the true species branching pattern. The species topol-

ogy also agrees with ecological trends such as host plant use, as well as both larval and adult

morphology, which support a sister relationship of cyd and tim [59,60].

Topology weightings for the Z chromosome are dramatically different from the genome-

wide averages (Fig 2B). There is much less discordance, and the species topology has by far the

highest weighting. Moreover, the geography topology and others consistent with introgression

have comparatively low weightings. The contrasting abundance of discordant topologies on

the autosomes could be explained not only by much higher levels of introgression affecting the

autosomes, as shown previously [1], but also by their larger Ne, and resulting slower rate of

lineage sorting compared to the Z. However, as shown by our simulations (S2 Fig), only

Recombination and species barriers in butterflies
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extensive introgression can explain the strong skews in the topology weightings on the auto-

somes—with the geography topology (T6) being the most abundant—whereas others such as

T9, which groups allopatric nonsister taxa, is among the least abundant genome wide. Simi-

larly, the third and fourth most highly weighted topologies across autosomes (T14 and T5)

both group one pair of sympatric taxa (mel-E with tim andmel-W with cyd, respectively) and

otherwise match the species topology (Fig 2B). Taken together, these patterns are all consistent

with extensive postspeciation introgression between sympatric pairs, with a strong reduction

in introgression on the Z chromosome.

Our sampling design allows us to make inferences about biases in the direction of gene

flow. T14—which has tim nested within themel clade, suggesting introgression predominantly

frommel-E into tim (Fig 2B)—is the third most abundant topology genome wide and has a

higher weighting than T11, which implies gene flow in the opposite direction. A bias towards

Fig 2. Topology weighting reveals widespread phylogenetic discordance consistent with introgression on autosomes. (A) The 15 possible rooted topologies
representing relationships among 4 ingroup taxa: cyd, tim,mel-W, andmel-E. (B) Topology weightings for each of the 15 topologies in panel A, averaged across all 50
SNP windows genome wide (upper) and for the Z chromosome only (lower). (C) The percentage of windows with a weighting of 1 (i.e., maximal weighting for a single
topology), indicating complete monophyly, genome wide (upper) or for the Z chromosome only (lower). Data deposited in the Dryad repository [55]. cyd,H. cydno;mel,
H.melpomene;mel-E, eastern races ofmel;mel-W, western races ofmel; num,H. numata; SNP, single-nucleotide polymorphism; tim,H. timareta.

https://doi.org/10.1371/journal.pbio.2006288.g002
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introgression into tim would be expected given the much smaller range and lower Ne of tim,

which also has the lowest nucleotide diversity of all the taxa studied [1]. Hybrids that backcross

into tim will therefore provide a larger relative contribution to the gene pool than those that

backcross intomel. Likewise, T5 is more abundant than T4, suggesting that most introgression

in the west of the Andes has been from cyd intomel-W (Fig 2B). This direction was also

inferred to be the most likely in a previous study using coalescent modelling [46] and is consis-

tent with the fact that F1 hybrids show mate preference formel in experiments with Panama

populations [34]. Our simulations, in which the direction of introgression was biased in both

cases, also show similar imbalances in the weightings for the same topologies.

Species relationships vary predictably across the autosomes

In addition to the difference between autosomes and the Z chromosome, topology weightings

vary considerably among and within the autosomes. To highlight this heterogeneity, we first

focus on the two most abundant patterns of relatedness: the species and geography topologies

(Fig 3A). The species topology has the highest weighting in narrow peaks on some of the auto-

somes, whereas elsewhere the geography topology has the higher weighting. In other words,

throughout large parts of the genome, samples ofmel-W andmel-E tend to be more closely

related to their respective sympatric counterparts, cyd and tim, than to one another. However,

the species topology tends to occur in sharp peaks, which frequently have a weighting

approaching 1, as discussed above (S3 Fig; note that these narrow peaks are not visible in Fig

3A due to smoothing).

There are strong trends in the abundance of the species and geography topologies across

the 20 autosomes. All species in this clade have 10 short and 10 long autosomes. The latter

formed through 10 independent fusions in the ancestor ofHeliconius, which had 30 autosomes

[61,62]. The species topology is less abundant on the 10 short autosomes compared to the 10

long, fused autosomes, and there is a fairly linear increase in its weighting with chromosome

length (Fig 3B). By contrast, the geography topology shows decreasing abundance with chro-

mosome length and tends to be far more abundant on the short chromosomes. There is also a

fairly consistent within-chromosome trend, with higher weightings for the geography topology

and lower weightings for the species topology towards the outer third of the chromosomes

compared to the chromosome centres (Fig 3C). This reverses in the outer 5% of chromosomes,

where the species topology is again strongly supported.

The above trends might be partly explained if ILS in ancestral populations was more com-

mon on short chromosomes and away from the centres and very ends of chromosomes, lead-

ing to increased discordance in these regions. Indeed, we previously found a negative

correlation between chromosome length and Ne inmel [52]. However, the trends shown by

other topologies suggest that these patterns also reflect variation in the extent of introgression

between genomic regions. The 5 topologies that group allopatric pairs and therefore likely

reflect discordance due to ancestral ILS alone (i.e., T7, T8, T9, T12, and T13) show only weak

relationships with chromosome length, and no clear pattern within chromosomes (S4 Fig).

Furthermore, T14, which is consistent with introgression betweenmel-E and tim, is less abun-

dant than the species topology (T3) on long chromosomes and at chromosome centres but is

more abundant on short chromosomes and in chromosome peripheries (S4 Fig). Such a switch

in rank is not expected if the short chromosomes and peripheries simply experience more

ancestral ILS, but it is consistent with differences in the extent of introgression between short

and long chromosomes and between centres and peripheries. T5, which is consistent with

introgression between cyd andmel-W, does not show any clear relationship with chromosome

length or relative chromosome position (S4 Fig). This implies that there may be less consistent

Recombination and species barriers in butterflies
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variation in the extent of introgression between cyd andmel-W in different regions. However,

T4, which reflects introgression between the same pair but in the opposite direction (from

mel-W into cyd) does show weak patterns similar to the geography topology. Overall, topology

weighting reveals quantitative variation in species relationships both within and among chro-

mosomes that are consistent with heterogeneity in the level of introgression across the

genome. However, topology weighting does not explicitly distinguish between introgression

and shared ancestral variation. We therefore set out to explicitly test the hypotheses that (1)

there is heterogeneity in the level of admixture across the genome and (2) that this heterogene-

ity can be explained by variation in the strength of selection against introgression.

Heterogeneous admixture suggests variable selection against introgression

We used the summary statistic fd [18] to quantify admixture separately between cyd andmel-W

and between tim andmel-E. This approach also measures an excess of genealogical clustering of

sympatric nonsister taxa. However, fd provides a normalised measure that is approximately pro-

portional to the effective migration rate [18]. Building on previous work, we first investigated

Fig 3. Species relationships vary consistently both among and within chromosomes. (A) Weightings for the ‘species’ (T3; blue) and ‘geography’ (T6; yellow)
topologies plotted across the 21 chromosomes and smoothed as a locally weighted average (loess span = 1 Mb). See S3 Fig for a detailed plot without smoothing. Note
that in the insert, the indicated direction of introgression in T6, from cyd intomel-W and frommel-E into tim, reflects our inferred predominant direction, even though
introgression is thought to be bidirectional. (B) The average weighting for the same two topologies (colours as in panel A) for each of the 20 autosomes, plotted against
the physical length of the chromosome. (C) Average weightings for the same two topologies (colours as in panels A and B) binned according to their relative
chromosome position, from the centre (0) to the periphery (1). Each bin represents 5% of the chromosome arm, with the range indicated by a horizontal line. Vertical
lines indicate ±1 SE. All plotted data deposited in the Dryad repository [55]. cyd,H. cydno;mel,H.melpomene;mel-E, eastern races ofmel;mel-W, western races ofmel;
tim,H. timareta.

https://doi.org/10.1371/journal.pbio.2006288.g003
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the degree to which fdmight be influenced by variation in Ne across the genome. Ne tends to be

reduced in regions of reduced recombination rate due to linked selection. By means of simula-

tions, we find that, across a large range of realistic population sizes, fd is a reliable estimator of

admixture. Furthermore, fd outperforms the commonly used divergence statistics FST and dXY,

which are both highly sensitive to Ne (S5 Fig). When population sizes are very large, fd tends to

underestimate the true level of admixture. This is caused by a loss of information when popula-

tion sizes are large relative to the split times: the lack of lineage sorting means that there is insuf-

ficient information available to accurately quantify admixture. The population sizes for which

this is relevant are at the upper end of estimates for these species [52]. Moreover, this error

would cause a conservative bias in our results, as we expect reduced admixture in low-recombi-

nation regions, where Ne is expected to be the smallest. Most important for our subsequent

analysis, high background selection in regions of low recombination—which is known to influ-

ence measures such as FST—is not likely to strongly bias our estimates using fd. We therefore

conclude that fd provides a suitable, albeit conservative, measure to test the hypothesis that spe-

cies barriers are enhanced in regions of reduced recombination rate.

Computation of fd requires the use of a ‘control’ population that is ideally allopatric and

unaffected by introgression. To confirm the robustness of our results, we computed fd with

several different sets of populations, varying the control population, as well as splitting or join-

ing each of cyd, tim,mel-W, andmel-E into their two constituent subpopulations (S6 Fig).

Patterns of admixture estimated by fd show considerable heterogeneity across the genome

(Figs 4A and S7 and S8). As expected, admixture is minimal across the Z chromosome in both

pairs, indicating a strong barrier to introgression. There is also heterogeneity in admixture pro-

portion across the autosomes. This is most striking between tim andmel-E, where some regions

exhibit deep troughs, implying strong, localised species barriers. Some of this heterogeneity likely

reflects individual barrier loci of large effect. Indeed, the known wing-patterning loci provide a

useful example. The pattern differences between cyd andmel-W are determined by regulatory

modules around 3 major genes: wnt-A (Chromosome 10), cortex (Chromosome 15), and optix

(Chromosome 18) [49,63–67]. These probably act as strong barriers to introgression between

cyd andmel-W, due to increased predation against hybrids with intermediate wing patterns [43].

By contrast, the shared wing patterns of tim andmel-E are thought to result from adaptive intro-

gression of wing-patterning alleles. As expected, there is a strong reduction in admixture

between cyd andmel-W in the vicinity of all 3 genes (S7 Fig), while there are peaks of admixture

between the comimetic tim andmel-E populations in the corresponding regions (S8 Fig).

Admixture proportions are correlated with recombination rate

We hypothesised that many loci across the genome contribute to the species barriers, which

leads to the expectation that the level of admixture will be correlated with the recombination

rate [19]. We quantified variation in recombination rate across the genome using high-resolu-

tion linkage maps (based on 963 offspring in total) [50] as well as using LDHelmet [68], which

estimates the population recombination rate (ρ) based on linkage disequilibrium (LD) in the

genomic data from natural populations. On a broad scale, the map-based estimates are highly

concordant with the population-based estimates, and the latter are also strongly conserved

across the different species (Figs 4B and S9). There is considerable variation in recombination

rate across the genome, allowing us to investigate whether admixture proportions are corre-

lated with recombination rate.

There is a strong positive and nonlinear relationship between admixture proportion and

recombination rate in both species pairs (Figs 4C and S11). Correlations between fd and both

the ρ and crossover recombination rate are highly significant, even after thinning windows to
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reduce effects of serial correlation (S2 Table). Strong reductions in admixture, implying barri-

ers to introgression, are concentrated in genomic regions in which recombination rates are

below 2 cM/Mb. However, there is also more variability in admixture proportions in these

low-recombination regions, with some showing high estimated levels of admixture (Fig 4C).

This might imply that some regions do not harbour loci that contribute to the species barrier,

although the variance in admixture proportions may also be increased in low-recombination

regions due to increased genetic drift resulting from enhanced linked selection. The correla-

tions persist when considering only regions of intermediate recombination rate (2–8 cM/Mb)

Fig 4. Admixture proportions are correlated with recombination rate. (A) Estimated admixture proportions (fd) between cyd andmel-W (upper) and between tim
andmel-E (lower) plotted across all 21 chromosomes in 100 kb windows, sliding in increments of 20 kb. A locally weighted average (loess span = 2 Mb) is included.
Results shown are for population Sets 1 and 4 of S6 Fig. See S7 and S8 Figs for more detailed plots. (B) Recombination rate estimated from the crossover rate in linkage
maps (solid line) and ρ averaged across the four populations considered and plotted as a locally weighted average (loess span = 2 Mb) (dashed line). See S9 Fig for a
more detailed plot. (C) Admixture proportions for cyd andmel-W (first and third plot) and tim andmel-E (second and fourth plot) for nonoverlapping 100 kb windows
plotted against ρ (first two plots) and crossover recombination rate (last two plots). Solid lines indicate the locally weighted average (loess span = 0.75). All plotted data
deposited in the Dryad repository [55]. ρ, population recombination rate; cyd,H. cydno;mel-E, eastern races ofmel;mel,H.melpomene;mel-W, western races ofmel;
tim,H. timareta.

https://doi.org/10.1371/journal.pbio.2006288.g004
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(S2 Table). The relationship between admixture and recombination rate is stronger in the tim

andmel-E pair, implying that the more heterogeneous pattern of admixture across the genome

between this pair is more consistent with a model in which barrier loci are widespread and

recombination rate modulates the strength of the barrier to introgression.

Admixture proportions are less well predicted by the map-based estimates of crossover

recombination rate compared to the inferred ρ (Fig 4C and S2 Table). This probably partly

reflects inaccuracy in fine-scale recombination rate estimated from the linkage maps. How-

ever, it may also be that ρ (= 4Ner) provides a more meaningful predictor for the admixture

proportion, as it is a composite of the per-generation recombination rate (r) and local Ne. Due

to linked selection, parts of the genome with a low recombination rate and a high density of

selected sites are expected to have locally reduced Ne and therefore reduced ρ. Indeed, ρ is

strongly negatively correlated with the proportion of coding sequence per window (referred to

as ‘gene density’ hereafter) (Spearman’s rho = −0.681; p< 0.001; S10 Fig). However, there is

also a weaker but significant negative relationship between gene density and the crossover

recombination rate (Spearman’s rho = −0.248; p< 0.0001; S10 Fig). This implies that linked

selection in regions of low recombination rate may be further enhanced by a higher density of

selected loci. As the conditions that enhance linked selection are the same as those expected to

strengthen barriers to introgression (i.e., a high ratio of selected loci relative to the recombina-

tion rate, also called the ‘selection density’ [19]), it is to be expected that ρ would provide a bet-

ter predictor of barrier strength and therefore admixture proportion. As expected, there is a

negative relationship between admixture proportion and gene density (S12 Fig). However, the

fact that regions with a high gene density also tend to have lower recombination rates makes it

difficult to determine whether such regions harbour a higher physical density of barrier loci,

but this seems likely given the arguments above.

The correlation between admixture and recombination rate remains clear when individual

chromosomes are considered separately, with 18 and 20 of the 21 chromosomes showing a sig-

nificant correlation formel-W/cyd andmel-E/tim, respectively (S13 Fig). This further high-

lights the genome-wide nature of this trend. The above trends are also robust to using different

allopatric ‘control’ populations when estimating admixture proportions (S11 and S12 Figs),

with the exception that using very closely related control populations leads to very low esti-

mated rates of admixture, for which the relationships with recombination rate and gene den-

sity are not clear due to the large number of windows at which the estimated admixture

proportion is 0. See S11 and S12 Figs for details.

Reduced admixture on longer chromosomes

Average chromosomal admixture proportions are negatively correlated with chromosome

length (Fig 5A and 5B). This is expected given the extremely strong negative correlation

between physical chromosome length (in base pairs) and average recombination rate (Spear-

man’s rho = −0.98; p = 4.6 × 10−6) (Fig 5C). By contrast, there is no clear relationship between

chromosome length and gene density (Spearman’s rho = 0.058; p = 0.8) (Fig 5D). The broadly

enhanced barrier to introgression on long chromosomes is therefore more consistent with an

effect of increased linkage, rather than an increased density of barrier loci. As in the trends

above, the correlation with chromosome length is stronger for admixture between tim and

mel-E (Spearman’s rho = −0.66; p = 7 ×10−4) than for admixture between cyd andmel-W

(Spearman’s rho = −0.51; p = 0.012). Between tim andmel-E, the shortest chromosomes expe-

rience about 50% more admixture than the longest chromosomes, with the exception of Chro-

mosome 2, which has strongly reduced admixture compared to other short chromosomes with

similarly high recombination rates. This might reflect a higher density of barrier loci on this
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Fig 5. Variation in admixture proportions among and within chromosomes is explained by recombination rate and
distance from chromosome centres. (A, B) Estimated admixture proportions (fd) between cyd andmel-W (panel A) and
between tim andmel-E (panel B) for each chromosome plotted against chromosome length. Population Sets 1 and 4 were used
for these analyses (see S6 Fig). (C) Crossover recombination rate for each chromosome plotted against chromosome length. (D)
Proportion of coding sequence for each chromosome plotted against chromosome length. (E, F) Estimated admixture
proportions (fd) between cyd andmel-W (panel E) and between tim andmel-E (panel F) for 100 kb windows plotted against
relative chromosome position. A locally weighted average (loess span = 0.25) is included. (G) Crossover recombination rate
plotted against relative chromosome position. A locally weighted average is included, along with the corresponding line for ρ.
(H) Proportion of coding sequence per 100 kb window plotted against relative chromosome position, again with a locally
weighted average shown. All plotted data deposited in the Dryad repository [55]. ρ, population recombination rate; cyd,H.
cydno;mel-E, eastern races ofmel;mel,H.melpomene;mel-W, western races ofmel; tim,H. timareta.

https://doi.org/10.1371/journal.pbio.2006288.g005
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chromosome, which seems possible because it also has the highest gene density of all chromo-

somes (Fig 5D).

Given that the 10 longer chromosomes all arose through fusions in the ancestor of the

genus [62], we also investigated whether there was some additional effect of the fusions them-

selves in causing reduced admixture, apart from the obvious indirect effect of lower average

recombination rates on longer chromosomes. There is no consistent trend of reduced admix-

ture in the vicinity of the fusion points themselves (S7 and S8 Figs). We tested for a general dif-

ference between fused and unfused chromosomes independent of recombination rate by

binning 100 kb windows by local recombination rate and then comparing bins of equivalent

recombination rates between fused and unfused chromosomes (S13 Fig). In both species pairs,

most bins showed significantly reduced admixture on the fused chromosomes. This suggests

that their reduced recombination rate alone may be insufficient to explain the extent of reduc-

tion in admixture, implying a higher density of barrier loci on fused chromosomes, despite no

significant difference in gene density (Fig 5D). However, the same pattern would be expected

if admixture proportions in 100 kb windows are influenced by recombination rates in sur-

rounding regions, so it is difficult to distinguish the effect of lower global recombination rates

on longer chromosomes from a difference in the density of barrier loci.

Variation in admixture along chromosomes

As indicated by topology weighting, there is an effect of position along the chromosome on the

proportion of admixture betweenmel-E and tim, where admixture increases on average

towards the distal region of the chromosome but decreases again at chromosome ends (Fig

5F). This is not seen in the proportion of admixture between cyd andmel-W (Fig 5E), which

appears to show a weak decline moving away from the chromosome centre and a sharper

decline at the end. Unlike in many other taxa [27], there is no consistent decrease in recombi-

nation rate towards chromosome centres. By contrast, both the crossover recombination rate

and ρ show a sharp decrease at the chromosome ends (Fig 5G). Gene density is roughly uni-

form across chromosomes on average (Fig 5H). Theory predicts that, given a uniform recom-

bination rate and distribution of selected loci, species barriers should weaken towards

chromosome ends due to a decrease in the number of linked deleterious alleles on one side of

the focal locus (i.e., an ‘edge effect’), leading to increased admixture towards chromosome

ends [25]. Therefore, the different trends seen in the two species pairs might imply a different

balance between this edge effect, which should weaken species barriers, and reduced recombi-

nation, which should strengthen them.

Discussion

Introgression effectively acts to rewrite the evolutionary history of the genome. Genome-scale

data have revealed that the extent of introgression in some species may be far greater than previ-

ously imagined [1,2,69,70]. Despite the strong behavioural isolation among the three species

studied here, we find that relationships among them vary dramatically and predictably across

the genome, and that in some parts, introgression has overwhelmed the genealogical footprints

of the original population branching pattern. Similar dramatic heterogeneity in species relation-

ships has been described in several other taxa [2,71]. For example, introgression among some

Anophelesmosquitos has almost entirely eliminated the signal of the original species branching

events on autosomes [2]. In the present study, by analysing genomes frommultiple samples per

population, we show thatHeliconius species relationships vary quantitatively within and among

chromosomes. Our main finding is that this variation in species relationships is predictable and

can be partly explained by quantitative variation in the strength of the selective barrier to
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introgression, which depends on the local recombination rate. Our findings therefore show

how hybridisation and natural selection act in combination to shape the tree of life.

There has been considerable interest in making inferences about species barriers from the

genomic landscape of divergence between hybridising species, based on the idea that selection

should resist genetic homogenisation by gene flow at barrier loci. However, there has also been

an increasing realisation that patterns of differentiation and divergence can be influenced by

unrelated factors, such as linked selection acting within species [15,72–74]. One effect of these

confounding factors is that relative measures of divergence, such as FST, can show elevated val-

ues in regions of the genome that experience stronger linked selection, even if there is no

reduction in effective migration in such regions, and indeed even when there is no gene flow

at all [16]. In other words, the observation of increased FST in regions of the genome with

reduced recombination rate is not necessarily informative about the architecture of species

barriers. This is particularly problematic when considering species that hybridise rarely, as the

contribution of gene flow to patterns of differentiation may be small compared to that of

within-species linked selection. Previous analyses of theseHeliconius species revealed a highly

heterogeneous pattern of FST, in which even known wing-patterning loci that have a major

impact on hybrid fitness are not particularly prominent [1]. Until now, it has not been known

whether barrier loci are indeed widespread throughout the genome in these species. The avail-

ability of new approaches that avoid the shortfalls of FST by directly inferring the admixture

proportion or effective migration rate [18,19,75] now make it possible to examine the relation-

ship between recombination and admixture, revealing the architecture of species barriers.

Our results suggest that there are highly polygenic barriers that maintain theseHeliconius

species. There is a strong correlation between admixture and recombination, both genome wide

and on individual chromosomes. Windows in regions of high recombination rate (>5 cM/Mb)

almost invariably show increased levels of admixture, whereas windows showing reduced

admixture are concentrated in parts of the genome with low recombination rates (<2 cM/Mb).

This is consistent with theoretical expectations that widespread barrier loci will cause a stronger

localised reduction in introgression in regions of lower recombination rate, due to increased

linkage among selected loci, and between selected and neutral loci [19,24–26,29,76]. Some win-

dows in regions of low recombination nevertheless show high levels of admixture. This may

indicate that barrier loci, although abundant, are not ubiquitously distributed across the

genome. However, we also expect increased variance in levels of admixture in these low-recom-

bination regions due to increased genetic drift, which will be compounded by the reduced inde-

pendence among sites in the 100 kb windows. This increased variance does not explain the

positive relationship between admixture and recombination, however, and the relationship per-

sists when the regions with the lowest recombination rates are excluded from the analysis.

Selection against introgression also produces a global pattern of decreasing admixture with

chromosome length. Long chromosomes, which have similar gene density but lower per-base

recombination rates than short chromosomes, form stronger barriers to introgression on aver-

age. The 10 long chromosomes that resulted from fusions in the ancestor ofHeliconius showed

more resistance to introgression than unfused chromosomes even in regions of equivalent

recombination rate. This might indicate an average higher density of barrier loci on the fused

chromosomes. However, it could also be explained if the effects of linked barrier loci extend

beyond the range of the 100 kb windows that we analysed, such that introgression in any given

window is affected by recombination rates in surrounding regions, which will typically be

lower on the longer fused chromosomes. This could be resolved in the future by explicitly

modelling the relationship between recombination and selection against introgression at the

whole-chromosome scale.
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Our experimental approach does not consider the possible effects of changes in the recom-

bination landscape between the species [77]. Comparison of linkage maps [50] and population

recombination rates suggest that there is minimal large-scale change in recombination rates

among these species. Nonetheless, even changes to the recombination landscape over longer

time periods are important because they determine which parts of the genome are likely to be

involved in forming future species barriers. For example, the 10 fusions that produced longer

chromosomes with lower recombination rates inHeliconius occurred after divergence from its

sister genus, Euides [62], implying that species barriers in the latter group might follow a very

different landscape.

It is likely thatHeliconius species barriers are also stronger in gene-rich regions, due to an

increased density of barrier loci. While we did find a weak trend of reduced admixture in gene-

rich regions, this is difficult to interpret because the recombination rate is also lower in gene-

rich regions in these species. An additional factor that could influence our conclusions is the fact

that barrier loci may not be expected to accumulate randomly across the genome. Some models

predict that, under a scenario of ecological divergence in the face of gene flow, the accumulation

of barrier loci may be clustered [26,78]. This could increase the correlation between admixture

and recombination and perhaps lead to overestimation of the density of barrier loci. Clustering

could theoretically be further enhanced by genomic rearrangements that bring together loci

involved in local adaptation [79] or that physically suppress recombination in hybrids. However,

we have previously found that there are no major inversions or regions of suppressed recombi-

nation in hybrids that maintain barriers betweenmel and cyd [50]. Nonetheless, the lack of

information about the distribution of barrier loci and their effect sizes means that it is currently

not possible to estimate the number of loci involved, except that it is probably very large.

In agreement with previous findings, we find that barriers to introgression are far stronger

across the Z chromosome compared to autosomes. Enhanced barriers to introgression on sex

chromosomes have been observed in genomic studies of a range of taxa with both XY and ZW

systems [1–3,80]. This has been attributed to a more rapid build-up of incompatibilities due to

hemizygosity and a key role played by sex chromosomes in reproduction and fertility. Com-

paring genetic differentiation on sex chromosomes to autosomes can be complicated by their

reducedNe, and this can be further confounded by changes in population size, which can affect

sex chromosomes differently [81]. However, our simulations show that these factors cannot

explain the reduction in admixture detected here using fd. In theseHeliconius species, hybrid

female sterility is associated with 1 or more loci on the Z chromosome [42,82,83]. The

observed reduction of admixture across the Z chromosome must result from selection against

foreign Z chromosome alleles in backcross progeny and their descendants, such that there are

opportunities for independent assortment of chromosomes prior to selection. Segregation of

sterility in backcrosses has indeed been observed in crossing experiments [42,83,84]. This also

means that there are opportunities for recombination before selection. The fairly even reduc-

tion in admixture we observe across most of the chromosome is therefore perhaps surprising

and implies that there are multiple barrier loci spread across the Z chromosome. A similar pat-

tern of widespread incompatibilities throughout much of the sex chromosome has been

shown experimentally between Drosophila species [85].

Perhaps the most important trend in our results is that regions of the genome that harbour

the strongest species barriers correspond with those showing the greatest phylogenetic concor-

dance with the species tree. Theoretical models show that genealogies of barrier loci might not

be expected to conform to the species branching pattern because the selected alleles can arise

before lineage sorting is complete [86]. This apparent contradiction may be resolved by the fact

that the regions in which species barriers are strongest (low-recombination regions and the Z

chromosome) are also those expected to have generally lower Ne (due to linked selection [87]
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and hemizogosity, respectively). The resulting increase in the rate of lineage sorting in such

regions is expected to decrease discordance, as has been observed in other taxa [32,88]. The

strong correspondence between barrier regions and the species tree may therefore be expected.

Our results demonstrate that introgression can play a similar, and perhaps more dramatic role,

than ILS in driving predictable patterns of phylogenetic discordance across the genome.

The model proposed here of a highly polygenic species barrier betweenmel and its relatives

contrasts with previous studies that identified a few major-effect loci that control differences

in wing pattern and mate preference between cyd andmel [43,84]. In particular, a recent study

identified 3 major-effect quantitative trait loci (QTL) for assortative mating behaviour, one of

which is tightly linked to the optix wing-patterning locus [89]. Nonetheless, the presence of a

few major QTL affecting premating isolation does not directly contradict our results, because

multiple additional behavioural, ecological, and fertility-related barriers are known to act

between these species [36,59], and each of these may have a more polygenic basis. Unlike cyd,

tim races have wing patterns that commonly match those of the localmel races. Therefore, the

large-effect wing-patterning loci do not contribute to the barrier between tim andmel. This

difference might explain why admixture between this pair is more strongly correlated with

recombination rate. When barrier loci are weak and dispersed across the genome, admixture

proportions should be more strongly predicted by recombination rate than when there are few

large-effect barrier loci. Therefore, perhaps counterintuitively, the more heterogeneous pattern

of admixture between tim andmel is in fact more consistent with the model of small-effect bar-

rier loci evenly distributed across the genome. The heterogeneity reflects the underlying heter-

ogenous recombination landscape, rather than a patchy distribution of large-effect barrier loci.

The cause of the more even pattern of admixture between cyd andmel-W is less clear. One

possible explanation is a different architecture of the species barrier, with more epistatic inter-

actions among barrier loci, which might lead to a deviation from theoretical predictions that

largely ignore epistasis. Lindtke and Buerkle [90] distinguish between two types of epistatic

barrier loci: classic Dobzhansky-Muller incompatibilities (DMIs) that cause reduced fitness in

hybrids but can be broken down by recombination in backcross progeny, following the formu-

lation by Dobzhansky [4] and Muller [7], and ‘pathway’ incompatibilities that reduce fitness in

recombinant hybrids in which co-adapted alleles become separated. Simulations show that

pathway-type incompatibilities can produce pronounced localised barriers to introgression,

whereas classic DMIs can have more even, genome-wide effects if selection is strong enough

[90]. The large-effect wing-patterning loci, which only contribute to the cyd/mel barrier, may

act as classic DMIs. Hybrids have intermediate wing patterns that do not resemble the recogni-

sable warning patterns of either species, making them roughly twice as vulnerable to predation

[43], but backcrossing restores a recognisable warning pattern to a proportion of the progeny.

This unique additional barrier between cyd andmel is likely to be most significant in early-

generation backcross hybrids, which is where most selection against introgression is likely to

occur [91]. It is therefore possible that the presence of these large-effect incompatibilities could

help explain the less heterogeneous landscape of introgression in this species pair, although

this requires further investigation.

In conclusion, our findings imply that barrier loci have accumulated rapidly in the 1 to 1.5

million years over which these butterfly species have diverged. This joins a growing number of

examples showing that selection against introgression between fairly young species can be per-

vasive across the genome [19,27–31]. Further work is still required to determine the generality

of these trends and to account for complications such as clustered barrier loci and epistasis. It is

also currently unclear how long heterogeneous species barriers may be detectable, as continued

accumulation of barrier loci should eventually lead to genome-wide ‘coupling’ or ‘congealing’

[24,92], in which introgression is reduced globally rather than locally. Regardless of the answers
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to these questions, the recent evidence for highly polygenic species barriers highlights the dan-

gers of assuming strictly neutral evolution when modelling speciation. Models that incorporate

variable selection pressures among sites [69,93] are likely to be more realistic. Our results here

are intriguing in that they show that, despite the widely distributed barriers across the genome,

introgression has nonetheless dramatically reshaped species relationships. A few recent exam-

ples have shown how introgression can lead to different topologies across genome regions, but

our data go further in showing how this phylogenetic heterogeneity can be predicted by recom-

bination rate. Perhaps most intriguing is the fact that hybridisation between these butterflies is

very rare, but has evidently been ongoing for long enough to broadly rewrite their evolutionary

history. This raises questions about how we view even strongly isolated species as entities and

the degree to which animal life can be accurately viewed as a bifurcating tree.

Materials andmethods

Samples and genotyping

We used whole-genome resequencing data from 92 wild-caught butterflies (S1 Table)

[1,49,52,65,81]. Reads were mapped to themel genome assembly version 2 [62] using BWA

mem version 0.7.2, using default parameters. Read depth was computed using GATK version

3.4 DepthOfCoverage [94]. Average read depth across all 92 samples was 29.22 (S1 Table).

Genotyping was performed using GATK version 3.4 HaplotypeCaller and GenotypeGVCFs

tools [94], using default parameters except that heterozygosity was set to 0.02. Each geographic

population (10 samples each) was genotyped separately. Variant sites were accepted only if the

quality (QUAL) value was�30, and individual genotype calls were accepted only where the

sample depth of coverage for the position was�8. Scaffold positions in the Hmel2 assembly

were converted to chromosome positions based on the most recent scaffolding [50], now

released as Hmel2.5. Two sets of filtered SNPs were generated for the analyses below. In addi-

tion to the requirement of�8× depth of coverage, SNPs were required to be biallelic, and sites

at which more than 75% of samples were heterozygous—or where the minor allele was present

in only a single haploid copy—were discarded. SNP Set 1 had the further requirement that at

least 9 out of the 10 samples representing each of the 9 ingroup populations, and 1 of the 2 out-

group samples, had an accepted genotype call, resulting in 14,406,386 SNPs. SNP Set 2 had the

less stringent requirement that at least 4 of the samples from each ingroup population, and 1 of

the outgroup samples, had an accepted genotype call, resulting in 23,084,596 SNPs.

PCA

We used Eigenstrat SmartPCA [95] to investigate population structure and confirm sample

identity. SNP Set 1 was used for this analysis, and the outgroup num samples were excluded.

Phylogenetic network analysis

Pairwise absolute genetic distance between all pairs of samples was computed using the script

distMat.py, available from github.com/simonhmartin/genomics_general. SNP Set 1 was used

but with an added filter to retain only SNPs separated by at least 1 kb, to reduce computational

time. A phylogenetic network was computed from the distance matrix using the NeighbourNet

approach [96], implemented in SplitsTree version 4 [97], using default parameters.

Topology weighting

To quantify genealogical relationships among taxa, we used topology weighting by iterative

sampling of subtrees, Twisst [56] (github.com/simonhmartin/twisst). This also made use of SNP
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Set 1. Genotypes for all samples were first phased and imputed using SHAPEIT version 2

[98,99]. Neighbour-joining phylogenies were inferred for windows of 50 SNPs, following exten-

sive simulations [56]. Using a fixed number of SNPs as opposed to a fixed absolute window size

ensures sufficient information for reliable tree inference while minimising recombination

within each analysed window [56]. Exact weightings were computed for all inferred genealogies

that could be simplified to�2,000 remaining sample combinations (see reference [56] for

details). In cases in which this was not possible, approximate weightings were computed by ran-

domly sampling combinations of haplotypes until estimated weightings for all 15 possible topol-

ogies had a 95% binomial confidence interval of<0.05. Confidence intervals were computed

according to the Wilson method, as implemented by the package binom [100] in R [101].

To guide our interpretation of the topology weighting results, we performed coalescent sim-

ulations usingmsms [102] under a simplified model that approximates the demographic history

of these species. The main aims of these simulations were to determine (1) whether the level of

phylogenetic discordance observed empirically could be explained purely as a result of ancestral

ILS or whether it required the inference of introgression, and (2) whether a bias in the direction

of gene flow produced skews in the weightings of certain topologies. We did not attempt to fit a

complex model and infer the ‘true’ demographic history (i.e., split times, changes in Ne, and the

extent of gene flow over time) because this appears to be computationally intractable given cur-

rent methods. Three different scenarios were considered, all with a split time of 6 million gener-

ations between the 2 pairs of ingroup taxa, corresponding to the approximately 1.5 million-year

split between cyd andmel [45,57] (although this may be an overestimate [46]) and with constant

population size (see S2 Fig for details). The first simulation had a normal population size of 2

million [52] and no gene flow. The second had an enlarged population size of 10 million and no

gene flow. This size was selected post hoc to produce levels of phylogenetic discordance similar

to those observed empirically. The third simulation had a population size of 2 million and

included gene flow between 2 pairs of nonsister taxa. Gene flow was 4-fold greater in one direc-

tion than the other. To approximate a scenario in which some parts of the genome are resistant

to gene flow, the migration rate was sampled from a gamma distribution with a shape parameter

of 1 and scale of 3 (i.e., the distribution had an expected value of 3 migrants per generation).

The scale (rate of migration) was selected post hoc to give a level of phylogenetic discordance

similar to that observed empirically. For each scenario, we simulated 20,000 unlinked genealo-

gies, with 10 representative tips for each of the 4 ingroup taxa and 1 for the outgroup, and com-

puted topology weightings using Twisst, as described above.

Admixture proportions

We estimated admixture proportions for 100 kb windows using fd [18], which is based on the

so-called ABBA-BABA test [103,104]. Unlike Twisst, this is a SNP-based method that does not

assume a single genealogy per window but rather benefits from intrawindow recombination

which increases the information content per window. The window size of 100 kb was selected

because it provides sufficient resolution to capture variation while being large enough to mini-

mise nonindependence among adjacent windows [52]. This analysis was implemented using

the python script fourPopWindows.py, available from github.com/simonhmartin/genomics_-

general. To ensure that fd is not affected by confounding factors such as Ne and selective

sweeps, we first tested its performance in quantifying the proportion of admixture using coa-

lescent simulations and compared it to other methods used to study admixture and genomic

divergence (FST, absolute genetic divergence [dXY], and Patterson’s D statistic) [103,104]. We

usedmsms [102] to simulate the evolution of independent windows of 50 kb (100 windows for

each population size and rate of gene flow), with a population recombination at rate of 1%.

Recombination and species barriers in butterflies

PLOS Biology | https://doi.org/10.1371/journal.pbio.2006288 February 7, 2019 18 / 28

https://doi.org/10.1371/journal.pbio.2006288


The models used were similar to those used for the topology weighting simulations above,

except with 4 taxa rather than 5. They are shown, along with the range of Ne and rates of gene

flow tested in S5 Fig.

Analyses of real data focused on quantifying admixture between the 2 sympatric species

pairs: cyd andmel-W, and tim andmel-E. fd was computed using a range of population combi-

nations, including different allopatric control populations and either combining the 2 races

that represent each broad geographic area (east of the Andes, west of the Andes, and French

Guiana) or keeping them separate (S6 Fig). SNP Set 2 was used for these analyses, with the

added requirement that, for the given run, at least 50% of samples in each population were

genotyped and the outgroup was fixed for the ancestral state.

Recombination rate estimation

Recombination rates were estimated in two different ways. First, we used the high-resolution

linkage maps recently produced formel, cyd, and hybrids [50] to estimate the local crossover

rate. The 3 maps were produced from 335, 297, and 331 offspring, respectively. The recombina-

tion rate was computed as the slope of the locally weighted regression (loess span = 2 Mb)

between physical position and map position along each chromosome [52,105]. Note that,

because recombination is male limited in Lepidoptera, the values presented here represent the

male-specific recombination rate. Conversion to an effective recombination rate at the popula-

tion level would require knowledge of the effective sex ratio, which we do not have, so we chose

here to use the male-specific rate. Second, we computed the population recombination rate for

100 kb windows using the maximum likelihood method implemented in LDHelmet [68]. This

analysis was run separately for each population of 20 samples (i.e., combining races from the

same area following the results of the PCA in Fig 1), using SNP Set 1, phased as described

above. A window size of 50 SNPs was used, along with the recommended range of precomputed

pairwise likelihoods. For convenience, ρ values were converted to cM/Mb by scaling values for

each chromosome according to the map length of each chromosome, averaged across the 3 link-

age maps used. As above, these values are therefore scaled to the male-specific recombination

rate. The map-based approach has the advantage of providing an estimate of the true crossover

recombination rate but suffers from limited resolution, whereas ρ can be estimated with high

resolution but provides a composite of the crossover recombination rate and theNe, which can

be biased by confounding factors such as selective sweeps that reduce Ne in some part of the

genome. We therefore compared the two approaches to evaluate the extent to which the higher-

resolution estimates or ρ provide reliable information about the underlying recombination rate.

Data availability

Resequencing fastq files for all 92 individuals are available from the European Nucleotide

Archive (accession numbers are provided in S1 Table). Filtered SNP data (VCF) and all pro-

cessed data files used to generate all empirical and simulation figures are available from the

Dryad digital repository: http://dx.doi.org/10.5061/dryad.sk2pd88 [55].

Supporting information

S1 Fig. Examples of topology weighting for 3 individual windows. Each tree (top), labelled

X, Y, and Z, represents an inferred genealogy from a single 50 SNP window. Bar plots (middle)

show the weightings for the 15 possible topologies for each tree. Tree X has a weighting of 1 for

Topology 3, indicating complete monophyly of cyd with tim andmel-W withmel-E. Note that

a tree can have a weighting of 1 for a single topology even if no individual taxon shows com-

plete lineage sorting, as long as pairs of taxa are completely sorted (monophyletic). Tree Y is
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more complex, with four different topologies represented. However, the strongest weighting is

for Topology 6. Tree Z is even more complex, and all 15 topologies are represented, indicating

very little lineage sorting. At the bottom, the weightings are shown for a 250 Kb region of

Chromosome 2, with the locations of windows X, Y, and Z indicated. Both stacked and over-

lapping plots are shown. cyd,H. cydno;mel,H.melpomene;mel-E, eastern races ofmel;mel-W,

western races ofmel; tim,H. timareta.

(PNG)

S2 Fig. Topology weightings for simulated genealogies. Coalescent simulations were per-

formed using a simplified population history that approximately matches that for the studied

species. Constant population size was used throughout, and split times are indicated. Three

simulations were performed, one with normal population size (2 million) and no gene flow

(top), one with a large population size (10 million) and no gene flow (middle), and one with a

normal population size but with gene flow between two pairs of populations. Gene flow was

uneven (four times stronger in one direction than the other, as indicated by arrows). To

approximate a natural situation with some part of the genome resistant to introgression, the

rate of gene flow was drawn from a gamma distribution with shape parameter 1 and scale 3

(i.e., an expected value of 3 migrants per generation). See Materials and methods for further

details. For each scenario, average weightings across 20,000 simulated genealogies (solid bars)

are shown for the 15 possible topologies (shown above). The percentage of genealogies with a

maximal weighting (= 1) for each topology is also shown (shaded bars). The simulations show

that without gene flow, we expect a considerably higher weighting for the species topology

(T3), with less phylogenetic discordance and more lineage sorting than seen in the real data

(Fig 2). Increasing the population size creates greater discordance but produces similar weight-

ings for topologies T6 and T9. By contrast, adding gene flow also increases discordance but

generates a bias towards far greater weighting of T6 than T9. The uneven gene flow also creates

biases for T14 over T11 and T5 over T4. Therefore, the observed patterns in Fig 2 are more

consistent with gene flow than with ancestral ILS. Data deposited in the Dryad repository [55].

ILS, incomplete lineage sorting.

(PNG)

S3 Fig. Raw weightings for all topologies across all chromosomes. See Fig 2 for the colour

legend. Raw values without smoothing are plotted here, unlike in Fig 3 of the main paper.

Weightings are stacked so that all 15 topologies can be distinguished. Horizontal axis tick

marks are spaced by 1 Mb. Note that the chromosomes are plotted in groups: first, the Z sex

chromosome, then the 10 unfused (short) autosomes, and then the 10 fused (long) autosomes.

Data deposited in the Dryad repository [55].

(PNG)

S4 Fig. Trends in topology weightings among and within chromosomes. (A) The average

weighting for all 15 topologies (colours as in Fig 2) for each of the 20 autosomes, plotted

against the physical length of the chromosome. Fitted linear regressions are shown for refer-

ence. (B) Average weightings for all 15 topologies binned according to their relative chromo-

some position, from the centre (0) to the periphery (1). Each bin represents 5% of the

chromosome arm, with the range indicated by a horizontal line. Vertical lines indicate ±1 SE.

Data deposited in the Dryad repository [55].

(PNG)

S5 Fig. Testing the robustness of fd to estimate the admixture proportion. Simulations

show that fd is largely robust to Ne. Sequences were simulated following the model on the left,

with a range of different population sizes, indicated by different colours (2 are shown in the
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model for example). Simulated divergence times were chosen to approximate the splits

between the outgroup silvaniform clade and the clade ofmel, cyd, and tim (approximately 4

Mya [58]), and the divergence betweenmel and the ancestor of cyd and tim (1–1.5 Mya

[45,46,57]). Population sizes ranging from 250,000 to 4,000,000 were tested. For comparison,

other divergence and admixture statistics are included. Relative and absolute divergence statis-

tics FST and dXY are both strongly dependent on Ne. Patterson’s D statistic is strongly affected

by Ne and is nonlinear. By contrast, fd is approximately proportional to the simulated level of

migration and is largely unaffected by Ne, except when Ne is large, in which case fd tends to

underestimate the simulated admixture proportion. This is consistent with a loss of power

with reduced lineage sorting in large populations. Ne formel was estimated to be 2–3 million

[52], suggesting that admixture would indeed be weakly underestimated. However, as we are

primarily interested in testing for reduced admixture in parts of the genome with reduced

recombination rate, which usually corresponds to reduced Ne due to enhanced linked selec-

tion, the observed bias would have a conservative influence on our main analysis. We also

tested simulated histories in which the donor and recipient populations undergo an expansion

and contraction, respectively (second row), or the inverse (third row). Expansion of the donor

population causes an exaggeration of the underestimate of admixture when Ne is large, but

otherwise these changes do not have a significant effect on the performance of fd. All plotted

data deposited in the Dryad repository [55]. cyd,H. cydno; dXY, absolute genetic divergence;

FST, fixation index;mel,H.melpomene; Mya, million years ago; tim,H. timareta.

(PNG)

S6 Fig. Sets of taxa used to estimate admixture proportions using fd. Sets 1–3 were used to

estimate admixture between cyd andmel-W. Sets 4–6 were used to estimate admixture

between tim andmel-E. In each set, P2 and P3 represent the 2 sympatric populations between

which the level of admixture is to be measured. P1 represents the allopatric ‘control’ popula-

tion that is closely related to P2 but thought not to be subject to contemporary hybridisation

with P3. The diagrams on the right show, for each set, the relationships among the 3 popula-

tions considered (bold lines), as well as the period over which admixture between P2 and P3

can be detected given P1 (shaded). In all sets, num was used as the outgroup. ama,H.m. ama-

ryllis; chi,H. c. chioneus; cyd,H. cydno; flo,H. t. Florencia;mal,H.m.malleti;mel-E, eastern

races ofmel;mel-G,H.m.melpomene from French Guiana;mel-W, western races ofmel; ros,

H.m. rosina; tim,H. timareta; txn,H. t. Thelxinoe; vul,H.m. vulcanus; zel,H. c. zelinde.

(PNG)

S7 Fig. Fine-scale patterns of admixture between cyd andmel-W. Estimated admixture pro-

portion (fd) computed in 20 Kb sliding windows, sliding in increments of 5 Kb. Note that the

chromosomes are plotted in groups: first, the Z sex chromosome, then the 10 unfused (short)

autosomes, and then the 10 fused (long) autosomes. Red boxes indicate the locations of 3

known wing-patterning genes (+/−100 kb): wnt-A (Chromosome 10), cortex (Chromosome

15), and optix (Chromosome 18). fd was computed between cyd andmel-W using Set 1a (solid

line) and Set 1b (dashed) (see S6 Fig). In nearly all cases, there is reduced admixture between

cyd andmel-W in the vicinity of the wing-patterning genes, consistent with localised barriers

to introgression. The one exception is the cortex locus on Chromosome 15, at which there is

elevated admixture for Set 1b (i.e., between H. cydno zelinde andH.melpomene vulcanus). This

has in fact been previously recorded as a probable rare instance of introgression of a wing-pat-

terning allele between cyd andmel [49]. This allele appears to be responsible for the dorsal mel-

anisation of the hindwing yellow bar inH.m. vulcanus. Therefore, these loci provide robust

support for the use of fd to quantify admixture between these taxa. Black boxes indicate the

fusion points of the fused chromosomes [62] (+/−100 kb). There is no consistent trend of
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reduced admixture around the fusion points. Data deposited in the Dryad repository [55]. cyd,

H. cydno;mel,H.melpomene;mel-W, western races ofmel.

(PNG)

S8 Fig. Fine-scale patterns of admixture between tim andmel-E. Estimated admixture pro-

portion (fd) computed in 20 Kb sliding windows, sliding in increments of 5 Kb. Note that the

chromosomes are plotted in groups: first, the Z sex chromosome, then the 10 unfused (short)

autosomes, and then the 10 fused (long) autosomes. Three known wing-patterning genes are

indicated by red boxes: wnt-A (Chromosome 10), cortex (Chromosome 15), and optix (Chro-

mosome 18). fd was computed between tim andmel-E using Set 4a (solid line) and Set 4b

(dashed) (see S6 Fig). In all cases, there is elevated admixture between tim andmel-E in the

vicinity of the wing-patterning genes, consistent with localised introgression of wing-pattern-

ing alleles. Black boxes indicate the fusion points of the fused chromosomes [62] (+/−100 kb).

There is no consistent trend of reduced admixture around the fusion points. Data deposited in

the Dryad repository [55].mel,H.melpomene;mel-E, eastern races ofmel; tim,H. timareta.

(PNG)

S9 Fig. Recombination rates plotted across chromosomes. Solid lines show the crossover

recombination rate estimated from linkage maps [50]. Dashed lines show the maximum likeli-

hood estimate for ρ, computed for 100 Kb windows separately for cyd, tim,mel-W, andmel-E

(indicated by colours). The black dashed line indicates the mean ρ across the four populations,

plotted as a locally weighted average (loess span = 2 Mb). Data deposited in the Dryad reposi-

tory [55]. ρ, population recombination rate; cyd,H. cydno;mel,H.melpomene;mel-E, eastern

races ofmel;mel-W, western races ofmel; tim,H. timareta.

(PNG)

S10 Fig. Relationship between recombination rate and gene density. Gene density (i.e., the

proportion of coding sequence) in 100 kb windows plotted against ρ (left) and crossover

recombination rate (right). The line shows a fitted linear regression. While there is a strong

negative relationship between ρ and gene density, this may partly reflect the fact that ρ repre-

sents a composite of recombination and local Ne, which will tend to be lower in regions of

high gene density due to linked selection [52]. Nevertheless, there is also a negative relation-

ship between the crossover recombination rate and gene density, indicating that regions of

lower recombination do indeed tend to harbour more coding sequence. The relationship is

fairly weak, but it is unclear to what extent this might reflect the inaccuracies of measuring

local recombination rates based on linkage mapping [50]. Data deposited in the Dryad reposi-

tory [55]. ρ, population recombination rate; Ne, effective population size.

(PNG)

S11 Fig. Admixture is positively correlated with recombination rate. Admixture propor-

tions estimated for nonoverlapping 100 kb windows, plotted against the local recombination

rate, computed as ρ rescaled to cM/Mb (panel A) or estimated directly from linkage maps

(panel B). Solid lines indicate the locally weighted average (loess span = 0.75). Admixture

between cyd andmel-W (Sets 1–3, see S6 Fig) as well as that between tim andmel-E (Sets 4–6)

increases nonlinearly with increasing recombination rate, with the exception of Set 6, for

which admixture proportions are low, and there is only evidence for a weak positive relation-

ship in windows of low recombination rate. This may be driven by the close relationship and

likely ongoing migration betweenmel-E andmel-G (see Figs 1 and S6), which could limit our

ability to detect admixture between tim andmel-E. The estimated admixture proportion

between cyd andmel-W using Set 3 is also much lower than for Sets 1 and 2. This may be

driven by strongly directional introgression from cyd intomel-W, which is also indicated by
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topology weightings, as described in the main paper. If introgression is largely in the direction

from P2 into P3, fd tends to underestimate the true admixture proportion [18]. Data deposited

in the Dryad repository [55]. ρ, population recombination rate; cyd,H. cydno; fd,;mel,H.mel-

pomene;mel-E, eastern races ofmel;mel-G, French Guianamel;mel-W, western races ofmel;

tim,H. timareta.

(PNG)

S12 Fig. Admixture is negatively correlated with the proportion of coding sequence.

Admixture proportions estimated for nonoverlapping 100 Kb windows, plotted against the

proportion of coding sequence. Solid lines indicate the locally weighted average (loess

span = 0.75). Explanations for the lower average levels of admixture in Sets 3 and 6 are dis-

cussed in the legend of S11 Fig above. Data deposited in the Dryad repository [55].

(PNG)

S13 Fig. Within-chromosome correlations between admixture and recombination rate.

Locally smoothed regressions (loess, span = 1) of estimated admixture proportions between

cyd andmel-W (Set 1) (panel A) and between tim andmel-E (Set 4) (panel B) for 100 kb win-

dows, against ρ. Individual chromosomes are plotted separately. Asterisks at the end of each

line indicate a positive Spearman rank correlation (p� 0.05) for that chromosome. Solid lines

represent the longer fused autosomes, and dashed lines indicate the shorter unfused auto-

somes. The fine dashed line indicates the Z sex chromosome. Lines along the top indicate

recombination rate bins for which comparisons were made between the 2 chromosome types.

Asterisks along the top indicate a significantly lower admixture proportion on average in fused

than unfused autosomes for the given bin (Mann-Whitney U test, p� 0.05). Comparisons

were made up to 7 cM/Mb, because beyond this, there were too few regions on fused chromo-

somes for reliable comparison. Data deposited in the Dryad repository [55]. ρ, population

recombination rate; cyd,H. cydno;mel,H.melpomene;mel-E, eastern races ofmel;mel-W,

western races ofmel; tim,H. timareta.

(PNG)

S1 Table. Sample and sequencing information.

(PDF)

S2 Table. Correlations between admixture proportion (fd) and recombination rate.

(PDF)
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28. Janoušek V, Munclinger P, Wang L, Teeter KC, Tucker PK. Functional organization of the genome
may shape the species boundary in the house mouse. Mol Biol Evol. 2015; 32: 1208–1220. https://doi.
org/10.1093/molbev/msv011 PMID: 25631927

29. Brandvain Y, Kenney AM, Flagel L, Coop G, Sweigart AL. Speciation and Introgression between
Mimulus nasutus and Mimulus guttatus. PLoS Genet. 2014; 10. https://doi.org/10.1371/journal.pgen.
1004410 PMID: 24967630

30. Schumer M, Xu C, Powell DL, Durvasula A, Skov L, Holland C, et al. Natural selection interacts with
recombination to shape the evolution of hybrid genomes. Science. 2018; 360: 656–660. https://doi.
org/10.1126/science.aar3684 PMID: 29674434

31. Juric I, Aeschbacher S, Coop G. The Strength of Selection against Neanderthal Introgression. PLoS
Genet. 2016; 12: 1–25. https://doi.org/10.1371/journal.pgen.1006340 PMID: 27824859

32. Pease JB, HahnMW. More accurate phylogenies inferred from low-recombination regions in the pres-
ence of incomplete lineage sorting. Evolution. 2013; 67: 2376–2384. https://doi.org/10.1111/evo.
12118 PMID: 23888858

33. Van BelleghemSM, Rastas P, Papanicolaou A, Martin SH, Arias CF, Supple MA, et al. Complex mod-
ular architecture around a simple toolkit of wing pattern genes. Nat Ecol Evol. 2017; 1: 0052. https://
doi.org/10.1038/s41559-016-0052 PMID: 28523290

34. Merrill RM, Gompert Z, Dembeck LM, Kronforst MR, McMillanWO, Jiggins CD. Mate preference
across the speciation continuum in a clade of mimetic butterflies. Evolution. 2011; 65: 1489–500.
https://doi.org/10.1111/j.1558-5646.2010.01216.x PMID: 21521198

35. Jiggins CD, Naisbit RE, Coe RL, Mallet J. Reproductive isolation caused by colour pattern mimicry.
Nature. 2001; 411: 302–5. https://doi.org/10.1038/35077075 PMID: 11357131
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